自动控制原理第三章课后习题答案解析(最新)

合集下载

自动控制原理第三章习题解答

自动控制原理第三章习题解答
σ % = e −πξ /
tp =
1−ξ 2
= e −π 0.6 /
1−0.62
= e −π 0.6 /
1−0.62
= 9 .5 %
π
1 − ξ ωn
2
=
π
1.6
= 1.96( s )
ts =
3-5
3.5
ξω n
=
3.5 = 2.92( s ) 1.2
设单位反馈系统的开环传递函数为
G ( s) =
0.4 s + 1 s ( s + 0.6)
s5 s4 s3 s2 s1 s0
1 12 35 3 20 25 16 80 3 3 5 25 10 25
有一对虚根,系统不稳定 3-13 已知单位反馈系统的开环传递函数
G ( s) =
K (0.5s + 1) s ( s + 1)(0.5s 2 + s + 1)
试确定系统稳定时的 K 值范围。 解:系统特征方程为
ε 0 ,试问 k1 应满足什么条件?
见习题 3-20 解答 3-2 设系统的微分方程式如下: (1)
&(t ) = 2r (t ) 0.2c
&&(t ) + 0.24c &(t ) + c(t ) = r (t ) (2) 0.04c
试求系统的单位脉冲响应 k(t)和单位阶跃响应 h(t)。已知全部初始条件为零。 解: (1) 因为 0.2 sC ( s ) = 2 R ( s ) 单位脉冲响应: C ( s ) = 10 / s 单位阶跃响应 h(t)
试求系统的超调量σ%、峰值时间tp 和调节时间ts。 解: h(t ) = 1 −

自动控制原理第三章答案

自动控制原理第三章答案

h(t) 1
1 2
4 e 3
t

1 e 3
4t
T 1,T 0.25 ts 3T 3s(T 4T )
1 1 2
ts 3T 1 , (T 1 4T2 )
6
不是舍去T2 , 是相应项衰减快
3-7 某单位反馈系统阶跃响应如题3-7所示, 试确定其开环传递函数
解:由可知图,系统具有二阶欠阻尼系统 特征,且
p
0.1 1 0.1 1
2
n
n
代入:(s) s 2 s
2
n
2
2
n
n
38.9 问题 1、没有完成 1514 2、求开环传递函数 s 45.9s 1514
2 n
2
开环传递函数
n 2 1514 G( s ) H ( s ) 2 2 s 2 n s s 45.9s
习题 3-1 某温度计插入温度恒定的热水后,其显示温度随时间 1 t T 变化的规律为
h(t ) 1 e
实验测得当t=60s时温度计读数达到实际水温的95%, 试确定 该温度计的传递函数
解: 温度计插入温度恒定的热水后,温度计显示温度为阶跃响应过程。
方法1:参考(3-5),响应为典型一阶系统单位阶跃响应。
3-8 给定位置控制系统结构图如题3-8 图所示,试确定参数K1,K2值,使系 统阶跃响应的峰值时间tp=0.5s,超调 量σ%=2%。 解:据题意
K K s(s 1) (s) K (K s 1) s (1 K K ) s K s 2 s 1 s(s 1)
2 2
dy(t ) 1 2 L[ ] 1 dt s 1 s 2 s 4s 2 s 3s 2

自动控制原理第三章课后习题答案(最新)汇总

自动控制原理第三章课后习题答案(最新)汇总

3-1设系统的微分方程式如下:(1)0.2c(t) 2r(t)单位脉冲响应:C(s) 10/s g(t) 103t3 3tc(t) 1 e cos4t e si n4t413-2 温度计的传递函数为 —,用其测量容器内的水温,1min 才能显示出该温度的Ts 198%的数值。

若加热容器使水温按 10(C/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知: c(4T) 98 o o ,因此有 4T 1 min ,得出T 0.25 min 。

视温度计为单位反馈系统,则开环传递函数为(s)1K 1TG(s)—1(s) Tsv 1用静态误差系数法,当r(t) 10t 时,e ss10 10T 2.5 C oK(2) 0.04c(t)0.24c(t) c(t)r(t)试求系统闭环传递函数① 部初始条件为零。

