人教版八年级数学因式分解复习
第十四章+整式乘法及因式分解复习+课件+2024-2025学年人教版数学八年级上册

例题:下列运算是否正确。A正确;B错误 ×
× ×
计算: x3(-x)5+(-x4)2-(2x2)4 +(-x10)÷(- x)2
解:原式= =
=
解此类题应注意明确法则及各自运算的特点,避免混淆
注意点: (1)指数:加减
数:不同底数 转化
幂乘除 幂的乘方 同底数
例: 若10x=5,10y=4,求102x+3y-1 的值.
知识要点: 一、幂的4个运算性质
二、整式的加、减、乘、除法则
三、乘法公式
四、因式分解
考查知识点:(当m,n是正整数时) 1. 同底数幂的乘法:am · an = am+n 2. 同底数幂的除法:am ÷ an = am-n ; a0=1(a≠0)
3. 幂的乘方: (am )n = amn 4. 积的乘方: (ab)n = anbn
解:102x+3y-1 =
=
当10x=5,10y=4时
原式=
考查知识点:
1、单项式与单项式相乘:把它们的系数、相同字母 分别相乘,对于只在一个单项式里含有的字母,则连 同它的指数作为积的一个因式.
2、单项式与多项式相乘:就是用单项式去乘多项 式的每一项,再把所得的积相加。
即:m(a+b+c)= ma+mb+mc
三数和的平方公式: (a+b+c)2=a2+b2 +c2+2ab+2ac+2bc
例. 已知a+b=5 ,ab= -2,
求(1)a2+b2 (2)a-b
a2+b2=(a+b)2-2ab
(a-b)2=(a+b)2-4ab
2021-2022学年人教版八年级数学上册《因式分解》期末综合复习训练1(附答案)

2021-2022学年人教版八年级数学上册《因式分解》期末综合复习训练1(附答案)1.已知x﹣y=2,xy=,那么x3y+3x2y2+xy3的值为()A.3B.6C.D.2.若=9×11×13,则k=()A.12B.11C.10D.93.如图所示,长方形中放入5张长为x,宽为y的相同的小长方形,其中A,B,C三点在同一条直线上.若阴影部分的面积为52,大长方形的周长为36,则一张小长方形的面积为()A.3B.4C.5D.64.4张长为m,宽为n(m>n)的长方形纸片,按如图的方式拼成一个边长为(m+n)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2,若S1=S2,则m,n满足的关系式是()A.m=1.5n B.m=2n C.m=2.5n D.m=3n5.224﹣1可以被60和70之间某两个数整除,这两个数是()A.64,63B.61,65C.61,67D.63,656.若(20212﹣4)(20202﹣4)=2023×2019×2018m,则m的值是()A.2020B.2021C.2022D.20247.一个自然数若能表示为相邻两个自然数的平方差,则这个自然数称为智数,比如:22﹣12=3,3就是智数,从0开始,不大于2021的智数共有()A.1009B.1010C.1011D.以上都不对8.已知x2+3x﹣3=0,则代数式x3+5x2+3x﹣10的值为()A.﹣1B.10C.6D.﹣49.若s+t=4,则s2﹣t2+8t的值是()A.8B.12C.16D.3210.已知a﹣2b=2,那么a2﹣4b2﹣8b+1的值为.11.已知x2﹣3x+1=0,则﹣2x2+6x=;x3﹣2x2﹣2x+9=.12.把多项式2x2﹣4x分解因式的结果是.13.分解因式:﹣9a2+b2=.14.若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值为.15.分解因式:﹣(a+2)2+16(a﹣1)2=.16.因式分解:x4﹣18x2+81=.17.因式分解:(a+2b)2﹣8ab的结果是.18.因式分解:x3+x2y﹣xy2﹣y3.19.分解因式:a2+4b2+c4﹣4ab﹣2ac2+4bc2﹣1.20.