自动控制原理课后习题答案

合集下载

自动控制原理课后习题与答案

自动控制原理课后习题与答案

目录1自动控制系统的基本概念1.1内容提要1.2习题与解答2自动控制系统的数学模型2.1内容提要2.2习题与解答3自动控制系统的时域分析3.1内容提要3.2习颗与他答4根轨迹法4.1内容提要4.2习题与解答5频率法5.1内容提要5.2习题与解答6控制系统的校正及综合6.1内容提要6.2习题与解答7非线性系统分析7.1内容提要7.2习题与解答8线性离散系统的理论基础8.1内容提要8.2习题与解答9状态空间法9.1内容提要9.2习题与解答附录拉普拉斯变换参考文献1自动控制系统的基本概念1. 1内容提要基本术语:反馈量,扰动量,输人量,输出量,被控对象;基本结构:开环,闭环,复合;基本类型:线性和非线性,连续和离散,程序控制与随动;基本要求:暂态,稳态,稳定性。

本章要解决的问题,是在自动控制系统的基本概念基础上,能够针对一个实际的控制系统,找出其被控对象、输人量、输出量,并分析其结构、类型和工作原理。

1.2习题与解答题1-1图P1-1所示,为一直流发电机电压白动控制系统示意图。

图中,1为发电机;2为减速器;3为执行电机;4为比例放大器;5为可调电位器。

(1)该系统有哪些环节组成,各起什么作用” (2)绘出系统的框图,说明当 负载电流变化时,系统如何保持发 电机的电压恒定 (3)该系统是有差系统还是无 差系统。

(4)系统中有哪些可能的扰动, 答(1)该系统由给定环节、比较环节、中间环节、执行结构、检测环节、 发电机等环节组成。

给定环节:电压源0U 。

用来设定直流发电机电压的给定值。

比较环节:本系统所实现的被控量与给定量进行比较,是通过给定电 压与反馈电压反极性相接加到比例放大器上实现的中间环节:比例放大器。

它的作用是将偏差信号放大,使其足以带动 执行机构工作。

该环节又称为放大环节执行机构:该环节由执行电机、减速器和可调电位器构成。

该环节的 作用是通过改变发电机励磁回路的电阻值,改变发电机的磁场,调节发 电机的输出电压被控对象:发电机。

(完整版)自动控制原理课后习题答案

(完整版)自动控制原理课后习题答案

第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。

答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。

控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。

如下图所示为自动控制系统的基本组成。

开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。

此时,系统构成没有传感器对输出信号的检测部分。

开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。

闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。

闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。

1-2 请说明自动控制系统的基本性能要求。

答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。

稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。

稳定性通常由系统的结构决定与外界因素无关。

对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。

对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。

快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。

在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。

准确性用稳态误差来衡量。

在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。

显然,这种误差越小,表示系统的精度越高,准确性越好。

当准确性与快速性有矛盾时,应兼顾这两方面的要求。

自动控制原理_高等教育出版社_王万良__课后答案

自动控制原理_高等教育出版社_王万良__课后答案
2.7 简化图题 2.7 所示系统的结构图,并求传递函数 C ( s) 。 R( s)
G1 ( s )
R ( s) + −
G2 ( s )
C ( s)
图题 2.7 解:传递函数为:
C ( s) G2 ( s )[1 + G1 ( s)] = R( s ) 1 + G2 ( s)
2.8 简化图题 2.8 所示系统的结构图,并求传递函数 C ( s) 。 R( s )
2.4 设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。求图题 2.4 所示运算放大 电路的传递函数。其中, u i 为输入变量, u o 为输出变量。
R1
i
C
− +
ui
R2
图题 2.4
uo
解:
iR1 = u i 1 − id t = u o C ∫
整理得传递函数为:
uo (s) 1 =− ui ( s) R1CS
2.13
求图题 2.13 所示系统结构图的传递函数 C ( s) / R( s) 和 C ( s ) / N ( s ) 。
N(s) G3 (s) R(s)
⊗ −
G1 (s)


