初中数学:一元二次方程单元测试
人教版数学七年级上册一元二次方程单元综合测试(附答案解析)

三.解答题(共7小题)
19.解方程:
(1)5﹣2(1﹣2x)=8+x (2) =1
20.某学校准备印刷一批证书,现有两个印刷厂可供选择:
甲厂收费方式:收制版费1000元,每本印刷费0.5元;
A. 10:00B. 12:00C. 13:00D. 16:00
二.填空题(共8小题)
11.某班组织学生去看戏剧表演.老师派班长先去购票,已知甲票每张10元,乙票每张8元.班长带去360元,买了36张票,找回15元.设班长甲票买了x张,则可列方程是_____.
12.体校里男生人数占学生总数的75%,女生人数是a,则学生总数是______人.
A.x2﹣4x=3B.x+1=0C.x+2y=1D.x﹣1=
【答案】B
【解析】
【分析】
只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).
【详解】解:A、x2-4x=3,是一元二次方程,故A选项错误;
B、 +2y=3,是二元一次方程,故B选项正确;
乙厂收费方式:无制版费,不超过2000本时,每本收印刷费1.5元;超过2000本时,超过部分每本收印刷费0.25元.
(1)若设该校共需印制证书x本,请用代数式分别表示甲,乙两厂的收费情况;
(2)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?
21.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?
人教版九年级数学上册一元二次方程单元测试卷

人教版九年级数学上册一元二次方程单元测试卷初中数学试卷-一元二次方程单元测试卷考试时间:100分钟满分:120分)姓名成绩一、选择题:(每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A。
(x+1)=2(x+1)B。
2x+11=222ax+bx+cC。
D=-22.使得代数式3x-6的值等于21的x的值是( )A。
3B。
-3C。
±3D。
±33.关于x的一元二次方程x-k=有实数根,则()A。
k<0B。
k>0C。
k≥0D。
k≤04.用配方法解关于x的方程x+ px + q = 0时,此方程可变形为( )A。
(x+2)=2pB。
(x-2)=2pC。
(x+2)=2pD。
(x-2)=2p5.使分式的值等于零的x是( )A。
2B。
-2C。
±2D。
±46.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )A。
x(x+1)=1035B。
x(x-1)=1035C。
x(x+1)=1035D。
x(x-1)=10357.若方程(a-b)x+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A。
a=b=cB。
一根为1C。
一根为-1D。
以上都不对奋斗没有终点,任何时候都是一个起点。
2.剔除格式错误。
3.改写每段话。
奋斗没有终点,任何时候都是一个起点。
8.若分式 $\frac{x^2-x-6}{x-3x+2}$ 的值为1,则 $x$ 的值为().A。
3或-2B。
3C。
-2D。
-3或2改写为:已知分式 $\frac{x^2-x-6}{x-3x+2}$ 的值为1,求 $x$ 的值。
A。
3或-2B。
3C。
-2D。
-3或29.已知方程 $x+p x+q=0$ 的两个根分别是2和-3,则 $x-p x+q$ 可分解为().A。
(x+2)(x+3)B。
(x-2)(x-3)C。
(x-2)(x+3)D。
(典型题)初中数学九年级数学上册第二单元《一元二次方程》检测卷(包含答案解析)

一、选择题1.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( ) A .k ≥﹣14B .k ≥﹣14且k ≠0 C .k <﹣14D .k >-14且k ≠0 2.一元二次方程x 2=2x 的根是( ). A .0 B .2 C .0和2 D .0和﹣2 3.一个菱形两条对角线的长是方程28120x x -+=的两个根,则该菱形的面积为( ) A .12B .6或12C .8D .64.下列关于x 的方程中,一定是一元二次方程的是( ) A .221x x+B .20ax x +=C .()()121x x -+=D .223250x xy y --=5.若关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,则a 的值可能为( ) A .2- B .4- C .2 D .4 6.一元二次方程x 2﹣3x +1=0的两个根为x 1,x 2,则x 12+3x 2+x 1x 2+1的值为( ) A .10B .9C .8D .77.某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x 元,则符合题意的方程是( ) A .(1612)(36040)1680x x +--= B .(12)(36040)1680x x --=C .(12)[36040(16)]1680x x ---=D .(1612)[36040(16)]1680x x +---=8.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x9.新冠肺炎传染性很强,曾有2人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后128人患上新冠肺炎,则x 的值为( ) A .10 B .9 C .8 D .7 10.在下列方程中,有一个方程有两个实数根,且它们互为相反数,这个方程是( ) A .10x -=B .20x x +=C .210x -=D .210x +=11.已知关于x 的方程2(21)(1)0kx k x k +++-=有实数根,则k 的取值范围为( ) A .18k ≥-B .18k >-C .18k ≥-且0k ≠D .18k <-12.如果关于x 的一元二次方程x 2﹣4x ﹣k =0有两个不相等的实数根,那么k 的取值范围是( ) A .k <﹣4B .k <4 且k ≠0C .k >﹣4D .k >﹣4且k ≠0二、填空题13.若实数a 、b (a ≠b )满足2850a a -+=,2850b b -+=,则+a b 的值_______. 14.关于x 的一元二次方程2(21)0kx k x k -++=总有两个实数根,则常数k 的取值范围是________.15.已知关于x 的一元二次方程m 2x ﹣nx ﹣m ﹣3=0,对于任意实数n 都有实数根,则m 的取值范围是_____.16.三角形一边长为10,另两边长是方程214480x x -+=的两实根,则这是一个_____三角形.17.等腰ABC 中,4AB AC ==,30BAC ∠=︒,以AC 为边作等边ACD △,则点B 到CD 的距离为________.18.若x=2是一元二次方程x 2+x+c=0的一个解,则c 2=__.19.若关于x 的一元二次方程210(0)ax bx a ++=≠的一个解是1x =,则代数式2020a b --的值为______.20.对于有理数a ,b ,定义{}min ,a b :当a b ≥时,{}min ,a b b =;当a b ≤时,{}min ,a b a =.若{}22min 40,12440m n m n -+--=,则n m 的值为______. 三、解答题21.(1)解方程:2450x x --=(2)已知点(2,1)P x y +与点(7,)Q x y --关于原点对称,求x ,y 的值.22.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m 的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门.(1)所围矩形猪舍的长,宽分别为多少米时,猪舍面积为296m ?(2)能否围面积为2100m 的矩形猪舍,若能,求出长和宽;若不能,请说明理由. 23.用适当的方法解方程: (1)(x ﹣1)2=9; (2)x 2+4x ﹣5=0.24.