选择适当的方法分解下列多项式(1)x2+9y2+4z2﹣6xy+4xz﹣12yz(2)(a2+5a+4)(a2+5a+6)﹣120.21.分解因式:(1)(x﹣1)(x+3)+4(2)﹣3ab3+12ab2﹣12ab.22.阅读下列材料:已知二次三项式2x2+5x+m有一个因式是(x+3),求另一个因式以及m 的值.解:设另一个因式为(2x+n),得2x2+5x+m=(x+3)(2x+n)展开,得2x2+5x+m=2x2+(n+6)x+3n∴解得∴另一个因式为(2x﹣1),m的值为﹣3.仿照以上做法解答下题:已知二次三项式2x2+3x+k有一个因式为(x﹣1),求另一个因式及k的值.23.分解因式:x2+12x﹣189,分析:由于常数项数值较大,则将x2+12x﹣189变为完全平方公式,再运用平方差公式进行分解,这样简单易行.x2+12x﹣189=x2+2*6x+62﹣36﹣189=(x+6)2﹣225=(x+6)2﹣152=(x+6+15)(x+6﹣15)=(x+21)(x﹣9)请按照上面的方法分解因式:x2﹣60x+884.24.阅读下列材料:材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式.(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2+4(x﹣y)+3;②分解因式:m(m+2)(m2+2m﹣2)﹣3.25.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式;(3)请判断多项式x4+x2+1是否能分解成两个整系数二次多项式的乘积,并说明理由.参考答案1.解:∵x﹣y=2,xy=,∴原式=xy(x2+3xy+y2)=xy(x2﹣2xy+y2+5xy)=xy[(x﹣y)2+5xy]=×(4+)=3.故选:D.2.解:=9×11×13,(10+1)(10﹣1)(12+1)(12﹣1)=9×11×13k,11×9×13×11=9×11×13k,∴k=11.故选:B.3.解:依题意得:,即,(①2﹣②)÷2,得:xy=5.∴一张小长方形的面积为5.故选:C.4.解:大正方形的面积为(m+n)2,阴影部分的面积S2=n(m+n)×4=S1,因此有(m+n)2=S1+S2,即(m+n)2=n(m+n)×4×2,整理得,m2﹣2mn﹣3n2=0,∴(m﹣3n)(m+n)=0,∵m>0,n>0,∴m﹣3n=0,即m=3n,故选:D.5.解:224﹣1=(212﹣1)(212+1)=(26﹣1)(26+1)(212+1)=63×65×(212+1),则这两个数为63与65.故选:D.6.解:∵20212﹣4=20212﹣22=(2021+2)(2021﹣2)=2023×2019,20202﹣4=20202﹣22=(2020+2)(2020﹣2)=2022×2018,又∵(20212﹣4)(20202﹣4)=2023×2019×2018m,∴2023×2019×2022×2018=2023×2019×2018×m,∴m=2022.故选:C.7.解:∵(n+1)2﹣n2=(n+1+n)(n+1﹣n)=2n+1,∴所有的奇数都是智慧数,∵2021÷2=1010......1,∴不大于2021的智慧数共有:1010+1=1011(个).故选:C.8.解:∵x2+3x﹣3=0,∴x2+3x=3,x3+5x2+3x﹣10=x3+3x2+2x2+3x﹣10=x(x2+3x)+2x2+3x﹣10=3x+2x2+3x﹣10=2x2+6x﹣10=2(x2+3x)﹣10=2×3﹣10=﹣4.故选:D.9.解:∵s+t=4,∴s2﹣t2+8t=(s+t)(s﹣t)+8t=4(s﹣t)+8t=4s﹣4t+8t=4s+4t=4(s+t)=4×4=16,故选:C.10.