G2 (s) G4 (s) G5 (s)

C(s)

H(s)
图题 2.13 解:求 C ( s) / R( s) 时,令 N(s)=0,系统结构图变为
2.10 简化图题 2.10 所示系统的结构图,并求传递函数
C ( s) 。 R(s)
+
G3 (s )
R( s ) + −
G1 ( s) G 4 (s)
G 2 ( s)

自动控制原理_孟华_习题答案

自动控制原理_孟华_习题答案

自动控制原理课后习题答案第二章2.1 试分别写出图2.68中各无源电路的输入u r (t )与输出u c (t )之间的微分方程。

图2.68 习题2.1图解:(a)11r c u u i R -=,2()r c C uu i -= ,122c ui i R +=,12122121212c c r r R R R R R Cu u Cu u R R R R R R +=++++(b)11()r c C uu i -= ,121r u u i R -=,1221i i C u+= ,121c u i R u =+, 121211122112121121()()c c c r r r R R C C uR C R C R C u u R R C C u R C R C u u ++++=+++ (c)11r cu u i R -=,112()r C u u i -=,1122u i i R +=,1121cu i dt u C =+⎰, 121212222112122221()()c c c r r r R R C C u RC R C R C u u R R C C u R C R C u u ++++=+++2.2 试证明图2.69(a)所示电路与图2.69(b)所示的机械系统具有相同的微分方程。

图2.69(b)中X r (t )为输入,X c (t )为输出,均是位移量。

(a) (b)图2.69 习题2.2图解:(a)11r cu u i R -=,12()r c C u u i -= ,12i i i +=,221c u idt iR C =+⎰,121211122212121122()()c c c r r r R R C C uR C R C R C u u R R C C u R C R C u u ++++=+++ (b)2121()c B xx K x -= ,1121()()()r c r c c B x x K x x B x x -+-=- , 121221212121211212()()c c c r r r B B B B B B B B Bx x x x x x K K K K K K K K K ++++=+++ 2.3 试分别求出图2.70中各有源电路的输入u r (t )与输出u c (t )之间的微分方程。

自动控制原理课后习题

自动控制原理课后习题
已知系统开环传递函数,
分析稳定性,若稳定计
算性能指标。
G
(
s
)
(
s
1
)
1 (0
0 .
0
1
s
1
)2
1、环节特性分析
2、Bode曲线的绘制 3、性能指标计算 结论:系统稳定。
ωc≈10;
令 得
::(t gωγ111ω)88014128.02013ltt8ggωg01101c100.0c021tωg11 0.ω10c8101100
0
(-1,j0)
已知:Gk
(s)
k s(Ts 1)
得:P
1, q
1
绘制Nyquist曲线
N p 2(a b) 1 2(0 0.5) 2
结论:不稳定,右半平面有两个特征根。
0
(1)T1>T2 (-1,j0)
0 (2) T1<T2
已知:Gk
(s)
k(T2 s 1) , s 2 (T1s 1)
其中:( Ta ) 或( Ta )
2)分析两种情况下系统的稳定性.
3、某最小相位系统的如图所示。
1)求传递函数 2)求剪切频率和相角裕量
G k( s )
k(10s 1)2
s2 s 1(Ts 1)
(10s 1)2
s2 s 1(0.003 s
1)
c 100 , 73.76
4、已知单位反馈系统的
(-1,j0)
0
(2)
(1)
0
(-1,j0)
已知:P 2, q 0
已知:G(s) k , p 1,q 0,绘制Nyquist曲线,系统1: k 1;系统2 : k 1。 (Ts 1)