解方程:2(2)3(2)x x +=+25.如图,有长为23m 的篱笆,一面利用墙(墙的最大可用长度a 为10m )围成中间隔有一道篱笆的矩形花圃,并且预留两个各0.5m 的门.如果要围成面积为45m 2的花圃,AB 的长是多少米?26.解一元二次方程(1)22(1)3(1)x x +=+; (2)22980x x -+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据一元二次方程的定义以及根的判别式的意义得出k 2≠0,且△=b 2-4ac ≥0,建立关于k 的不等式组,求出k 的取值范围. 【详解】解:由题意知,k 2≠0,且△=b 2-4ac =(2k +1)2-4k 2=4k +1≥0.解得k ≥-14且k ≠0. 故选:B . 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.2.C解析:C 【分析】根据一元二次方程的性质,先提公因式,通过计算即可得到答案. 【详解】 移项得,x 2-2x =0, 提公因式得,x (x-2)=0, 解得,x 1=0,x 2=2, 故选:C . 【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.3.D解析:D 【分析】利用因式分解法求得方程的两根,进而根据菱形面积=12对角线的积求解即可. 【详解】解:28120x x -+=, (x-6)(x-2)=0, ∴x 1=6,x 2=2,∵菱形的两条对角线长分别为6,2, ∴菱形面积为162=62⨯⨯, 故选:D . 【点睛】综合考查了菱形的性质及解一元二次方程;得到菱形的对角线长是解决本题的突破点;用到的知识点为:因式分解法解一元二次方程;菱形面积=12对角线的积. 4.C解析:C 【分析】利用一元二次方程定义进行解答即可. 【详解】A.含有分式,不是一元二次方程,故此选项不符合题意;B.当a=0时,不是一元二次方程,故此选项不符合题意;C.由已知方程得到:x²+x-3=0,该方程是一元二次方程,故此选项符合题意;D.含有两个未知数,不是一元二次方程,故此选项不合题意; 故选C . 【点睛】本题考查了一元二次方程定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.5.B解析:B 【分析】设220x x a ++=的两根分别为12,,x x 可得12122,,x x x x a +=-= 由关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,可得()()1211x x --<0, 再列不等式:()21a --+<0, 解不等式可得答案. 【详解】解:设220x x a ++=的两根分别为12,,x x12122,,x x x x a ∴+=-=关于x 的一元二次方程220x x a ++=的一个根大于1,另一个根小于1,()()1211x x ∴--<0, ()12121x x x x ∴-++<0, ()21a ∴--+<0,a ∴<3,-4a ∴=-符合题意,所以,,A C D 不符合题意,B 符合题意,故选:.B 【点睛】本题考查的是一元二次方程根与系数的关系,一元一次不等式的解法,掌握以上知识是解题的关键.6.A解析:A 【分析】根据方程的根及根与系数的关系得到x 12﹣3x 1+1=0,x 1+x 2=3,x 1x 2=1,将其代入代数式计算即可. 【详解】解:由题意得x 12﹣3x 1+1=0,x 1+x 2=3,x 1x 2=1, ∴x 12+1=3x 1, ∴x 12+3x 2+x 1x 2+1 =3x 1+3x 2+x 1x 2 =3(x 1+x 2)+ x 1x 2 =331⨯+ =10, 故选:A . 【点睛】此题考查一元二次方程的解,根与系数的关系式,求代数式的值,正确掌握根与系数的关系是解题的关键.7.A解析:A 【分析】根据总利润=每盒的利润×销售量,而每盒的利润=售价-进价,再结合“每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份”即可得出答案. 【详解】解:每份盒饭涨价x 元后,利润为(16+x-12)元,销售量为(360-40x)盒,∴可得方程为(1612)(36040)1680x x +--=, 故选A . 【点睛】本题考查了一元二次方程的实际应用.正确理解题意,根据题意找到等量关系是解题的关键.8.D解析:D 【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解. 【详解】解:依题意,得()()30220223020++=⨯⨯x x . 故选:D . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.D解析:D 【分析】根据两天后共有128人患上流感,列出方程求解即可. 【详解】解:依题意得2+2x +x (2+2x )=128, 解得x 1=7,x 2=-9(不合题意,舍去). 故x 值为7. 故选:D . 【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.10.C解析:C 【分析】根据题意一次项系数为0且△>0判断即可. 【详解】解:A 、x-1=0是一次方程,方程有一个实数根,故选项不合题意; B 、∵方程两根互为相反数和为0,一次项的系数为1,故选项不合题意; C 、∵△=0-4×1×(-1)=4>0,且一次项系数为0,故此选项符合题意; D 、∵△=0-4×1×1=-4<0,故此选项不合题意. 故选:C .【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca,也考查了一元二次方程的根的判别式.11.A解析:A【分析】由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【详解】解:当k=0时,x-1=0,解得:x=1;当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+(2k+1)x+(k-1)=0有实根,∴△=(2k+1)2-4k×(k-1)≥0,解得18k≥-且k≠0,综上:k的取值范围是18 k≥-,故选A.【点睛】本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.12.C解析:C【分析】根据根的判别式解答.【详解】根据题意得△=(﹣4)2﹣4(﹣k)>0,解得k>﹣4.故选:C.【点睛】此题考查一元二次方程根与系数的关系:∆>0时方程有两个不相等的实数根,∆=0时方程有两个相等的实数根,∆<0时方程没有实数根.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.8【分析】直接用一元二次方程的韦达定理进行求解即可;【详解】∵a 是的解b 是的解∴ab 是方程的两个解∴故答案为:8【点睛】本题考查了一元二次方程的韦达定理正确理解公式的应用是解题的关键解析:8 【分析】直接用一元二次方程的韦达定理进行求解即可 12bx x a +=- 、12c x x a= ; 【详解】∵ a 是 2850a a -+= 的解,b 是2850b b -+=的解, ∴ a 、b 是方程2850x x -+=的两个解,∴ 881a b -+=-= , 故答案为:8. 【点睛】本题考查了一元二次方程的韦达定理,正确理解公式的应用是解题的关键.14.且【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案【详解】解:∵关于x 的一元二次方程有两个实数根∴△=-(2k+1)2-4k k≥0且k≠0解得:且k≠0故答案为:且k≠0【点解析:14k ≥-且0k ≠ 【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案. 【详解】解:∵关于x 的一元二次方程2(21)0kx k x k -++=有两个实数根,∴△=[-(2k+1)]2-4k ⨯k≥0,且k≠0,解得:14k ≥-且k≠0. 故答案为:14k ≥-且k≠0.