一元二次方程单元测试含答案

合集下载

一元二次方程单元测试题含答案

一元二次方程单元测试题含答案

第二章一元二次方程测试题(1)姓名学号一、选择题(每小题3分,共30分)1.下列方程属于一元二次方程的是().(A)(x2-2)·x=x2(B)ax2+bx+c=0 (C)x+1x=5 (D)x2=02.方程x(x-1)=5(x-1)的解是().(A)1 (B)5 (C)1或5 (D)无解3.已知x=2是关于x的方程32x2-2a=0的一个根,则2a-1的值是().(A)3 (B)4 (C)5 (D)64.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为().(A)(x-4)2=6 (B)(x-2)2=4 (C)(x-2)2=0 (D)(x-2)2=105.下列方程中,无实数根的是().(A)x2+2x+5=0 (B)x2-x-2=0(C)2x2+x-10=0 (D)2x2-x-1=06.当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是().(A)4 (B)0 (C)-2 (D)-47.方程(x+1)(x+2)=6的解是().(A)x1=-1,x2=-2 (B)x1=1,x2=-4 (C)x1=-1,x2=4 (D)x1=2,x2=3 8.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,•那么这个一元二次方程是().(A)x2+3x+4=0 (B)x2-4x+3=0 (C)x2+4x-3=0 (D)x2+3x-4=09.某市计划经过两年时间,绿地面积增加44%,•这两年平均每年绿地面积的增长率是().(A)19% (B)20% (C)21% (D)22%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,•那么x满足的方程是().(A)x2+130x-1 400=0 (B)x2+65x-350=0(C)x2-130x-1 400=0 (D)x2-65x-350=0二、填空题(每小题3分,共24分)11.方程2x2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________.12.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_______.13.已知x2-2x-3与x+7的值相等,则x的值是________.14.请写出两根分别为-2,3的一个一元二次方程_________.15.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.16.已知x 2+y 2-4x+6y+13=0,x ,y 为实数,则x y =_________.17.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.18.若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.三、解答题(共46分)19.解方程:8x 2=24x (x+2)2=3x+6 (7x-1)2=9x 2 (3x-1)2=10x 2+6x=1 -2x 2+13x-15=0. 22x =- 2211362x x -=20.(本题8分)李先生存入银行1万元,先存一个一年定期,•一年后将本息自动转存另一个一年定期,两年后共得本息1.045 5万元.存款的年利率为多少?(•不考虑利息税)21.(本题8分)现将进货为40元的商品按50元售出时,就能卖出500件.•已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8 000元利润,售价应定为多少?这时应进货多少件?第二章 一元二次方程测试题(2)一、选择题(每小题3分,共30分)1.方程(y+8)2=4y+(2y-1)2化成一般式后a ,b ,c 的值是( )A .a=3,b=-16,c=-63;B .a=1,b=4,c=(2y-1)2C .a=2,b=-16,c=-63;D .a=3,b=4,c=(2y-1)22.方程x 2-4x+4=0根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根3.方程y 2+4y+4=0的左边配成完全平方后得( )A .(y+4)2=0B .(y-4)2=0C .(y+2)2=0D .(y-2)2=04.设方程x 2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A .-4B .-2C .0D .25.下列各方程中,无解的方程是( )A ..3(x-2)+1=0 C .x 2-1=0 D .1x x -=26.已知方程,则方程的实数解为( )A .3B .0C .0,1D .0,37.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A.10 B.11 C.10或11 D.3或118.方程x2+2px+q=0有两个不相等的实根,则p,q满足的关系式是() A.p2-4q>0 B.p2-q≥0 C.p2-4q≥0 D.p2-q>09.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m 的值为()A.1 B.-3 C.1或-3 D.不等于1的任意实数10.已知m是整数,且满足210521mm->⎧⎨->-⎩,则关于x的方程m2x2-4x-2=(m+2)x2+3x+4的解为()A.x1=-2,x2=-32B.x1=2,x2=32C.x=-67D.x1=-2,x2=32或x=6 7二、填空题(每题3分,共30分)11.一元二次方程x2+2x+4=0的根的情况是________.12.方程x2(x-1)(x-2)=0的解有________个.13.如果(2a+2b+1)(2a+2b-2)=4,那么a+b的值为________.14.已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,则另一个根为________.15.关于x的一元二次方程x2+bx+c=0的两根为-1,3,则x2+bx+c•分解因式的结果为_________.16.若方程x2-4x+m=0有两个相等的实数根,则m的值是________.17.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为________.18.一元二次方程(1-k)x2-2x-1=•0•有两个不相等的实根数,•则k•的取值范围是______.19.若关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c 的实数值可以是b=______,c=_______.20.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m•的值是________.三、解答题21.(12分)选用适当的方法解下列方程:(1)(x+1)(6x-5)=0;(2)2x2;(3)2(x+5)2=x(x+5);(42=0.22.(5分)不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3x2x+2=0;(4)3t2t+2=0;(5)5(x2+1)-7x=0.23.(4分)已知一元二次方程a x2+bx+c=0(a≠0)的一个根是1,且a,b满足,•求关于y的方程14y2-c=0的根.24.(4分)已知方程x2+kx-6=0的一个根是2,求它的另一个根及k的值.25.(4分)某村的粮食年产量,在两年内从60万千克增长到72.6万千克,问平均每年增长的百分率是多少?26.(5分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了使用“峰谷电”的政策及收费标准(见表).已知王老师家4月份使用“峰谷电”95kMh,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少kMh?27.(6分)印刷一张矩形的张贴广告(如图),•它的印刷面积是32dm2,•上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长是xdm,四周空白处的面积为Sd m2.(1)求S与x的关系式;(2)当要求四周空白的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?。