解:∵a﹣2b=2,∴原式=(a+2b)(a﹣2b)﹣8b+1=2(a+2b)﹣8b+1=2a+4b﹣8b+1=2a﹣4b+1=2(a﹣2b)+1=2×2+1=4+1=5.故答案为:5.11.解:∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴﹣2x2+6x=﹣2(x2﹣3x)=﹣2×(﹣1)=2,x3﹣2x2﹣2x+9=x3﹣3x2+x2﹣3x+x+9=x(x2﹣3x)+(x2﹣3x)+x+9=﹣x+(﹣1)+x+9=8,故答案为:2,8.12.解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).13.解:﹣9a2+b2=b2﹣9a2=(b+3a)(b﹣3a).故答案为:(b+3a)(b﹣3a).14.解:∵4x2﹣(k﹣1)x+9是一个完全平方式,∴k﹣1=±12,解得:k=13或k=﹣11,故选:13或﹣11.15.解:﹣(a+2)2+16(a﹣1)2=[4(a﹣1)]2﹣(a+2)2=(4a﹣4+a+2)(4a﹣4﹣a﹣2)=(5a﹣2)(3a﹣6)=3(5a﹣2)(a﹣2)故答案为:3(5a﹣2)(a﹣2).16.解:x4﹣18x2+81=(x2﹣9)2=(x+3)2(x﹣3)2.故答案为:(x+3)2(x﹣3)2.17.解:原式=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.18.解:原式=(x3+x2y)﹣(xy2+y3)=x2(x+y)﹣y2(x+y)=(x+y)2(x﹣y).19.解:a2+4b2+c4﹣4ab﹣2ac2+4bc2﹣1=(a2+4b2﹣4ab)+(﹣2ac2+4bc2)+(c4﹣1)=(2b﹣a)2+2c2(2b﹣a)+(c2+1)(c2﹣1)=(2b﹣a+c2+1)(2b﹣a+c2﹣1).20.(1)解:原式=(x﹣3y)2+4z(x﹣3y)+4z2=(x﹣3y+2z)2;(2)解:原式=(a2+5a)2+10(a2+5a)+24﹣120=(a2+5a)2+10(a2+5a)﹣96=(a2+5a+16)(a2+5a﹣6)=(a﹣1)(a+6)(a2+5a+16).21.(1)原式=x2+2x+1=(x+1)2.(2)原式=﹣3ab(b2﹣4b+4)=﹣3ab(b﹣2)2.22.解:设另一个因式为(2x+n),得:2x2+3x+k=(x﹣1)(2x+n)展开得:2x2+3x+k=2x2+(n﹣2)x﹣n.所以解得:n=5,k=﹣5.所以另一个因式为2x+5.23.解:x2﹣60x+884=x2﹣2×30x+900﹣900+884=(x﹣30)2﹣16=(x﹣30+4)(x﹣30﹣4)=(x﹣26)(x﹣34).24.解:(1)x2﹣6x+8=(x﹣2)(x﹣4);(2)①令A=x﹣y,则原式=A2+4A+3=(A+1)(A+3),所以(x﹣y)2+4(x﹣y)+3=(x﹣y+1)(x﹣y+3);②令B=m2+2m,则原式=B(B﹣2)﹣3=B2﹣2B﹣3=(B+1)(B﹣3),所以原式=(m2+2m+1)(m2+2m﹣3)=(m+1)2(m﹣1)(m+3).25.解:(1)根据待定系数法原理,得3﹣a=2,a=1.故答案为1.(2)设另一个因式为(x2+ax+b),(x+1)(x2+ax+b)=x3+ax2+bx+x2+ax+b=x3+(a+1)x2+(a+b)x+b∴a+1=0 a=﹣1 b=3∴多项式的另一因式为x2﹣x+3.答:多项式的另一因式x2﹣x+3.(3)多项式x4+x2+1能分解成两个整系数二次多项式的乘积.理由如下:方法一:设多项式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x2+x+1)(x2+ax+1),①(x2+1)(x2+ax+b)=x4+ax3+bx2+x2+ax+b=x4+ax3+(b+1)x2+ax+b∴a=0,b+1=1 b=1由b+1=1得b=0≠1②(x2+x+1)(x2+ax+1)=x4+(a+1)x3+(a+2)x2+(a+1)x+1∴a+1=0,a+2=1,解得a=﹣1.