【点睛】本题考查一元二次方程根的判别式和一元二次方程的定义.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;注意一元二次方程的二次项系数不为0的隐含条件,避免漏解.15.m >0或m≤-3【分析】把方程有实数根转型为根的判别式大于等于零根据n 的任意性构造不等式求解即可【详解】∵关于x 的一元二次方程m ﹣nx ﹣m ﹣3=0对于任意实数n 都有实数根∴△≥0且m≠0∴≥0∴≥0解析:m>0或m≤-3.【分析】把方程有实数根,转型为根的判别式大于等于零,根据n的任意性,构造不等式求解即可.【详解】∵关于x的一元二次方程m2x﹣nx﹣m﹣3=0,对于任意实数n都有实数根,∴△≥0,且m≠0,∴2()4(3)n m m-++≥0,∴22412n m m++≥0,∵对于任意实数n都有实数根,∴2412m m+≥0,∴30mm≥⎧⎨+≥⎩或30mm≤⎧⎨+≤⎩,∴m≥0或m≤-3,且m≠0,∴m>0或m≤-3,故答案为:m>0或m≤ -3.【点睛】本题考查了一元二次方程的根的判别式,熟练掌握根的判别式,并规范把问题转化为不等式组求解是解题的关键.16.直角【分析】利用因式分解法求出方程的解得到另两边长利用勾股定理的逆定理即可确定出三角形为直角三角形【详解】解:x2-14x+48=0分解因式得:(x-6)(x-8)=0解得:x=6或x=8∵62+8解析:直角【分析】利用因式分解法求出方程的解得到另两边长,利用勾股定理的逆定理即可确定出三角形为直角三角形.【详解】解:x2-14x+48=0,分解因式得:(x-6)(x-8)=0,解得:x=6或x=8,∵62+82=102,∴这是一个直角三角形.故答案为:直角【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.17.或【分析】分两种情况讨论利用等边三角形的性质和勾股定理可求解【详解】解:当点D 在AC 的左侧时设AB 与CD 交于点E ∵△ACD 是等边三角形∴AC=AD=CD=4∠DAC=60°又∵∠BAC=30°∴∠D解析:232-或423- 【分析】分两种情况讨论,利用等边三角形的性质和勾股定理可求解. 【详解】解:当点D 在AC 的左侧时,设AB 与CD 交于点E ,∵△ACD 是等边三角形, ∴AC=AD=CD=4,∠DAC=60°, 又∵∠BAC=30°, ∴∠DAE=∠BAC=30°, ∴AB ⊥CD , ∵∠BAC=30°, ∴CE=12AC=2,AE=22224223AC EC -=-=, ∴BE=AB-AE=423-;当点D 在AC 的右侧时,过点B 作BE ⊥CD ,交DC 的延长线于点E ,连接BD ,∵△ACD 是等边三角形, ∴AC=AD=CD=AB=4,∠DAC=60°, ∴∠BAD=90°, ∴22161642AB AD =+=+∵AB=AC ,∠BAC=30°,∴∠ACB=75°,∴∠BCE=180°-∠ACD-∠ACB=45°,∵BE ⊥CE ,∴∠BCE=∠CBE=45°,∴BE=CE ,∵BD 2=BE 2+DE 2,∴32=BE 2+(CE+4)2,∴BE=2-,综上所述:点B 到CD 的距离为2或4-.故答案为:2-或4-【点睛】本题考查了勾股定理,等边三角形的性质,利用分类讨论思想解决问题是本题的关键. 18.36【分析】根据一元二次方程的解的定义把x=2代入方程x2+x+c=0即可求得c 的值进而求得c2的值【详解】解:依题意得22+2+c=0解得c=-6则c2=(-6)2=36故答案为:36【点睛】本题解析:36【分析】根据一元二次方程的解的定义,把x=2代入方程x 2+x+c=0即可求得c 的值,进而求得c 2的值.【详解】解:依题意,得22+2+c=0,解得,c=-6,则c 2=(-6)2=36.故答案为:36.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.【分析】将x=1代入方程求出a+b=-1再代入代数式计算即可【详解】将x=1代入方程得a+b=-1∴=2020-(a+b )=2020-(-1)=2021故答案为:2021【点睛】此题考查一元二次方程解析:2021【分析】将x=1代入方程求出a+b=-1,再代入代数式计算即可.【详解】将x=1代入方程210(0)ax bx a ++=≠,得a+b=-1,∴2020a b --=2020-(a+b )=2020-(-1)=2021,故答案为:2021.【点睛】此题考查一元二次方程的解,已知式子的值求代数式的值,正确理解方程的解是解题的关键.20.36【分析】根据与40的大小再根据从而确定mn 的值即可得出的值【详解】解:∵∴40≤;∴∴(m+6)2+(n-2)2≤0∵(m+6)2+(n-2)20∴m+6=0n-2=0∴m=-6n=2∴故答案为解析:36【分析】根据22124-+--m n m n 与40的大小,再根据{}22min 40,12440m n m n-+--=,从而确定m ,n 的值即可得出n m 的值.【详解】解:∵{}22min 40,12440m n m n-+--=,∴40≤22124-+--m n m n ;∴22412400+-≤++m n n m∴(m+6)2+(n-2)2≤0,∵(m+6)2+(n-2)2≥0,∴m+6=0,n-2=0,∴m=-6,n=2,∴()2636=-=n m 故答案为:36.【点睛】本题考查了配方法的应用和非负数的性质.根据题意理解新定义的计算公式是解题的关键.三、解答题21.(1)15=x ,21x =-;(2)23x y =⎧⎨=⎩【分析】(1)利用十字相乘法进行进行因式分解,继而求解;(2)直接利用关于原点对称点的性质得出方程组进而得出答案;【详解】(1)解:2450x x --=, (5)(1)0x x -+=,解得:15=x ,21x =-;(2)∵点P(2x+y,1)与点Q(-7,x-y)关于原点对称,∴27010x yx y+-=⎧⎨-+=⎩,解得23 xy=⎧⎨=⎩,【点睛】本题考查了解一元二次方程和解一元二次方程组,正确掌握运算方法是解题的关键;22.(1)长为12m、宽为8m;(2)不能,理由见解析【分析】(1)设矩形猪舍垂直于住房墙一边长为xm,根据矩形的面积公式建立方程求出其解即可.(2)根据题意列出方程x(27-2x+1)=100,根据方程的解的情况可得结果.【详解】解:(1)设矩形猪舍垂直于住房墙一边长为xm,可以得出平行于墙的一边的长为(27-2x+1)m,由题意得x(27-2x+1)=96,解得:x1=6,x2=8,当x=6时,27-2x+1=16>15(舍去),当x=8时,27-2x+1=12.答:所围矩形猪舍的长为12m、宽为8m.(2)由题意得:x(27-2x+1)=100,化简得:-2x2+28x-100=0,△=282-4×(-2)×(-100)=-16<0,故方程无解,∴不能围成面积为2100m的矩形猪舍.【点睛】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.23.(1)x1=4,x2=﹣2;(2)x1=﹣5,x2=1.【分析】(1)利用直接开平方法解方程;(2)利用因式分解法解方程.【详解】解:(1)(x﹣1)2=9x﹣1=±3,所以x1=4,x2=﹣2;(2)x2+4x﹣5=0(x+5)(x﹣1)=0,x +5=0或x ﹣1=0,所以x 1=﹣5,x 2=1.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了直接开平方法解一元二次方程.24.122,1x x =-=.【分析】利用因式分解法求解即可.【详解】∵2(2)3(2)x x +=+,∴()()22320x x +-+= ∴()()2230x x ++=⎡⎤⎣⎦-∴()()210x x +-=解得:122,1x x =-=.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解法的实质,灵活准确求解是解题的关键.25.要围成面积为45m 2的花圃,AB 的长是5米.【分析】设AB 的长是x 米,BC=(24-3x),根据面积列方程即可.【详解】解:设AB 的长是x 米,BC=(23+0.5+0.5-3x),根据题意列方程得,x(23+0.5+0.5-3x)=45,解得,x 1=3,x 2=5,当x=3时,24-3x=15>10,(舍去),答:要围成面积为45m 2的花圃,AB 的长是5米.【点睛】本题考查了一元二次方程的应用,解题关键是找准题目中的等量关系列方程.26.(1)11x =-,212x =;(2)194x +=,294x -=. 【分析】(1)根据解一元二次方程的方法计算即可;(2)根据解一元二次方程的方法计算即可.【详解】解:(1)22(1)3(1)x x +=+ 22(1)3(1)0x x =-++(x+1)[2(x+1)-3]=0(x+1) [2x+2-3]=0(x+1) (2x-1)=0∴x+1=0或2x-1=0解得:11x =-,212x =; (2)22980x x -+=a=2,b=-9,c=8Δ=24b ac -=81-4×2×8=17>0x=992224b a -±==⨯∴194x =,294x -= 【点睛】本题主要考察了解一元二次方程,解题的关键是熟练掌握一元二次方程的解法,选择适当的方法求解.。