一元二次方程单元测试题(含答案)

一元二次方程单元测试题(含答案)

一元二次方程单元测试题(含答案)第二章一元二次方程测试题(1)一、选择题(每题3分,共30分)1.以下方程属于一元二次方程的是(A)(x-2)·x=x2 (B) ax+bx+c=0 (C) x+=5 (D) x2=02.方程x(x-1)=5(x-1)的解是(C)1或53.2a-1的值是(B)44.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为(B)(x-2)2=45.以下方程中,无实数根的是(D)2x2-x-1=06.今世数式x2+3x+5的值为7时,代数式3x2+9x-2的值是(A)47.方程(x+1)(x+2)=6的解是(D)x1=2,x2=38.若是关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是(C)x2+4x-3=09.某市计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增加率是20%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5,400cm2,设金色纸边的宽为xcm,那么x满足的方程是(A)x2+130x-1,400=0二、填空题(每题3分,共24分)11.方程2x2-x-2=0的二次项系数是2,一次项系数是-1,常数项是-2.1.若方程 $ax^2+bx+c=0$ 的一个根为 $-1$,则 $a-b+c=2a+a-b+c=2a-(-1)^2-b(-1)+c=2a-b+c+1=0$,所以 $2a-b+c=-1$。

2.已知 $x^2-2x-3=x+7$,移项得 $x^2-3x-10=0$,因此$(x-5)(x+2)=0$,所以 $x=5$ 或 $x=-2$。

3.设一元二次方程为 $ax^2+bx+c=0$,两根为 $-2$ 和 $3$,则可以列出方程组:begin{cases}a(-2)^2+b(-2)+c=0 \\a3^2+b3+c=0end{cases}化XXX:begin{cases}4a-2b+c=0 \\9a+3b+c=0end{cases}解得 $a=-1$,$b=2$,$c=-3$,因此所求方程为 $-x^2+2x-3=0$。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题(考试时间:90分钟 满分:150分)一、填空题:(每小题3分,共60分)1.把一元二次方程化为一般形式是________________,其中二次项系数为: ______,一次项系数为:______,常数项为:______.2.写出一个有一根为的一元二次方程___________________.3.已知三角形两边长分别是2和9,第三边的长为一元二次方程 x 2 -14x+48=0的一个 根,则这个三角形的周长为 。