即x4+x2+1=(x2+x+1)(x2﹣x+1);方法二:多项式x4+x2+1能分解成两个整系数二次多项式的乘积,(x2+ax+b)(x2+cx+d),解得a=1,c=﹣1,b=d=1,即x4+x2+1=(x2+x+1)(x2﹣x+1)∴x4+x2+1能分解成两个整系数二次三项式的乘积.答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积.。
人教版八年级数学上册14.整式的乘除与因式分解--复习课件

例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
2021-2022学年人教版八年级数学上册《因式分解》期末综合复习训练2(附答案)

2021-2022学年人教版八年级数学上册《因式分解》期末综合复习训练2(附答案)1.因式分解a2b﹣2ab+b正确的是()A.b(a2﹣2a)B.ab(a﹣2)C.b(a2﹣2a+1)D.b(a﹣1)22.下列多项式中能用平方差公式分解因式的是()A.﹣a2﹣b2B.x2+(﹣y)2C.(﹣x)2+(﹣y)2D.﹣m2+13.若4x4﹣(y﹣z)2分解因式时有一个因式是2x2+y﹣z,则另一个因式是()A.2x2﹣y+z B.2x2﹣y﹣z C.2x2+y﹣z D.2x2+y+z4.下列多项式不能用公式法进行因式分解的是()A.a2﹣10a+25B.a2+a C.﹣a2﹣16D.a2﹣645.已知x﹣y=2,xy=,那么x3y+3x2y2+xy3的值为()A.3B.6C.D.6.n为正整数,若2a n﹣1﹣4a n+1的公因式是M,则M等于()A.a n﹣1B.2a n C.2a n﹣1D.2a n+17.已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,则△ABC是()A.直角三角形B.等腰三角形C.等腰三角形或直角三角形D.等腰直角三角形8.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是()A.(x+y+3)(x﹣y﹣1)B.(x+y﹣1)(x﹣y+3)C.(x+y﹣3)(x﹣y+1)D.(x+y+1)(x﹣y﹣3)9.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则多项式x2+ax+b分解因式的正确结果为.10.已知a2+a+1=0,则代数式a3+2a2+2a+3=.11.若实数x满足x2﹣2x﹣1=0,则2x3﹣2x2﹣6x+2020=.12.已知a﹣2b=2,那么a2﹣4b2﹣8b+1的值为.13.分解因式:(1﹣x2)(1﹣y2)﹣4xy=.14.分解因式:(p+1)(p﹣4)+3p=.15.若x+y=2,x﹣y=1,则代数式(x+1)2﹣y2的值为.16.因式分解:(1)2x2﹣12xy2+8x;(2)n2(m﹣2)﹣n(2﹣m);(3)(a2+4)2﹣16a2;(4)(m+n)2﹣6(m+n)+9.17.分解因式(1)(x2﹣3)2﹣2(x2﹣3)+1;(2)m2(a﹣2)+(2﹣a).18.因式分解(1)6x2﹣3x;(2)16m3﹣mn2;(3)25m2﹣10mn+n2;(4)9a2(x﹣y)+4b2(y﹣x).19.分解下列因式(1)m2n﹣mn2+mn;(2)4x2﹣(y2﹣2y+1).20.阅读下面的问题,然后回答,分解因式:x2+2x﹣3,解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)上述因式分解的方法称为配方法.请体会配方法的特点,用配方法分解因式:(1)x2﹣4x+3(2)4x2+12x﹣7.参考答案1.