初中数学一元二次方程单元试题及答案

一元二次方程单元测试题一、选择题(共30分)1、若关于x的方程(-1)x=1是一元二次方程,则的值是()A、0B、-1C、±1D、12、下列方程: ①x2=0, ② -2=0,③2+3x=(1+2x)(2+x),④3—=0,⑤—8x+ 1=0中,一元二次方程的个数是( )A、1个B、2个C、3个D、4个3、把方程(x—)(x+)+(2x-1)2=0化为一元二次方程的一般形式是( )A、5x2—4x—4=0B、x2—5=0C、5x2-2x+1=0D、5x2-4x+6=04、方程x2=6x的根是( )A、x1=0,x2=-6 B、x1=0,x2=6 C、x=6 D、x=05、不解方程判断下列方程中无实数根的是()A、-x2=2x-1B、4x2+4x+=0C、D、(x+2)(x—3)==—56、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为( )A、200(1+x)2=1000B、200+200×2x=1000C、200+200×3x=1000D、200[1+(1+x)+(1+x)2]=10007、关于的二次方程的一个根是0,则的值为( )A、1B、C、1或D、0。
58、关于x的方程x2+2(k+2)x+k2=0的两实根之和大于-4,则k的取值范围是( )A、k〉—1B、k<0C、—1<k<0D、—1≤k〈09、若方程的左边是一个完全平方式,则m的值是()A、—6或—2B、-2C、6或-2D、2或—610、使分式的值为0,则x的取值为( )。
A、-3 B、1 C、-1 D、-3或1二、填空题(共30分)11、如果2x2+1与4x2—2x—5互为相反数,则x的值为________。
12、如果关于x的一元二次方程2x(kx—4)—x2+6=0没有实数根,那么k 的最小整数值是__________.13、如果关于x的方程4mx2—mx+1=0有两个相等实数根,那么它的根是_______。
初中数学人教版九年级上册 第二十一章 一元二次方程单元测试(含简单答案)

第二十一章一元二次方程一、单选题1.方程x2-4=0的解是A.x=2B.x=-2C.x=±2D.x=±42.下列方程中,是一元二次方程的是()=1 A.xy=0B.x2+1=0C.x2=x(x−1)D.x2+1x3.方程3x2=5x+7的二次项系数、一次项系数,常数项分别为()A.3,5,7B.3,−5,−7C.3,−5,7D.3,5,−74.将方程x2−6x−1=0配方后,原方程可变形为()A.(x−3)2=8B.(x−3)2=10C.(x+3)2=10D.(x+3)2=85.若关于x的一元二次方程(k−2)x2+4x+1=0有两个实数根则k的取值范围是( ) A.k<6B.k<6且k≠2C.k≤6且k≠2D.k>66.已知a是方程x2−2x−1=0的一个解,则代数式2a2−4a+3的值为()A.4B.-4C.5D.-57.已知m是一元二次方程x2−4x+1=0的一个根,则2023−m2+4m的值是()A.−2023B.2023C.2022D.20248.如果关于x的方程(m−2)x2−(2m−1)x+m=0只有一个实数根,那么方程mx2−(m+2)x+(4−m)=0的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.只有一个实数根9.2022年,新《医保目录》启用,部分药品实行降价.某药品经过两次降价,每瓶零售价由132元降为102元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.132(1+x)2=102B.132(1−x)2=102C.132(1−2x)=102D.132(1−x2)=10210.已知一元二次方程a(x+m)2+n=0(a≠0)的两根分别为−4,3,则方程a(x+m−1)2 +n=0的两根分别为()A.2,−5B.−3,4C.3,−4D.−2,5二、填空题11.把下列方程中一元二次方程的序号填在横线上:.+5=0 ⑥3x3﹣4x2+1=0.①x2=4②2x2+y=5③3x+x2﹣1=0 ④5x2=0⑤3x2+x212.方程2(x+1)2=(x+2)(x﹣2)化为一般形式为.13.把方程x2+6x+3=0变形为(x+ℎ)2=k的形式,其中h,k为常数,则k=.14.关于x的一元二次方程x2+2x+4c=0有两个相等的实数根,则c=.15.连续两个奇数的乘积为483,则这两个奇数为.16.若关于x的一元二次方程mx2+x−1=0有两个不相等的实数根,则m的取值范围是.17.若ΔABC的两边长分别为3和4,第三边的长是方程x2−6x+5=0的根,则ΔABC的周长是.18.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边,且BC>AB).若花园的面积为192m2,则AB的长为m.三、解答题19.解方程:(1)x2−5x−6=0;(2)2x2−4x−1=0;(3)(x−7)2+2(x−7)=0;(4)(3x+2)2=4(x−3)2.20.已知关于x的一元二次方程x2+(2m+2)x+m2−4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.21.已知关于x的一元二次方程(a﹣c)x2+2bx+(a+c)=0.其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.22.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔7月份到9月份的销量,该品牌头盔7月份销售250个,9月份销售360个,且从7月份到9月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为25元/个,测算在市场中当售价为40元/个时,月销售量为400个,若在此基础上售价每上涨1元,则月销售量将减少10个,为使月销售利润达到7000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?参考答案:1.C2.B3.B4.B5.C6.C7.D8.C9.B10.B11.①③④⑤12.x 2+4x +6=013.614.14/0.2515.21,23或−23,−21.16.m >−14且m ≠017.1218.1219.(1)x 1=6,x 2=-1;(2)x 1=2+62,x 2=2−62;(3)x 1=7,x 2=5;(4)x 1=-8,x 2=45.20.(1) m >−52;(2)m =−2.21.(1)△ABC 为等腰三角形;(2)△ABC 为直角三角形22.(1)20%(2)45。
初中数学《一元二次方程》单元测试卷

9.整式 x 1与 x 4 的积为 x2 3x 4 ,则一元二次方程 x2 3x 4 0 的所有根是( )
(A) x1 1 , x2 4 (C) x1 1 , x2 4
(B) x1 1 , x2 4 (D) x1 1 , x2 4
1
10.某商品原售价 289 元,经过连续两次降价后售价为 256 元,设平均每次降价的百分率为 x,
7
2
2
22. 由|a-1|+ b 2 =0,得 a=1,b=-2.