4.关于x 一元二次方程2x(kx-4)- x²+6=0没有实数根,则k 的最小整数值是______。

5.已知方程x 2+kx+3=0的一个根是-1,则k=______, 另一根为______.6.若两数和为-7,积为12,则这两个数是___________.7.直角三角形的两直角边的比是3︰4,而斜边的长是20㎝,那么这个三角形的面积是______.8.已知关于x 的方程x²-mx+2m-1=0的两个实数根的平方和为7,那么m 的值是9.已知x 1 x 2是方程x 2-2x-1=0的两根,则x 11+x 21等于 。

10.如果xx 1-12—8=0,则x 1的值是 。

11.二、选择题:(每小题3分,共60分)11、下列方程中,关于x 的一元二次方程是( )(A)(B) (C) (D)12、已知一个直角三角形的两条直角边恰好是方程2x 2-8x+7的两根,则此三角形的斜 边长为( )A 3B 6C 9D 1213.关于的一元二次方程有实数根,则( ) (A)<0 (B)>0 (C)≥0 (D)≤014.用配方法解关于x 的方程x 2+px+q=0时,此方程可变形为( )(A)(B)(C) (D) 15.使分式的值等于0的x 的值是( )A 2B -2C ±2D ±416、已知m 是方程x 2-x-1=0的一个根,则代数式m 2-m 的值等于( )A 、 -1B 、0C 、1D 、217、王刚同学在解关于x 的方程x²-3x+c=0时,误将-3x 看作+3x ,结果解得x 1=1 x 2=-4,则 原方程的解为( )A x 1=-1 x 2=-4B x 1=1 x 2=4C x 1=-1 x 2=4D x 1=2 x 2=318.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A x(x+1)=1035B x(x-1)=1035C x(x+1)=1035D x(x-1)=103519、某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x ,则有( )A 500(1+ x²)=720B 500(1+x)2=720C 500(1+2x)=720D 720(1+x)2=50020、一个面积为120的矩形苗圃,他的长比宽多2米,苗圃长是( )A 10B 12C 13D 14三、解答题:(60分)21.(1)利用因式分解法解下列方程(x -2) 2=(2x-3)2 x 2-23x+3=0 042=-x x 01072=+-x x3(1)33x x x +=+ ()()0165852=+---x x 2x (x -3)=x -3.(2)利用开平方法解下列方程4(x-3)2=25 24)23(2=+x(3)利用配方法解下列方程012632=--x x(4)利用公式法解下列方程3x 2+5(2x+1)=0 7x=4x 2+222、(8分)已知一元二次方程kx 2+(2k-1)x+k+2=0有两个不相等的实数根,求k 的取值范围.23.(8分)如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.24、(8分)竖直上抛物体的高度h 和时间t 符合关系式h=v 0t-gt 2,其中重力加速度g 以10米/秒2计算.爆竹点燃后以初速度v 0=20米/秒上升,问经过多少时间爆竹离地15米?25、(8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存......,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2 100元,每件衬衫应降价多少元?26. 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率. 039922=--x x。

人教版九年级数学《一元二次方程》单元测试题(含答案)

人教版九年级数学《一元二次方程》单元测试题(含答案)