解:a2b﹣2ab+b=b(a2﹣2a+1)=b(a﹣1)2.故选:D.2.解:A.根据平方差公式的结构特征,﹣a2﹣b2不能用平方差公式进行因式分解,那么A 不符合题意.B.根据平方差公式的结构特征,x2+(﹣y)2=x2+y2不能用平方差公式进行因式分解,那么B不符合题意.C.根据平方差公式的结构特征,(﹣x)2+(﹣y)2=x2+y2不能用平方差公式进行因式分解,那么C不符合题意.D.根据平方差公式的结构特征,﹣m2+1=﹣(m2﹣1)=﹣(m+1)(m﹣1),﹣m2+1能用平方差公式进行因式分解,那么D符合题意.故选:D.3.解:4x4﹣(y﹣z)2=(2x2)2﹣(y﹣z)2=(2x2+y﹣z)(2x2﹣y+z),故选:A.4.解:A.a2﹣10a+25=(a﹣5)2,故此选项不合题意;B.a2+a+=(a+)2,故此选项不合题意;C.﹣a2﹣16无法分解因式,故此选项符合题意;D.a2﹣64=(a﹣8)(a+8),故此选项不合题意;故选:C.5.解:∵x﹣y=2,xy=,∴原式=xy(x2+3xy+y2)=xy(x2﹣2xy+y2+5xy)=xy[(x﹣y)2+5xy]=×(4+)=3.故选:D.6.解:因为2a n﹣1﹣4a n+1=2a n﹣1(1﹣a2),所以2a n﹣1﹣4a n+1的公因式是2a n﹣1,即M=2a n﹣1,故选:C.7.解:移项得,a2c2﹣b2c2﹣a4+b4=0,c2(a2﹣b2)﹣(a2+b2)(a2﹣b2)=0,(a2﹣b2)(c2﹣a2﹣b2)=0,所以,a2﹣b2=0或c2﹣a2﹣b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选:C.8.解:x2﹣y2﹣2x﹣4y﹣3=(x2﹣2x+1)﹣(y2+4y+4)=(x﹣1)2﹣(y+2)2=[(x﹣1)+(y+2)][(x﹣1)﹣(y+2)]=(x+y+1)(x﹣y﹣3).故选:D.9.解:∵甲看错了b,分解结果为(x+2)(x+4),但a是正确的,(x+2)(x+4)=x2+6x+8,∴a=6,∵(x+1)(x+9)=x2+10x+9,乙看错了a,但b是正确的,∴b=9,∴x2+ax+b=x2+6x+9=(x+3)2,故答案为:(x+3)2.10.解:∵a3+2a2+2a+3=a3+a2+a+a2+a+1+2=a(a2+a+1)+(a2+a+1)+2=2,故答案为:2.11.解:∵x2﹣2x﹣1=0,∴x2=2x+1,x2﹣2x=1,∴原式=2x•x2﹣2x2﹣6x+2020=2x(2x+1)﹣2x2﹣6x+2020=4x2+2x﹣2x2﹣6x+2020=2x2﹣4x+2020=2(x2﹣2x)+2020=2×1+2020=2022.12.解:∵a﹣2b=2,∴原式=(a+2b)(a﹣2b)﹣8b+1=2(a+2b)﹣8b+1=2a+4b﹣8b+1=2a﹣4b+1=2(a﹣2b)+1=2×2+1=4+1=5.故答案为:5.13.解:(1﹣x2)(1﹣y2)﹣4xy=1﹣x2﹣y2+x2y2﹣4xy=1﹣2xy+x2y2﹣x2﹣y2﹣2xy=(xy﹣1)2﹣(x+y)2=(xy﹣1+x+y)(xy﹣1﹣x﹣y).故答案为:(xy﹣1+x+y)(xy﹣1﹣x﹣y).14.解:(p+1)(p﹣4)+3p=p2﹣3p﹣4+3p=p2﹣4=(p+2)(p﹣2).15.解:∵x+y=2,x﹣y=1,∴(x+1)2﹣y2=2×3=6.故答案为:6.16.解:(1)2x2﹣12xy2+8x=2x(x﹣6y2+4);(2)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(3)(a2+4)2﹣16a2=[(a2+4)+4a][(a2+4)﹣4a]=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2;(4)(m+n)2﹣6(m+n)+9=(m+n﹣3)2.17.