解:(s),以及系统的单位脉冲响应 g(t)和单位阶跃响应 c(t)。

已知全(1)因为 0.2sC(s)2R(s) 闭环传递函数(s)C(s) 10R(s) s单位阶跃响应c(t) C(s) 10/s 2c(t) 10t t 0(2) (0.04s 20.24s 1)C(s) R(s)C (s )闭环传递函数(s)C(s) R(s)120.04s0.24s 1单位脉冲响应:C(s)120.04s 2 0.24s 1g(t)25 e 33tsi n4t单位阶跃响应h(t) C(s)25 s[(s 3)216]1 s 6 s (s 3)216(s)1 Ts 1解法二依题意,系统误差疋义为e(t) r(t) c(t),应有e(s)E(s)1 C(s)R(s)11 TsR(s) Ts 1 Ts 13-3 已知二阶系统的单位阶跃响应为c(t) 10 12.5e 1.2t sin(1.6t 53.1o)试求系统的超调量c%、峰值时间t p和调节时间t'si n( 1n t )t p Jl- 1.96(s■1 2n1.63.5 3.5t s 2.92(s)n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。

自动控制原理第3章习题解答

自动控制原理第3章习题解答
g0sgsfskpskjs2系统位置误差系数为kplimgs在rt作用下系统的稳态误差essrr101kp在n1t作用下系统的稳态误差这时系统的开环传递函数g0sgsfskpskjs2系统位置误差系数为kplimgs在n1t作用下系统的稳态误差essn1在n1t和n2t同时作用下系统的稳态误差10r101kp胡寿松自动控制原理习题解答第三章n2t作用下系统的稳态误差这时系统的开环传递函数为
(2) k (t ) = 5t + 10 sin( 4t + 45 )
0
(3) k (t ) = 0.1(1 − e 解: (1) Φ ( s ) =
−t / 3
)
0.0125 s + 1.25
1
胡寿松自动控制原理习题解答第三章
(2) k (t ) = 5t + 10 sin 4t cos 45 + 10 cos 4t sin 45
3s 4 + 10s 3 + 5s 2 + s + 2 = 0
试用劳思稳定判据和赫尔维茨判据确定系统的稳定性。 解: 列劳思表如下:
s4 s3 s2 s1 s0
3 5 2 10 1 47 2 10 1530 0 − 47 2
由劳思表可以得到该系统不稳定。 3-12 已知系统特征方程如下,试求系统在 s 右半平面的根数及虚根值。 (1)
2ξω n = 70
ξ=
7 2 6
根据(3-17)
h(t ) = 1 +
e − t / T1 e − t / T12 + T2 / T1 − 1 T1 / T2 − 1
解:根据公式(3-17)
3
胡寿松自动控制原理习题解答第三章

自动控制原理第3章 习题及解析

自动控制原理第3章 习题及解析

自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。

考察一阶系统未知参数对系统动态响应的影响。

解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。

3-2 设用11Ts +描述温度计特性。

现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。

如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。

考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。

由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。

解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。

自动控制原理第三章习题参考答案

自动控制原理第三章习题参考答案

Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12

自动控制原理课后答案

自动控制原理课后答案
第三章习题主要问题
3-3 判断使系统稳定的K的范围:放大系数可否为复数 ? 3-11(2) 过阻尼系统,求ts(用欠阻尼公式?) 3-11(1) 主导极点分析(偶极子,模比(wn)>5)
计算ts的时候,需指明Δ是5%还是2%
3-14 计算稳态误差 3-17 计算复合控制
自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17

自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-1(4)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(2)
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-17