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。

用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。

(2)弊端:不可以自动调理被控量的偏差。

所以系统元器件参数变化,外来未知扰动存在时,控制精度差。

2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。

它是一种按偏差调理的控制系统。

在实质中应用宽泛。

⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。

1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。

闭环控制系统常采纳负反应。

由1-1 中的描绘的闭环系统的长处所证明。

比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。

1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。

控制的目的是保持水位为必定的高度。

(完整版)自动控制原理课后习题答案

(完整版)自动控制原理课后习题答案

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

自动控制原理课后参考答案

自动控制原理课后参考答案

第一章1-1图1-2是液位自动控制系统原理示意图。

在任意情况下,希望液面高度c维持不变, 试说明系统工作原理并画岀系统方块图。

图1-2 液位自动控制系统解:被控对象:水箱;被控量:水箱的实际水位;给定量电位器设定水位U r(表征液位的希望值C r);比较元件:电位器;执行元件:电动机;控制任务:保持水箱液位高度不变。

工作原理:当电位电刷位于中点(对应U r)时,电动机静止不动,控制阀门有一定的开度,流入水量与流出水量相等,从而使液面保持给定高度C r,一旦流入水量或流出水量发生变化时,液面高度就会偏离给定高度C r。

当液面升高时,浮子也相应升高,通过杠杆作用,使电位器电刷由中点位置下移,从而给电动机提供一定的控制电压,驱动电动机,通过减速器带动进水阀门向减小开度的方向转动,从而减少流入的水量,使液面逐渐降低,浮子位置也相应下降,直到电位器电刷回到中点位置,电动机的控制电压为零,系统重新处于平衡状态,液面恢复给定高度r。

反之,若液面降低,则通过自动控制作用,增大进水阀门开度,加大流入水量,使液面升高到给定高度C r。

系统方块图如图所示:1-10 下列各式是描述系统的微分方程,其中c(t)为输岀量,r (t)为输入量,试判断哪些是线性定常或时变系统,哪些是非线性系统?2c(t) =5 r2(t) t d2(^(1) dt ;3 2d c(t) 3d c(t) 6dc(t) --- 3 3 ---- 2 6 — dt dt dt xdc(t) dr(t)t c(t) =r(t) 3 dt dtc(t) = r(t)cos t 5 ;dr (t) tc(t) =3r(t)6 5 r(.)d. (5) dt =;(6)c(t)訂 2 ⑴;0, t ::: 6c(t)= “r(t), t 畠 6.(7) -解:(1)因为c(t)的表达式中包含变量的二次项 『(t),所以该系统为非线性系统。

(2) 因为该微分方程不含变量及其导数的高次幕或乘积项,且各项系数均为常数,所以该 系统为线性定常系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2根据题1.2图所示的电动机速度控制系统工作原理 (1)将a,b 与c,d 用线连接成负反馈系统; (2)画出系统框图。

c d+-发电机解:(1) a 接d,b 接c.(2) 系统框图如下1.3题1.3图所示为液位自动控制系统原理示意图。

在任何情况下,希望页面高度c 维持不变,说明系统工作原理并画出系统框图。

解:工作原理:当打开用水开关时,液面下降,浮子下降,从而通过电位器分压,使得电动机两端出现正向电压,电动机正转带动减速器旋转,开大控制阀,使得进水量增加,液面上升。