解:(1)(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣3﹣1)2=(x+2)2(x﹣2)2;(2)m2(a﹣2)+(2﹣a)=m2(a﹣2)﹣(a﹣2)=(a﹣2)(m2﹣1)=(a﹣2)(m﹣1)(m+1).18.解:(1)6x2﹣3x=3x(2x﹣1);(2)16m3﹣mn2=m(16m2﹣n2)=m(4m+n)(4m﹣n);(3)25m2﹣10mn+n2=(5m﹣n)2;(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(3a+2b)(3a﹣2b).19.解:(1)原式=mn(m﹣n+1);(2)原式=(2x)2﹣(y﹣1)2=(2x+y﹣1)(2x﹣y+1).20.解:(1)x2﹣4x+3=x2﹣4x+4﹣4+3=(x﹣2)2﹣1=(x﹣2+1)(x﹣2﹣1)=(x﹣1)(x﹣3)(2)4x2+12x﹣7=4x2+12x+9﹣9﹣7=(2x+3)2﹣16=(2x+3+4)(2x+3﹣4)=(2x+7)(2x﹣1)。
人教版八年级数学因式分解计算题

人教版八年级数学因式分解计算题一、因式分解计算题20题及解析。
1. 题目:分解因式x^2 - 9- 解析:这是一个平方差的形式,x^2-9 = x^2-3^2=(x + 3)(x-3)。
2. 题目:分解因式4x^2-16- 解析:先提取公因式4,得到4(x^2-4),而x^2-4又是平方差形式,x^2-4=(x + 2)(x-2),所以4x^2-16 = 4(x + 2)(x-2)。
3. 题目:分解因式x^3-2x^2+x- 解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以x^3-2x^2+x=x(x - 1)^2。
4. 题目:分解因式9x^2-y^2- 解析:这是平方差形式,9x^2-y^2=(3x + y)(3x-y)。
5. 题目:分解因式x^2y - 4y- 解析:先提取公因式y,得到y(x^2-4),x^2-4=(x + 2)(x-2),所以x^2y-4y=y(x + 2)(x-2)。
6. 题目:分解因式2x^2-8- 解析:先提取公因式2,得到2(x^2-4),x^2-4=(x + 2)(x-2),所以2x^2-8 = 2(x + 2)(x-2)。
7. 题目:分解因式x^4-1- 解析:这是平方差形式,x^4-1=(x^2+1)(x^2-1),而x^2-1=(x + 1)(x-1),所以x^4-1=(x^2+1)(x + 1)(x-1)。
8. 题目:分解因式a^3-a- 解析:先提取公因式a,得到a(a^2-1),a^2-1=(a + 1)(a-1),所以a^3-a=a(a + 1)(a-1)。
9. 题目:分解因式16x^2-25y^2- 解析:这是平方差形式,16x^2-25y^2=(4x+5y)(4x - 5y)。
10. 题目:分解因式x^3+2x^2+x- 解析:先提取公因式x,得到x(x^2+2x + 1),x^2+2x + 1=(x + 1)^2,所以x^3+2x^2+x=x(x + 1)^2。
人教版八年级数学上册整式的乘法与因式分解全章复习

例 已知10m=5,10n=3,求102m+3n的值.
解: 102m+3n=102m·103n =(10m)2·(10n)3.
将10m=5,10n=3代入, 原式=52×33=25×27=675.
巩固练习
计算: 0.12516 817.
分析: (ab)n=anbn 逆用:anbn=(ab)n
a2 b2 a b2
a+b,a-b,
①+②,(a+b)2+(a-b)2=2(a2+b2) ab,a2+b2,
知二求二.
巩固练习
已知长方形ABCD的周长为20,面积为28,求分别以
长方形的长和宽为边长的正方形面积之和是多少?