自动控制理论第三章习题答案

自动控制理论第三章习题答案

解:系统开环传递函数
图 3-42
飞行控制系统
25K1
G0 (s)
=
1+
s(s + 0.8)
25K1 s(s + 0.8)
Kt
s
=
s(s
+
25K1 0.8) + 25K1Kt s
=
25K1
=
ω
2 n
s(s + 0.8 + 25K1Kt ) s(s + 2ξωn )
ω
2 n
=
36
=
25K1
K1
=
36 25
1
s(s + 1) + 10τ 2s
= 10(1 + τ1s) = 10 =
ω
2 n
s(s + 1) + 10τ 2s s(s + 2) s(s + 2ξωn )
s(s + 1)
ω
2 n
= 10
ωn = 10
2ξωn = 2
ξ= 1 10
σ % = e−ξπ / 1−ξ 2 = 35.1%
5
胡寿松自动控制原理习题解答第三章
单位脉冲响应: C(s) = 10 / s k(t) = 10 t ≥ 0
单位阶跃响应 h(t) C(s) = 10 / s2 h(t) = 10t t ≥ 0
(2) (0.04s2 + 0.24s + 1)C(s) = R(s)
单位脉冲响应: C(s)
=
0.04 s 2
1 + 0.24s
+1
C (s)
(1) s5 + 3s 4 + 12s3 + 24s 2 + 32s + 48 = 0 (2) s 6 + 4s5 − 4s 4 + 4s3 - 7s 2 - 8s + 10 = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。

已知全部初始条件为零。

解:(1) 因为)(2)(2.0s R s sC = 闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。

若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。

视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。

解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。

解:)1sin(111)(22βωζζζω+---=-t e t c n t nζβarccos = 21/%ζπζσ--=e np t ωζπ21-=ns t ζω5.3=6.01.53cos cos 0===βζ%5.9%2226.01/6.06.01/6.01/====------ππζπζσe e e)(96.16.112s t np ==-=πωζπ)(92.22.15.35.3s t ns ===ζω 或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。

3-4 机器人控制系统结构图如图T3.1所示。

试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调量%2%=σ。

图T3.1 习题3-4 图解 依题,系统传递函数为222121212112)1()1()1(1)1()(n n n s s K K s K K s K s s s K K s s K s ωζωω++=+++=++++=ΦΦ 由 ⎪⎩⎪⎨⎧=-===--5.0102.0212n p oo t e ωζπσζπζ 联立求解得 ⎩⎨⎧==1078.0n ωζ比较)(s Φ分母系数得⎪⎩⎪⎨⎧=-===146.0121001221K K K n n ζωω 3-5 设图T3.2(a )所示系统的单位阶跃响应如图T3.2(b )所示。

试确定系统参数,1K 2K 和a 。

图T3.2 习题3-5 图解 由系统阶跃响应曲线有⎪⎩⎪⎨⎧=-===∞oo o op t c 3.33)34(1.03)(σ系统闭环传递函数为222212212)(nn n s s K K as s K K s ωξωω++=++=Φ (1) 由 ⎪⎩⎪⎨⎧===-=--o o oo np e t 3.331.01212ζζπσωζπ 联立求解得 ⎩⎨⎧==28.3333.0n ωζ由式(1)⎩⎨⎧====222110821n n a K ζωω另外 3lim 1)(lim )(2122100==++=⋅Φ=∞→→K K as s K K s s s c s s3-6已知单位反馈随动系统如图T3.3所示,K=16s -1,T=0.25s,试求: (1)特征参数ζ和n ω; (2)计算σ%和t s ;(3)若要求σ%=16%,当T 不变时K 应当取何值?图T3.3 习题3-6 图【解】:(1)求出系统的闭环传递函数为:TK s T s TK Ks Ts K s /1/)(22++=++=Φ因此有:25.0212/1),(825.0161======-KTT s T K n n ωζω(2) %44%100e%2-1-=⨯=ζζπσ%)2)((2825.044=∆=⨯=≈s t ns ζω(3)为了使σ%=16%,由式%16%100e %2-1-=⨯=ζζπσ可得5.0=ζ,当T 不变时,有: )(425.04)(425.05.021212/11221--=⨯===⨯⨯===s T K s T T n n ωζζω3-7 系统结构图如图T3.4所示。

已知系统单位阶跃响应的超调量σ%3.16=%,峰值时间1=p t s 。

图T3.4 习题3-7 图(1) 求系统的开环传递函数)(s G ; (2) 求系统的闭环传递函数)(s Φ;(3) 根据已知的性能指标σ%、p t 确定系统参数K 及τ; (4) 计算等速输入s t t r )(5.1)(︒=时系统的稳态误差。