同理,当液面上升时,浮子上升,通过电位器,使得电动机两端出现负向电压,从而带动减速器反向转动控制阀,减小进水量,从而达到稳定液面的目的。

系统框图如下:2.1试求下列函数的拉式变换,设t<0时,x(t)=0: (1) x(t)=2+3t+4t 2解:X(S)=s 2 +23s +38s(2) x(t)=5sin2t-2cos2t解:X(S)=5422+S -242+S S=42102+-S S(3) x(t)=1-et T1-解:X(S)=S1-TS 11+=S 1-1+ST T=)1(1+ST S(4) x(t)=et4.0-cos12t解:X(S)=2212)4.0(4.0+++S S2.2试求下列象函数X(S)的拉式反变换x(t): (1) X(S)=)2)(1(++s s s解:=)(S X )2)(1(++s s s=1122+-+S St t e e t x ---=∴22)((2) X(S)=)1(15222++-s s s s 解:=)(S X )1(15222++-s s s s =1512+-+S S S=1151122+-++S S S S t t t u t x sin 5cos )()(-+=∴(3) X(S)=)42)(2(82322+++++s s s s s s解:=)(S X )42)(2(82322+++++s s s s s s =2)1(12212+++++-S S S S t e e t x t t 2c o s 21)(2--+-=∴2.3已知系统的微分方程为)()(2)(2)(22t r t y dt t dy dt t y d =++式中,系统输入变量r(t)=δ(t),并设y(0)=)0(y .=0,求系统输出y(t).解:)()(2)(2)(22t r t y dt t dy dt t y d =++且y(0)=)0(y .=0 两边取拉式变换得∴1)(2)(2)(2=++S Y S SY S Y S 整理得Y(S)=1)1(122122++=++S S S 由拉式反变换得y(t)=t t sin e -2.4列写题2.4图所示RLC 电路的微分方程。

其中,u i 为输入变量,u o 为输出变量。

LR解:由基尔霍夫电压定律,可列写回路方程o L R i u u u u ++=设回路电流为i ,又因为dtdu Ci o =,所以,i o u u dt diL iR =++,所以代入电流可得其微分方程i o oo u u dt du RC dtu d LC =++222.5列写题2.5图所示RLC 电路的微分方程。

其中,u i 为输入变量,u o 为输出变量。

u )(t L解:设流过L 的电流为i ,流过R 的电流为1i ,流过C 的电流为2i 。

有dt t du C i i i o )(21==-,R t u i o )(1=。

所以有=+=21i i i dtt du C R t u o o)()(+ 且o L i u u u +=所以,o o o o i u dt du R L dtt u d LC u dt diL u ++=+=22)(2.6设运算放大器放大倍数很大,输入阻抗很大,输出阻抗很小。

求题2.6图所示运算放大电路的传递函数。

其中,u i 为输入变量,u o为输出变量。

C解:由dt du C R u o i -1=两边进行拉式变换得)(-)(1s CSU R s U o i = 所以其传递函数为CSR s U S U i O 11-)()(= 2.7简化题2.7图系统的结构图,并求传递函数)()(S R S C 。

解:设G1后为X ,H1后为Y ,由结构图写线性代数方程XS G C X C S H Y X Y S H S R S G )()(])()()[(2211=-==-消去中间变量X ,Y,得传递函数为)()()()()()(1)()()()(11212121S H S G S H S H S G S G S G S G S R S C -+=2.8简化题 2.8图系统的结构图,并求传递函数)()(S R S C 。

解:设G 1(S)前为Y ,G2(s)前为X 。

由结构图写线性代数方程)()()()()()()()()(22112S C S XG XS H S C S YG YS H S H S C S R ==-=- 消去中间变量X ,Y,得传递函数为)()()()()()(1)()()()(22212121S H S G S H S H S G S G S G S G S R S C ++=2.9简化题 2.9图系统的结构图,并求传递函数)()(S R S C 。

(S R 解:设第一环后为X ,第二环后为Y ,由结构图写线性代数方程)()()()()()(21S C SYG Y X S G S R XS C S R ==+=- 消去中间变量X ,Y ,得传递函数为 )(1))(1)(()()(212S G S G S G S R S C ++=2.10简化题 2.10图系统的结构图,并求传递函数)()(S R S C 。

解:设第一环后为X ,第三环后为Y ,由结构图写线性代数方程YS YG S C S C S G S G S R X X S YG S G S R =+=+=-)()()()())()(()()()(43142 消去中间变量X ,Y,得传递函数为)()()(1))(1)(())()(()()(4434321S G S G S G S G S G S G S G S R S C -+-=3.1已知系统特征方程如下,试用劳斯判据判别系统稳定性,并指出位于右半S 平面和虚轴上的特征根的数目。