分析:
2x y
xy 28
20, xxyy2810.
x2 y2 x y2 2xy
例 判断下面的计算对不对?如果不对,
(2)amn=(am)n(m,n都是正整数);
幂的运算性质 (2)(am)n=amn(m,n都是正整数);
(am)n=amn
102m+3n=102m·103n
a a =a (1)am+n=am·an(m,n都是正整数);
求 x*(x+2y).
m.
n
m+n
(a ) =a =2x(x+2y)-(x+2y)2
2.求证:当n是整数时,两个连续奇数的平方差 正确:a10÷a2=a10-2=a8.
例 若定义一种新运算,a*b=2ab-b2,
应该怎样改正?
(2n+1)2-(2n-1)2是8的倍数.
同学们,再见!
使用法则时,要明确法则和具体内容.
人教版八年级数学上册课件:14章 整式的乘法与因式分解--知识点复习 (共53张PPT)

A.(6a3+3a2)÷
1 2
a=12a2+6a
B.(6a3-4a2+2a)÷2a=3a2-2a
C.(9a7-3a3)÷(﹣
1 3
a3)=﹣27a4+9
C.( 14a2+a)÷(﹣12a)=﹣12 a-2
5.一个多项式与﹣2x2的积为﹣2x5+4x3﹣x2,则这个多项式
为
.
6.计算:⑴
(9x2y-6xy2)÷3xy;
2.已知M= a-1,N=a2- a(a为任意实数),则M,N的
大小关系为( A ) A. M<N B. M=N C. M>N D.不能确定
3.若x2+y2+ =2x+y,则y-x= .
3、am﹣n=am ÷ an(a≠0,m,n都
是正整数,并且m>n).
10
知识点一:幂的运算性质
巩固练习
1.(易错题)若(1-x)1-3x=1,则x的取值有( C )个.
A.0 B.1 C.2 D.3 4
2.若3x=4,9y=7,则3x-2y的值为 7 . 3.已知am=3,an=2,则a2m-n的值为 4.5 .
为( B ) A M<N
B M>N
C M=N D.不能确定
10.计算:(1)(x+1)(x+4); (2)(y-5)(y-6); (3)(m-3)(m+4)
(x+p)(x+q)
18
知识点二:整式的运算
知识回顾
单项式的除法法则: 系数、同底数幂分别相除 只在被除式里含有的字母
19Βιβλιοθήκη 知识点二:整式的运算2
重点难点
重点:运用整式的乘法法则和除法法则进行运算;因式分 解. 难点:应用整式的乘法和因式分解决问题.
八年级数学知识点归纳:因式分解

八年级数学知识点归纳:因式分解八年级数学知识点归纳:因式分解(1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.(2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式.(3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数X的.(4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.(5)提出多项式的公因式以后,另一个因式确实定方法是:用原来的多项式除以公因式所得的商就是另一个因式.(6)如果多项式的第—项的系数是负的,一般要提出“-〞号,使括号内的第—项的系数是正的,在提出“-〞号时,多项式的各项都要变号.(7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式.(8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.(9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2-b2=(a+b)(a-b)(10)具备什么特征的两项式能用平方差公式分解因式①系数能平方,(指的系数是完全平方数)②字母指数要成双,(指的指数是偶数)③两项符号相反.(指的两项一正号一负号)(11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地推断出a,b分别等于什么.(l2)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.字母表达式:a2±2ab+b2=(a±b)2(13)完全平方公式的特点:①它是一个三项式.②其中有两项是某两数的平方和.③第三项是这两数积的正二倍或负二倍.④具备以上三方面的特点以后,就等于这两数和(或者差)的平方.(14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和).(15)利用立方和与立方差分解因式的关键:能把这两项写成某两数立方的形式.(16)具备什么条件的多项式可以用分组分解法来进行因式分解:如果一个多项式的项分组并提出公因式后,各组之间又能继续分解因式,那么这个多项式就可以用分组分解法来分解因式.(17)分组分解法的前提:熟练地掌握提公因式法和公式法,是学好分组分解法的前提.(18)分组分解法的原则:分组后可以直接提出公因式,或者分组后可以直接运用公式.(19)在分组时要预先考虑到分组后能否继续进行因式分解,合理选择分组方法是关键.一、知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解