解 (1) )110(10)1(101)1(10)(++=+++=ττs s K s s s s s K s G(2) 2222210)110(10)(1)()(nn n s s K s s Ks G s G s ωζωωτ++=+++=+=Φ (3)由 ⎪⎩⎪⎨⎧=-===--113.16212ζωπσζζπn p o o o o t e 联立解出 ⎪⎩⎪⎨⎧===263.063.35.0τωζn 由(2) 18.1363.31022===n K ω,得出 318.1=K。

(4)63.31263.01018.1311010)(lim 0=+⨯=+==→τK s sG K s v413.063.35.1===v ssK A e3-8 已知单位反馈系统的单位阶跃响应为,求(1)开环传递函数;(2)s n %t σως; (3)在作用下的稳态误差。

3-9 已知系统结构图如图T3.5所示,)125.0)(11.0()(++=s s s Ks G试确定系统稳定时的增益K 的取值范围。

图T3.5 习题3-9 图解:3-10 已知单位反馈系统的开环传递函数为)22)(4()1(7)(2++++=s s s s s s G试分别求出当输入信号t t t r ),(1)(=和2t 时系统的稳态误差。

解 )22)(4()1(7)(2++++=s s s s s s G ⎩⎨⎧==17v K由静态误差系数法)(1)(t t r =时, 0=ss et t r =)(时, 14.178===K A e ss2)(t t r =时, ∞=ss e3-11 已知单位负反馈系统的开环传递函数为 ()(0.11)(0.21)KG S s s s =++,若r(t) = 2t +2时,要求系统的稳态误差为0.25,试求K 应取何值。

3-12设系统结构图如图T3.6所示,图T3.6 习题3-12 图(1) 当025,0f K K ==时,求系统的动态性能指标%σ和s t ; (2) 若使系统ζ=0.5,单位速度误差0.1ss e =时,试确定0K 和f K 值。

(1)%25.4%1.75ts σ== (5分) (2)0100,6f K K ==(5分)3-13 已知系统的特征方程,试判别系统的稳定性,并确定在右半s 平面根的个数及纯虚根。

(1)01011422)(2345=+++++=s s s s s s D (2)0483224123)(2345=+++++=s s s s s s D (3)022)(45=--+=s s s s D(4)0502548242)(2345=--+++=s s s s s s D解(1)1011422)(2345+++++=s s s s s s D =0Routh : S 5 1 2 11 S 4 2 4 10 S 3 ε 6 S 2 εε124- 10S 6 S 0 10第一列元素变号两次,有2个正根。

(2)483224123)(2345+++++=s s s s s s D =0 Routh : S 5 1 12 32S 4 3 24 48 S 33122434⨯-= 32348316⨯-= 0S 2424316412⨯-⨯= 48S 1216448120⨯-⨯= 0 辅助方程 124802s +=,S 24 辅助方程求导:024=sS 0 48系统没有正根。

对辅助方程求解,得到系统一对虚根 s j 122,=±。

(3)022)(45=--+=s s s s DRouth : S 5 1 0 -1S 4 2 0 -2 辅助方程 0224=-s S 3 8 0 辅助方程求导 083=sS 2 ε -2 S ε16S 0 -2第一列元素变号一次,有1个正根;由辅助方程0224=-s 可解出: ))()(1)(1(2224j s j s s s s -+-+=-))()(1)(1)(2(22)(45j s j s s s s s s s s D -+-++=--+= (4)0502548242)(2345=--+++=s s s s s s D Routh : S 5 1 24 -25S 4 2 48 -50 辅助方程 05048224=-+s s S 3 8 96 辅助方程求导 09683=+s sS 2 24 -50 S 338/3S 0 -50第一列元素变号一次,有1个正根;由辅助方程05048224=-+s s 可解出: )5)(5)(1)(1(25048224j s j s s s s s -+-+=-+)5)(5)(1)(1)(2(502548242)(2345j s j s s s s s s s s s s D -+-++=--+++=3-14 某控制系统方块图如图T3.7所示,试确定使系统稳定的K 值范围。

相关文档
最新文档