所以,2x2+x-1=0
1
解之,得 x1=-1,x2= .
2
6
23. 解:(1)依题意,得 0 即[2(k 1)]2 4k 2 0 ,解得 k 1 . 2
(2)依题意,得 x1 x2 2(k 1), x1x2 k 2 .
(x 2)*5 0 的解为
.
18.方程 2x 1 =1 的根是________.
19.设 a, b 是一个直角三角形两条直角边的长,且 (a 2 b 2 )(a 2 b 2 1) 12 ,则这个直角
三角形的斜边长为
.
20.某小区 2011 年屋顶绿化面积为 2000 平方米,计划 2012 年屋顶绿化面积要达到 2880 平
________
15. 已知一 元二次方 程有一个 根 2,且它 的二次系 数为 1 ,那么这 个方程可 以是 2
___________(填上你认为正确的一个方程即可).
16. 孔明同学在解一元二次方程 x2 3x m 0 时,正确解得 x1 1, x2 2 ,则 m 的值
为
.
2
17. 在实数范围内定义一种运算“*”,其规则为 a*b a 2 b 2 ,根据这个规则,方程
(必考题)初中数学九年级数学上册第二单元《一元二次方程》测试(有答案解析)

一、选择题1.一元二次方程x 2﹣2x +5=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等实数根 C .只有一个实数根 D .没有实数根 2.若x m =是方程210x x +-=的根,则22020m m ++的值为( )A .2022B .2021C .2019D .2018 3.一个菱形两条对角线的长是方程28120x x -+=的两个根,则该菱形的面积为( ) A .12 B .6或12C .8D .64.已知关于x 的一元二次方程240x x k +-=,当40k -<<时,该方程解的情况是( )A .有两个不相等的实数根B .没实数根C .有两个相等的实数根D .不能确定5.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .66.一元二次方程22410x x ++=的两根为1x 、2x ,则12x x +的值是( ) A .4B .4-C .2-D .27.在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm ,宽40cm .中间镶有宽度相同的三条丝绸花边.若丝绸花边的面积为650cm ,设丝绸花边的宽为xcm ,根据题意,可列方程为( )A .()()60240650x x -⋅-=B .()()60402650x x -⋅-=C .2402650x x x ⋅+⋅=D .()240602650x x x ⋅+⋅-=8.关于x 的方程()()223x x a -+=(a 为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根一个负根D .无实数根9.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m <B .m 1≥C .1mD .1m10.已知a 是方程2210x x --=的一个根,则代数式224a a -+的值应在( ) A .4和5之间B .3和4之间C .2和3之间D .1和2之间11.★在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,a ,b 是关于x 的方程x 2-7x +c +7=0的两根,那么AB 边上的中线长是( ) A .32B .52C .5D .212.一元二次方程2x =﹣3x 的根是( ) A .x =﹣3B .x =0C .1x =0,2x =﹣3D .1x =0,2x =3二、填空题13.将一元二次方程2850x x --=化成2()x a b +=(a 、b 为常数)的形式,则a 、b 的值分别是_______.14.一元二次方程260x x --=的两根分别是1x ,2x ,则1212x x x x +-的值为__________.15.如果菱形的两对角线的长分别是关于x 的一元二次方程2240x mx ++=的两实数根,那么该菱形的面积是____.16.已知方程2560x kx ++=的一个根是2,则它的另一个根是________. 17.一元二次方程2310x x -++=的根的判别式的值是______.18.α是一元二次方程2240x x --=的一个根,2αβ+=,则22ββ-的值是________.19.将一元二次方程2310x x -+=变形为()2x h k +=的形式为________. 20.一元二次方程2320x x -+=的两根为1x ,2x ,则12x x +=________.三、解答题21.关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实数根. (1)求a 的最大整数值;(2)当a 取最大整数值时,求出该方程两根. 22.按要求解下列方程: 用配方法解:(1)x 2﹣4x +1=0.用公式法解:(2)2104x -=. 23.龙岩市某村2017年的人均收入为7500元,落实精准扶贫工作后,2019年人均收入为14700元.求人均收入的年平均增长率. 24.已知一元二次方程(a ﹣3)x 2﹣4x+3=0. (1)若方程的一个根为x =﹣1,求a 的值;(2)若方程有实数根,求满足条件的正整数a 的值.25.关于x 的方程()22210x x m ---=有实数根,且m 为非正整数.求m 的值及此时方程的根.26.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根. (1)试求k 的取值范围;(2)若此方程的两个实数根12x x 、,是否存在实数k ,满足12112x x +=-,若存在,求出k 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据根的判别式判断 . 【详解】解:∵△=4﹣20=﹣16<0, ∴方程没有实数根. 故选:D . 【点睛】本题考查一元二次方程的根的情况,熟练掌握根判别式的计算方法及应用是解题关键.2.B解析:B 【分析】利用一元二次方程根的定义,代入变形计算即可. 【详解】∵x m =是方程210x x +-=的根, ∴210m m +-=, ∴21m m +=, ∴22020m m ++=2021, 故选B . 【点睛】本题考查了一元二次方程根的定义,熟练把方程的根转化为所含字母的一元二次方程是解题的关键.3.D【分析】利用因式分解法求得方程的两根,进而根据菱形面积=12对角线的积求解即可. 【详解】解:28120x x -+=, (x-6)(x-2)=0, ∴x 1=6,x 2=2,∵菱形的两条对角线长分别为6,2, ∴菱形面积为162=62⨯⨯, 故选:D . 【点睛】综合考查了菱形的性质及解一元二次方程;得到菱形的对角线长是解决本题的突破点;用到的知识点为:因式分解法解一元二次方程;菱形面积=12对角线的积. 4.A解析:A 【分析】计算根的判别式,根据k 的范围,判断判别式的属性,根据性质求解即可. 【详解】解:∵一元二次方程240x x k +-=, ∴△= 22444b ac k -=+=16+4k , ∵40k -<<, ∴1640k -<<, ∴16+4k >0, ∴△>0,∴原方程有两个不相等的实数根, 故选A . 【点睛】本题考查了一元二次方程根的判别式,熟记公式,并根据字母范围确定判别式的属性是解题的关键.5.D解析:D 【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB 与BC 的和为10,构造关于AB 的一元二方程可求解.解:当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为6. ∴12AB·12BC=6,即AB•BC=24. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10, ∴AB+BC=10.则BC=10-AB ,代入AB•BC=24,得AB 2-10AB+24=0,解得AB=4或6, 因为AB >BC ,所以AB=6. 故选:D . 【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.6.C解析:C 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:由一元二次方程根与系数的关系得:12x x +=-ba =4-2=-2.故选:C .【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟记12x x +=-ba ,12c x x a⋅=.7.D解析:D 【分析】找出丝绸花边的总面积与丝绸花边的宽之间的关系式即可列出方程. 【详解】解:由题意知:三条丝绸花边的面积和-两个重叠部分的面积=丝绸花边的总面积, ∴设丝绸花边的宽为 xcm ,根据题意,可列方程为: 2×40x+60x-2x×x=650,即2x ⋅40+x ⋅(60−2x)=650, 故选D . 【点睛】本题考查方程的列法,仔细分析题中含有未知数所表示的量之间的数量关系并把各数量正确地表示出来是解题关键.8.C【分析】先将方程整理为一般形式,计算0∆>,得到方程有两个不相等的实数根,再根据两根之积为负数即可求解. 【详解】解:整理关于x 的方程()()223x x a -+=得2260x x a +--=,∴()22214162540aa ∆=-⨯⨯--=+>,∴方程有两个不相等的实数根,∴212601a x x --=<,∴方程了两个根一正一负. 