(1)D (S )=012442345=+++++S S S S S5S 1 4 2 4S 1 4 1 3Sε 1 0 2Sε14-1 01S14142---εεε 0 00S 1 0 0系统不稳定,有2个特征根在右半S 平面。

(2)D(S)=046895323456=++++++S S S S S S 解:劳斯表构成如下6S 1 5 8 45S 3 9 6 4S 2 6 4 3S 8 12 2S 3 4 1S 4/30S4因为劳斯表第一列数符号相同,所以系统是稳定的。

有4个根在虚轴上。

(3)D(S)=02535201232345=+++++S S S S S5S 1 12 35 4S 3 20 25 3S 16/3 80/3 2S 5 25 1S 100S25因为劳斯表第一列数符号相同,所以系统是稳定的。

有2个根在虚轴上。

(4)D(S)=04473223456=-----+S S S S S S 解:劳斯表构成如下6S 1 -2 -7 -45S 1 -3 -4 4S 1 -3 -4 3S 4 -6 2S -3 -8 1S -500S-4因为劳斯表第一列数符号变化1次,所以系统是不稳定的,有1个特征根在右半S 平面。

求解辅助方程043)(24=--=S S S F ,可得系统对称于原点的特征根为j S S ±=±=4,32,1,2。

3.3已知单位负反馈控制系统的开环传递函数为)2()(222n n vn S S S K S G ωζωω++= 当n ω=901-S ,阻尼比2.0=ζ时,试确定v K 为何值时系统是稳定的。

解:系统开环传递函数为)2()(222n n vn S S S K S G ωζωω++=,特征方程为 02)(2223=+++=v n n n K S S S S D ωωζω劳斯表构成如下 3S1 2n ω 2S n ζω2 v n K 2ω1Sζωζω222nv n K -0Sv n K 2ω由劳斯稳定判据,系统稳定的充分必要条件为ζωζω222nv n K ->0v n K 2ω>0又因为n ω=901-S ,阻尼比2.0=ζ,所以可得0<v K <36时,系统是稳定的,当v K =36时系统临界稳定。

3.5已知反馈控制系统的传递函数为)1(10)(-=S S S G ,H(S)=s K h +1 ,试确定闭环系统临界稳定时h K 的值。

解:开环特征方程 )1()1(10)1()1(10)()(-+=+-=S S S K S K S S S H S G h h 闭环特征方程 0)1(10)1(=++-S K s s h 即010)110(2=+-+S K S h2S 1 101S 110-h K 0S 10当110-h K >0,即h K >0.1稳定,当h K =0.1时,系统临界稳定。

3.7在零初始条件下,控制系统在输入信号r(t)=1(t)+t1(t)的作用下的输出响应为c(t)=t1(t),求系统的传递函数,并确定系统的调节时间s t 。

解:对输入输出信号求拉式变换得r(S)=211S S +,c(S)= 21S。

所以系统的传递函数为 11)()()(+==Φs s r s c s ,系统的时间常数为T=1s,所以系统的调节时间s t =⎩⎨⎧=∆=∆2453。

3.9要求题3.9图所示系统具有性能指标:s t p p 5.0%,10%==σ。

确定系统参数K 和A ,并计算rt ,st 。

解:系统的闭环传递函数为K S KA S K AS S S K S S KS R S C +++=++++=)1()1()1(1)1()()(2,可见,系统为典型二阶系统:KA K n n+==122ζωω,,由p σ%=%10%10021=⨯--ζζπe 得21ζζπ-=1.01ln=2.30 所以ζ=0.698 由s t n p 5.012=-=ζωπ 得1277.815.0-=-=s n ζπω ,则91.762n==ωK 144.012=-=KA n ζω 211cos ζωζπ--=-n r t =0.34s s ns 65.04t ==ζω (2=∆)s ns 49.03t ==ζω (5=∆)3.11设典型二阶系统的单位阶跃响应曲线如题3.11图所示。

相关文档
最新文档