人教版九年级数学《一元二次方程》单元测试题(含答案)人教版九年级数学《一元二次方程》单元测试题一、选择题(每题3分,共18分):1.下列关于X的方程中,一定是一元二次方程的是()A.x-2=(x+3)B.ax+bx+c=2C.x+2D.x-1=2改写为:下列关于X的方程中,是一元二次方程的是()A.x-2=(x+3)B.ax+bx+c=2C.x+2D.x-1=22.x=2不是下列哪一个方程的解()A.3(x-2)=2B.2x-3x=2C.(x+2)(x-2)=23D.x-x+2=2改写为:下列哪一个方程的解不是x=2?A.3(x-2)=2B.2x-3x=2C.(x+2)(x-2)=23D.x-x+2=23.一元二次方程x-6x-5=配方可变形为()A.(x-3)=14B.(x-3)=42C.(x+3)=14D.(x+3)=42改写为:将一元二次方程x-6x-5配方可变形得到()A.(x-3)=14B.(x-3)=42C.(x+3)=14D.(x+3)=424.下列对一元二次方程要根的情况的判断,正确的是()A.有两个不相等的实数根.B.有两个相等的实数根.C.有且只有一个实数根.D.没有实数根.改写为:下列关于一元二次方程根的判断正确的是()A.有两个不相等的实数根.B.有两个相等的实数根.C.有且只有一个实数根.D.没有实数根.5.已知方程x+7x-1=的两个实数根为a,b,则代数式ab-a-b+1的值为()A.-7B.7C.9D.-9改写为:已知方程x+7x-1的两个实数根为a,b,则代数式ab-a-b+1的值为()A.-7B.7C.9D.-96.定义新运算,规定运算“★”是a★b=ab,如2★5=2´5,若3★x=36,则x为()A.x=4,x=-4B.x=±4C.x=23,x=-23D.x=3,x=-3改写为:定义新运算,规定运算“★”是a★b=ab,若3★x=36,则x为()A.x=4,x=-4B.x=±4C.x=23,x=-23D.x=3,x=-3二、填空题(每题3分,共18分):7.一元二次方程3x(x-3)=2x+1化成一般形式为______。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。

答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。

答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。

解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。

由于Δ > 0,方程有两个不相等的实数根。

根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。

7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。

解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。

简化得 4 - 8 + k = 0,解得 k = 4。

四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。

解:设宽为 x 米,长为 2x 米。

一元二次方程单元测试题(含答案)

一元二次方程单元测试题(含答案)

一、选择题1、下列方程中,关于x 的一元二次方程是( )A .()()12132+=+x xB .02112=-+x xC .02=++c bx axD . 1222-=+x x x 2、已知m 方程012=--x x 的一个根,则代数式m m -2的值等于( )A .—1B .0C .1D .23、方程x x 22=的解为( )A .x =2B . x 1=2-,x 2=0C . x 1=2,x 2=0D . x =04、解方程)15(3)15(2-=-x x 的适当方法是( )A 、开平方法B 、配方法C 、公式法D 、因式分解法5、用配方法解下列方程时,配方有错误的是( )A .x 2-2x -99=0化为(x -1)2=100B .x 2+8x +9=0化为(x +4)2=25C .2t 2-7t -4=0化为1681)47(2=-t D .3y 2-4y -2=0化为910)32(2=-y 6、下面是李明同学在一次测验中解答的填空题,其中答对的是( ).A .若x 2=4,则x =2B .方程x (2x -1)=2x -1的解为x =1C .若x 2-5xy -6y 2=0(xy ≠),则y x =6或yx =-1 D .若分式1232-+-x x x 值为零,则x =1,2 7、用配方法解一元二次方程02=++c bx ax ,此方程可变形为( ) A 、222442a ac b a b x -=⎪⎭⎫ ⎝⎛- B 、222442a b ac a b x -=⎪⎭⎫ ⎝⎛-C 、222442a ac b a b x -=⎪⎭⎫ ⎝⎛+D 、222442a b ac a b x -=⎪⎭⎫ ⎝⎛+ 8、从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( )A .9cm 2B .68cm 2C .8cm 2D .64cm 29、某品牌服装原价173元,连续两次降价x %后售价为127元,下面所列方程中正确的是( )A .173(1+x %)2=127B .173(1-2x %)=127C .173(1-x %)2=127D .127(1+x %)2=173二、填空题10、若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .11、把方程(2x +1)(x —2)=5-3x 整理成一般形式后,得 ,其中二次项系数是 ,一次项系数是 ,常数项是 。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案(考试时间:120分,满分: 150分)姓名 成绩评定一、选一选(每小题3分,共36分) 1.方程x 2+4x=2的正根为( )A .2-6B .2+6C .-2-6D .-2+62.已知关于x 的一元二次方程的两个根是1和-2,则这个方程是( ) A.022=--x x B.022=-+x x C.0122=--x x D.0122=-+x x3.某商品两次价格上调后,单价价格从4.05元变为5元,则平均每次调价的百分率约为( ) A .9% B .10% C .11% D .12%4.若使分式13222--+x x x 的值为零,则x 的取值为( ) A .1或-1 B.-3或1 C.-3 D.-3或15.将方程3(2x 2-1)=(x +3x+5化成一般形式后,其二次项系数,一次项系数,常数项分别为。