故选:C 【点睛】本题考查了一元二次方程根的判别式和根与系数的关系,熟知两个知识点是解题关键,注意在讨论一元二次方程根与系数的关系时首先要注意确保方程有实根.9.D解析:D 【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可. 【详解】解:∵关于x 的一元二次方程2x 2x m 0-+=无实数根, ∴△=(-2)2-4m<0, 解得m>1. 故选:D . 【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.A解析:A 【分析】先依据一元二次方程的定义得到a 式的取值范围. 【详解】解:∵a 是方程2210x x --=的一个根, ∴2210a a --=,即221a a -=,∴原式=22(2)2a a -=+ ∵459,∴23<<,∴425<+<,即224a a -+的值在4和5之间, 故选:A . 【点睛】本题考查一元二次方程的解得定义,估算.掌握整体代入法是解题关键.11.B解析:B 【分析】由于a 、b 是关于x 的方程x2−7x +c +7=0的两根,由根与系数的关系可知:a +b =7,ab =c +7;由勾股定理可知:222+=a b c ,则()222a b ab c +-=,即49−2(c +7)=2c ,由此求出c ,再根据直角三角形斜边中线定理即可得中线长. 【详解】解:∵a 、b 是关于x 的方程2x −7x +c +7=0的两根, ∴根与系数的关系可知:a +b =7,ab =c +7; 由直角三角形的三边关系可知:222+=a b c , 则()222a b ab c +-=, 即49−2(c +7)=2c , 解得:c =5或−7(舍去),再根据直角三角形斜边中线定理得:中线长为52. 故选:B . 【点睛】本题考查三角形斜边中线长定理及一元二次方程根与系数的关系运用,勾股定理的运用,一元二次方程的解法的运用,解答时运用一元二次方程的根与系数的关系建立方程是关键.12.C解析:C 【分析】移项,利用因式分解求解即可. 【详解】 解:∵2x =﹣3x , 移项,得2x +3x =0,分解因式,得 x (x+3)=0,∴x =0,或x+3=0, 解得1x =0,2x =﹣3,故选:C . 【点睛】本题考查了一元二次方程的解法,根据方程的特点,选择因式分解法求解是解题的关键.二、填空题13.-421【分析】将常数项移到方程的右边两边都加上一次项系数一半的平方配成完全平方式后即可得出答案【详解】解:∵x2-8x-5=0∴x2-8x=5则x2-8x+16=5+16即(x-4)2=21∴a=解析:-4,21 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案. 【详解】 解:∵x 2-8x-5=0, ∴x 2-8x=5,则x 2-8x+16=5+16,即(x-4)2=21, ∴a=-4,b=21, 故答案为:-4,21. 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.【分析】根据一元二次方程根与系数关系即可求解【详解】解:一元二次方程的两根分别是则故答案为:7【点睛】本题考查了一元二次方程根与系数关系解题关键是知道:如果一元二次方程的两根分别是则 解析:7【分析】根据一元二次方程根与系数关系即可求解. 【详解】解:一元二次方程260x x --=的两根分别是1x ,2x , 则126x x =-,121x x =+,12121(6)7x x x x +-=--=,故答案为:7. 【点睛】本题考查了一元二次方程根与系数关系,解题关键是知道:如果一元二次方程20ax bx c ++=的两根分别是1x ,2x ,则12bx x a +=-,12c x x a=. 15.12【分析】可根据韦达定理求出一元二次方程的两根之积接着通过菱形面积公式求解即可【详解】解:设的两根为则一元二次方程的两实数根为菱形的两对角线的长菱形的面积===12故答案为:12【点睛】本题主要考解析:12 【分析】可根据韦达定理求出一元二次方程的两根之积,接着通过菱形面积公式求解即可. 【详解】解:设2240x mx ++=的两根为12x x 、, 则1224x x =,一元二次方程的两实数根12x x 、为菱形的两对角线的长,∴菱形的面积=1212x x =1242⨯=12.故答案为:12. 【点睛】本题主要考查一元二次方程的韦达定理,还涉及菱形的面积运算,属于基础题,熟练掌握韦达定理及菱形的面积公式是解决本题的关键.16.【分析】设方程的另一个根为根据根与系数的关系得到然后解一次方程即可【详解】解:设另一个根为∴∴∴另一个根为故答案为:【点睛】本题考查了根与系数的关系:若是一元二次方程ax2+bx+c =0(a≠0)的解析:35【分析】设方程的另一个根为1x ,根据根与系数的关系得到1625x =,然后解一次方程即可. 【详解】解:设另一个根为1x , ∴1625x =, ∴135x =, ∴另一个根为35. 故答案为:35.【点睛】本题考查了根与系数的关系:若12x x ,是一元二次方程ax 2+bx +c =0(a ≠0)的两根时1212b a cx x x x a-+=,=.17.13【分析】根据△=b2-4ac 计算可得答案【详解】解:∵a=-1b=3c=1∴△=32-4×(-1)×1=13故答案为:13【点睛】本题主要考查根的判别式熟记判别式(△=b2-4ac )是解题关键解析:13 【分析】根据△=b 2-4ac 计算可得答案. 【详解】解:∵a=-1,b=3,c=1, ∴△=32-4×(-1)×1=13, 故答案为:13. 【点睛】本题主要考查根的判别式,熟记判别式(△=b 2-4ac )是解题关键.18.4【分析】利用根与系数的关系确定为原一元二次方程的另一个根即可求出的大小【详解】设原一元二次方程的另一个根为根据根与系数的关系可知根据题意∴为原一元二次方程的另一个根∴即故答案为:4【点睛】本题考查解析:4 【分析】利用根与系数的关系确定β为原一元二次方程的另一个根,即可求出22ββ-的大小.【详解】设原一元二次方程的另一个根为2x , 根据根与系数的关系可知22==21x α-+-, 根据题意=2αβ+, ∴β为原一元二次方程的另一个根,∴ 224=0ββ--,即22=4ββ-. 故答案为:4. 【点睛】本题考查一元二次方程根与系数的关系.掌握一元二次方程根与系数关系的公式并确定β为原一元二次方程的另一个根是解答本题的关键.19.【分析】将方程常数项移到方程右边左右两边都加上左边化为完全平方式右边合并即可得到所求的结果【详解】解:移项得配方得即故答案为:【点睛】本题考查了配方法解一元二次方程利用此方法解方程时首先将二次项系数解析:23524x ⎛⎫-= ⎪⎝⎭ 【分析】 将方程常数项移到方程右边,左右两边都加上232⎛⎫ ⎪⎝⎭,左边化为完全平方式,右边合并即可得到所求的结果.【详解】解:2310x x -+=移项得 231x x -=-, 配方得222333122x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭即 23524x ⎛⎫-= ⎪⎝⎭ 故答案为:23524x ⎛⎫-= ⎪⎝⎭ 【点睛】本题考查了配方法解一元二次方程,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解. 20.3【分析】根据一元二次方程的根与系数关系两根之和等于代入求值即可【详解】解:∵一元二次方程的两根为∴故答案为:3【点睛】本题考查了一元二次方程根与系数关系知道一元二次方程的两根之和等于两根之积等于是 解析:3【分析】 根据一元二次方程的根与系数关系,两根之和等于b a-,代入求值即可. 【详解】解:∵一元二次方程2320x x -+=的两根为1x ,2x , ∴12331b x x a -+=-=-=, 故答案为:3.【点睛】 本题考查了一元二次方程根与系数关系,知道一元二次方程的两根之和等于b a -,两根之积等于c a是解题关键. 三、解答题21.(1)7;(2)1244x x ==【分析】(1)由关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实数根,则a ﹣6≠0,且△≥0,即△=(﹣8)2﹣4(a ﹣6)×9=280﹣36a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值;(2)将a 的最大整数值代入(a ﹣6)x 2﹣8x +9=0,即可求出该方程两根.【详解】解:(1)∵关于x 的一元二次方程(a ﹣6)x 2﹣8x+9=0有实数根,∴a ﹣6≠0,且△≥0,即△=(﹣8)2﹣4(a ﹣6)×9=280﹣36a≥0, 解得:779a ≤; ∴a 的取值范围为779a ≤且a≠6, 所以a 的最大整数值为7; (2)将a =7代入(a ﹣6)x 2﹣8x +9=0,得x 2﹣8x +9=0,∵△=64﹣36=28,∴x.∴1244x x ==【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和解法.22.(1) x 1=x 2=2;(2) x 1=2,x 2=2. 【分析】(1)利用配方法解一元二次方程,即可求出答案;(2)利用公式法解一元二次方程,即可求出答案.【详解】解:(1)2410x x -+=,∵x 2﹣4x =﹣1,∴x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,则x ﹣2=∴x1=x 2=2(2)2104x --=,∵a =1,b,c =﹣14, ∴△2﹣4×1×(﹣14)=3>0,则x即x 1,x 2. 