因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
1. 因式分解的对象是多项式;
2. 因式分解的结果一定是整式乘积的形式;
3. 分解因式,必须进行到每一个因式都不能再分解为止;
4. 公式中的字母可以表示单项式,也可以表示多项式;
5. 结果如有相同因式,应写成幂的形式;
6. 题目中没有指定数的范围,一般指在有理数范围内分解;
第一部分:方法介绍
一、提公因式法:ma+mb+mc=m(a+b+c)
二、运用公式法:
(1) (a+b)(a-b) = a2-b2 ——— a2-b2=(a+b)(a-b);
(2) (a±b)2 = a2±2ab+b2 ———a2±2ab+b2=(a±b)2;
(3) (a+b)(a2-ab+b2) =a3+b3 ——— a3+b3=(a+b)(a2-ab+b2);
(4) (a-b)(a2+ab+b2) = a3-b3 ——— a3-b3=(a-b)(a2+ab+b2).
(5) a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
例.已知
是
的三边,且
,则
的形状是()
A.直角三角形 B等腰三角形 C 等边三角形 D等腰直角三角形
解:
三、分组分解法:
(一)分组后能直接提公因式
例、分解因式:
分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=
=
每组之间还有公因式!
=
(二)分组后能直接运用公式例、分解因式:
解:原式=
=
=
例、分解因式:
解:原式=
=
=
四、十字相乘法.
(一)二次项系数为1的二次三项式
直接利用公式——
进行分解。
特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
思考:十字相乘有什么基本规律?
例.已知0<
≤5,且
为整数,若
能用十字相乘法分解因式,求符合条件的
.
解析:凡是能十字相乘的二次三项式ax2+bx+c,都要求
>0而且是一个完全平方数。
于是
为完全平方数,
例、分解因式:
分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即
2+3=5。
1
2
解:
=
1 3
=
1×2+1×3=5
用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例、分解因式:
解:原式=
1 -1
=
1 -6
(-1)+(-6)= -7
(二)二次项系数不为1的二次三项式——
条件:(1)
(2)
(3)
分解结果:
=
例、分解因式:
分析: 1 -2
3 -5
(-6)+(-5)= -11
解:
=
(三)二次项系数为1的齐次多项式
例、分解因式:
分析:将
看成常数,把原多项式看成关于
的二次三项式,利用十字相乘法进行分解。
1 8b
1 -16b
8b+(-16b)= -8b
解:
=
=
(四)二次项系数不为1的齐次多项式
例9、
例10、
1 -2y 把
看作一个整体 1 -1
2 -3y 1 -2
(-3y)+(-4y)= -7y (-1)+(-2)= -3
解:原式=
解:原式=
五、换元法。
例、分解因式(1)
(2)
解:(1)设2005=
,则原式=
=
=
(2)型如
的多项式,分解因式时可以把四个因式两两分组相乘。
原式=
设
,则
∴原式=
=
=
=
例、分解因式(1)
观察:此多项式的特点——是关于
的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。
这种多项式属于“等距离多项式”。
方法:提中间项的字母和它的次数,保留系数,然后再用换元法。
解:原式=
=
设
,则
∴原式=
=
=
=
=
=
=
(2)
解:原式=
=
设
,则
∴原式=
=
=
=
六、添项、拆项、配方法。
例、分解因式(1)
解法1——拆项。
解法2——添项。
原式=
原式=
=
=
=
=
=
=
=
=
七、待定系数法。
例、分解因式
分析:原式的前3项
可以分为
,则原多项式必定可分为
解:设
=
∵
=
∴
=
对比左右两边相同项的系数可得
,解得
∴原式=。