( )A .5,3,5B .5,-3,-5C .7 2D .8,6,16.某商店卖出A 、B 两种价格不同的商品,商品A 连续两次提价20%,同时商品B•连续两次降价20%,结果都以a 元出售,则两种商品的原价分别是( ) A.(1+20%)2;a (1-20%)2B .22;(120%)(120%)a a +-;222.(120%);.(120%)(120%)a aC aD +-+; a (1-20%)2 7.已知一个三角形的两边长是方程1582+-x x 的根,则第三边长y 的取值范围是( ) A .y<8 B.2<y<8 C. 3<y<8 D.无法确定8.一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,•那么恰好成为把个位数字和十位数字对调后组成的数,那么这两位数是( )A .16B .25C .52D .619.若n 是02=++n mx x 的根()0≠n ,则m+n 等于( )A .21-B.-1C.21D. 110.直角三角形的面积为6,两直角边的和为7,则斜边长为( )A .5B C D .711.如果关于x 的一元二次方程ax 2+2x+1=0有两个不相等的实数根,则a 的最大整数值( )(A)1. (B)2. (C)0. (D)-112.已知一直角三角形的三边长为a 、b 、c ,∠B=90°,那么关于x 的方程a (x 2-1)•-2x+b (x 2+1)=0的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定 二、填一填 (每小题3分,共30分)13.方程(x-2)(x-3)=6的解为____________.14.若x 2-4x+4=________.15.若关于x 的方程062=-+mx x 有一根是2,则另一根为___________16.已知一元二次方程有一个根为2,那么这个方程可以是____________(只需写一个) 17.某种型号的微机,原售价为7200元/台,经过连续两次降价后,现售价为3528元/台,则平均每次的百分率为____________________.18.要给一副长30cm,宽25cm 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占的面积为照片面积的四分之一,设镜框边的宽度为xcm,则根据题意,列出方程是 ___________________________19.代数式322--x x 的最小值是____________ 20.已知,0622=--y xy x 则yx的值是____________; 21.已知关于x 的二次方程012)21(2=---x k x k 有实数根,则k 的取值范围______________22.若()()5312222=-+++y x y x ,则22y x +=_____________三、解答题 (仔细是我们要培养的良好习惯)23.(5分)012022=-+x x (用配方法) 24. (5分)()272312=-x25.(5分)06552=--x x 26. (5分)04882=--x x27. (5分)()()22241-=+x x 28.(5分)()()0214122=---x xm +(m-2)x-1=0,问:(1)m取何值时,29.(10分)已知关于x的方程(m+1)x21它是一元二次方程?并求方程的解;30.(10分)如图,在长为32 m,宽为20 m的矩形地面上修建同样宽度的道路(图中阴影部分),余下的部分种植草坪,要使草坪的面积为540m2,求道路的宽?31.(10分)某人将2000元人民币按一年定期存入银行,到期后支取1000元用作购物,剩下的1000元及应得的利息又全部按一年定期存入银行,若存款的利率不变,到期后得本金和利息共1320元,求这种存款方式的年利率。