【点睛】本题考查了解一元二次方程,解题的关键是掌握配方法和公式法解一元二次方程. 23.40%【分析】设人均收入的年平均增长率为x ,结合题意,通过列一元二次方程并求解,即可得到答案.【详解】解:设人均收入的年平均增长率为x根据题意得:()275001+14700x =解得:0.4x =或 2.4x =-(舍去)∴人均收入的年平均增长率为40% .【点睛】本题考查了一元二次方程的知识,解题的关键是熟练掌握一元二次方程的性质,从而完成求解.24.(1)a=-4.(2)a=1或2或4.【分析】(1)把x=-1代入方程求出a 即可.(2)利用判别式根据不等式即可解决问题.【详解】解:(1)∵方程的一个根为x=-1,∴a-3+4+3=0,∴a=-4.(2)∵方程有实数根,∴△≥0且a≠3,∴16-12(a-3)≥0, 解得a≤133,a≠3, ∵a 是正整数,∴a=1或2或4.【点睛】本题属于根的判别式,一元二次方程的解等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.0m =,121x x ==.【分析】根据一元二次方程有实数根可以判断△≥0,又根据m 为非正整数,可以判断0m =,进而求解即可;【详解】解:∵方程有实数根,∴()()224210m =-+-≥△. 解得:0m ≥.又∵ m 为非正整数,∴ 0m =.当0m =时,方程为2210x x -+=.此时方程的解为121x x ==.【点睛】本题考查了一元二次方程有实数根的情况,正确掌握解一元二次方程的方法是解题的关键;26.(1)1k ≤-;(2)存在,1k =-.【分析】(1)由根的判别式0∆≥,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)由根与系数的关系,得到122x x k +=,2121x x k k =++,然后解关于k 的一元二次方程,即可求出答案.【详解】解:(1)∵此方程有两个实数根,∴0∆≥即222411k k k ∆=--⨯⨯++()()440k =--≥,∴1k ≤-;(2)存在.根据题意,∵一元二次方程22210x kx k k -+++=,∴122x x k +=,2121x x k k =++, ∴122121211221x x k x x x x k k ++===-++, ∴121k k ==-符合题意,即1k =-;【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据根的判别式△>0,列出关于k的一元一次不等式;(2)根据根与系数的关系求出k 值.。
(易错题)初中数学九年级数学上册第一单元《一元二次方程》检测卷(有答案解析)

一、选择题1.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4 C .-1或4 D .1或-4 2.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60503.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根 4.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1- 5.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++=6.若整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( ) A .2B .3C .4D .5 7.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2- 8.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( )A .x (40-x )=75B .x (20-x )=75C .x (x +40)=75D .x (x +20)=7 9.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( ) A .1 B .0C .1-D .1或0 10.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( )A .1a ≥-且3a ≠B .1a >-且3a ≠C .1a ≥-D .1a >-11.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x +=12.如图,是一个简单的数值运算程序,则输入x 的值为( )A .31+B .31-+C .31+或31-+D .无法确定二、填空题13.一元二次方程(x +2)(x ﹣3)=0的解是:_____.14.某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.15.若一元二次方程ax 2﹣bx ﹣2016=0有一根为x =﹣1,则a +b =_____.16.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.17.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.18.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.19.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.三、解答题21.(1)x 2﹣8x+1=0;(2)2(x ﹣2)2=x 2﹣4.22.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 23.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.24.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.25.解答下列各题.(1)解方程:2(1)90x --=.(2)已知1x =,求225x x -+的值.26.解方程:212270x x -+=【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值.【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0,得:()()222-23-2-20a a ⨯+⋅=,化简得:2+340a a -=,解得:a=1或a=-4.故选:D .【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式. 2.D解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3.D解析:D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边,∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根.故选:D .【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.4.D解析:D【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程.【详解】解:x (2﹣x )+(2﹣x )=0,(2﹣x )(x +1)=0,2﹣x =0或x +1=0,所以x 1=2,x 2=﹣1.故选:D .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).5.D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.6.B解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.8.B解析:B【分析】根据长方形的周长可以用x 表示另一边,然后根据面积公式即可列出方程.【详解】解:设矩形的一边为x 米,则另一边为(20-x )米,∴x (20-x )=75,故选:B.【点睛】此题考查一元二次方程的实际应用,根据题意抽象出一元二次方程是解题的关键. 9.A解析:A【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键.10.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x的一元二次方程,因此得到二次项∆>即可得到答案.系数不为0即当a-3≠0时,且判别式0【详解】∵关于x的方程()32---=有两个不相等的实数根a x4x10∴a-3≠0,且2=(4)4(3)(1)440∆--⨯-⨯-=+>a aa≥-且a≠3解得:1故选B.【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a的不等式,是解题的关键.11.D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B、该方程化简整理后是一元一次方程,故本选项不符合题意.C、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D、该方程符合一元二次方程的定义,故本选项符合题意.故选:D.【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.12.C解析:C【分析】先根据数值运算程序可得一个关于x的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.二、填空题13.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0然后解两个一次方程即可【详解】(x+2)(x ﹣3)=0x+2=0或x ﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x 1=﹣2,x 2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0,然后解两个一次方程即可.【详解】(x +2)(x ﹣3)=0,x +2=0或x ﹣3=0,所以x 1=﹣2,x 2=3.故答案为x 1=﹣2,x 2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.3【分析】设共有个班级参加比赛根据共有45场比赛列出方程求出方程的解即可得到结果【详解】解:设共有个班级参加比赛根据题意得:整理得:即解得:或(舍去)则共有3个班级球队参加比赛故答案为:3【点睛】此 解析:3.【分析】设共有x 个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.【详解】解:设共有x 个班级参加比赛,根据题意得:(1)62x x -=, 整理得:260x x --=,即(3)(2)0x x -+=, 解得:3x =或2x =-(舍去).则共有3个班级球队参加比赛.故答案为:3.【点睛】此题考查了一元二次方程的应用,解题的关键是找出等量关系“需安排6场比赛”. 15.2016【分析】将x=-1代入ax2﹣bx ﹣2016=0得到a+b ﹣2016=0然后将a+b 当作一个整体解答即可【详解】解:把x =﹣1代入一元二次方程ax2﹣bx ﹣2016=0得:a+b ﹣2016=解析:2016.【分析】将x=-1代入ax 2﹣bx ﹣2016=0得到a +b ﹣2016=0,然后将a+b 当作一个整体解答即可.【详解】解:把x =﹣1代入一元二次方程ax 2﹣bx ﹣2016=0得:a +b ﹣2016=0,即a +b =2016.故答案是2016.【点睛】本题主要考查了一元二次方程的解,理解一元二次方程的解的概念是解答本题的关键. 16.3cm 【分析】设横彩条的宽度是xcm 竖彩条的宽度是3xcm 根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm 则(30-3x )(20-2x )=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.17.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程 解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.18.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是 解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 19.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 20.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.(1)x 1=x 2=42)x 1=2,x 2=6.【分析】(1)先配方、然后运用直接开平方求解即可;(2)先将等式右边因式分解,然后移项,最后用因式分解法求解即可.【详解】解:(1)x 2﹣8x+1=0,x 2﹣8x =﹣1,x 2﹣8x+16=﹣1+16,(x ﹣4)2=15,∴x ﹣4=∴x1=x 2=4(2)∵2(x ﹣2)2=x 2﹣4,∴2(x ﹣2)2﹣(x+2)(x ﹣2)=0,则(x ﹣2)(x ﹣6)=0,∴x ﹣2=0或x ﹣6=0.解得x 1=2,x 2=6.【点睛】本题主要考查了一元二次方程的解法,掌握配方法、直接开平方法和因式分解法是解答本题的关键.22.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键.23.(1)172x +=,272x -=;(2)x 1=1,x 2=-1. 【分析】 (1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.【详解】(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=2±,解得:172x +=,272x -=. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 24.(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.25.(1)14x =,22x =-;(2)6.【分析】(1)方程整理后,直接开平方即可求解;(2)代数式225x x -+配方整理成()214x -+后,把x 的值代入计算即可.【详解】(1)由原方程得2(1)9x -=, ∴13x -=±,解得:14x =,22x =-;(2)∵2225(1)4x x x -+=-+,将1x =代入得:原式)2114=-+ 24=+6=.【点睛】本题考查了解一元二次方程-直接开平方法以及求代数式的值,熟练掌握完全平方公式是解本题的关键.26.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学:一元二次方程单元测试
班级_________ 姓名__________ 得分__________
一、 填空(每题3分,计18分)
1、方程8)2(2)1(3++=-x x x 化成一般形式是__________________________
2、当a __________时,关于x 的方程042
2=+++x x ax 是一元二次方程 3、若关于x 的方程022=++n mx x 两个根为0和1,那么m =_____,n =______ 4、当x =______时,代数式(x +1)与(x-1)值互为倒数
5、若方程06)4(22=+--x kx x 无实数根,则k 的最小整数值为_________
6、方程012)(4)(222=----x x x x 的解为__________________________________ 二、 选择(每题3分,计12分)
1、将方程0362
=+-x x 左边配成完全平方式,得到的方程是( ) A 、3)3(2
-=-x B 、6)3(2
=-x C 、3)3(2
=-x D 、12)3(2
=-x 2下列方程中,①0432=--x x ②y y 692=+ ③0752=-y y ④x x 2222=+有两个不相等的实数根的方程个数为( ) A 、1个 B 、2个 C 、3个 D 、4个
3、某单位为节省经费,在两个内将开支从每月2500元降到1600元,若平均每月降低的百分率为x ,则下列方程中符合题意的是( ) A 、1600)1(25002
=-x B 、2500)1(16002
=+x B 、1600)1(25002=+x C 、2500)1(16002=-x
4、方程021
1
)11(2=----x x 的解为( )_
A 、-1,2
B 、1,-2
C 、0,2
3
D 、0,3 三、解下列方程(20分)
1、9)12(2=-x (直接开平方法)
2、041132=--x x (因式分解法)
3、01322=-+x x (公式法)
4、2)12)(2(=-+x x (配方法) 四、
解分式方程(16分)
1、 46
15=+-+x x
x x 2、 312122=+++x x x x 五、
解答题(第1题6分,第2题8分,计14分)
1、已知32+是方程042=+-c x x 的一个根,求方程的另一个根及c 的值
2、设x 1、x 2是方程03422=-+x x 的两个根,利用根与系数关系,求下列各式的值 (1)221)(x x - (2))1
)(1(1
221x x x x ++
六、解应用题(20分)
1、某校办工厂生产某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,这样三年的总产量达到1400件,求这个百分数
2、某车间要加工170个零件,在加完90个以后改进了操作方法,每天多加工10个,一共用5天完成了任务,求改进操作方法后,每天加工零件个数
参考答案:
一、填空
1、 012532=--x x
2、1-≠a
3、 m=-2 n=0
4、2±=m
5、2
6、-2或3 二、选择
1、B
2、B
3、A
4、C 三、解方程
1、2或-1
2、4或3
1
- 3、4173±-=x 4、4413±-=x
四、解方程
1、x=24
2、x=1 五、1、另一根是32- c=1
2、(1)10 (2)6
1
- 六、应用题
1、设这个百分数为x,则1400)1(200)1(2002002=++++x x 整理,得,0432=-+x x 解得x 1=1 x 2=-4 (舍)
答:这个百分数为100%
2、解:设改进操作后,每天加工x 个零件 根据题意得:
590
1701090=-+-x
x 整理得,0160442=+-x x 解得x 1=4 x 2=40
经检验:x 1=4 x 2=40都是原方程的根,当x=4时,x-10<0不符合题意应舍去,取x=40 答:改进操作后,每天加工40个零件。