一元二次方程单元测试卷含答案

一元二次方程单元测试卷含答案

一元二次方程单元测试卷含答案一元二次方程单元测试卷一、选择题(每题2分,共30分)1.下列关于x的方程中,一元二次方程是()A。

x-y=2B。

2x2+x=C。

x3+1=D。

(m+2)x/(11-m-3mx)=2.方程(m+2)x2/(11-m-3mx)+1=是关于x的一元二次方程,则()A。

m=±2B。

m=2C。

m=-2D。

m≠±23.将一元二次方程-3x2-2=-4x化成一般形式ax2+bx+c=(a≠0)后,一次项和常数项分别是()A。

-4,2B。

-4x,2C。

4x,-2D。

-3x2,24.方程x2=4x的根是()A。

x=4B。

x=1/2,x=4C。

x=0,x=4D。

x=1,x=35.一元二次方程y2-y-3/4=0配方后可化为()A。

(y+2)/2=1B。

(y-2)/2=1C。

(y+1)/3=1D。

(y-1)/3=16.已知x=1是方程x2+px+1=0的一个实数根,则P的值是()A。

0B。

1C。

2D。

-27.x=1关于x的一元二次方程x2+ax+2b=0的解,则2a+4b=()A。

-2B。

-3C。

-1D。

-68.若关于x的一元二次方程x2-4x+m+2=0有两个不相等实数根,且m为正整数,则此方程的解为()A。

x1=-1,x2=3B。

x1=-1,x2=-3C。

x1=1,x2=3D。

x1=1,x2=-39.若x-2px+3q=0的两根分别是-3和5,则多项式2x-4px+6q可以分解为()A。

(x+3)(x-5)B。

(x-3)(x+5)C。

2(x+3)(x-5)D。

2(x-3)(x+5)10.某市决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A。

20%B。

11%C。

22%D。

44%11.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元测试(一) 一元二次方程 (时间:100分钟 满分:120分)
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个正确的. 题号 1 2 3 4 5 6 7 8 9 10 答案
D
B
C
D
C
D
A
B
C
A
1.下列方程是关于x 的一元二次方程的是(D) A .4x 2
-2xy =1x
B .ax 2
+bx +c =0(其中a ,b ,c 为常数) C .(x +1)(x -1)=x 2
-2x
D .x 2
-1=0
2.一元二次方程x 2
+8x -9=0配方后得到的方程是(B) A .(x -4)2
+7=0 B .(x +4)2
=25 C .(x -4)2=25
D .(x +4)2
-7=0
3.方程2x 2+3x -4=0的根的情况是(C) A .有两个相等的实数根
B .只有一个实数根
C .有两个不相等的实数根
D .没有实数根
4.已知关于x 的一元二次方程x 2
-bx +c =0的两根分别为x 1=1,x 2=-2,则b 与c 的值分别为(D)
A .b =-1,c =2
B .b =1,c =-2
C .b =1,c =2
D .b =-1,c =-2
5.输入一组数据,按下列程序进行计算,输出结果如表:
x 20.5 20.6 20.7 20.8 20.9 输出
-13.75
-8.04
-2.31
3.44
9.21
分析表格中的数据,估计方程(x +8)2
-826=0的一个正数解x 的大致范围为(C) A .20.5<x <20.6 B .20.6<x <20.7 C .20.7<x <20.8
D .20.8<x <20.9
6.若三角形的两边长分别为3和6,第三边长是方程x2-13x+36=0的根,则该三角形的周长为(D)
A.18 B.15 C.14 D.13
7.已知a,b是一元二次方程x2-2x-1=0的两个实数根,则代数式(a-b)(a+b-2)+ab 的值等于(A)
A.-1 B.0 C.1 D.2
8.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行,则列方程得(B)
A.(8-x)(10-x)=8×10-40 B.(8+x)(10+x)=8×10+40
C.(8+x)(10+x)=8×10-40 D.(8-x)(10-x)=8×10+40
9.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的一个根为0,则一次函数y=(m -3)x+m+5经过(C)
A.第一、二、三象限B.第二、三、四象限
C.第一、二、四象限D.第一、三、四象限
10.如图,正方形ABCD的边长为1,E,F分别是BC,CD上的点,且△AEF是等边三角形,则BE的长为(A)
A.2- 3 B.2+ 3 C.2+ 5 D.5-2
二、填空题(每小题3分,共15分)
11.将方程x(x-1)=4(x+1)化为一般形式后,二次项系数、一次项系数与常数项之和为-8.
12.若一元二次方程x2-6x-5=0的两根分别为x1,x2,则两根的和x1+x2=6.
13.若关于x的方程(k-1)xk2+1+2kx+5=0是一元二次方程,则k=-1.
14.某品牌手机经过连续两次降价,每台售价由原来的1 800元降到了1 100元,设平均每次降价的百分率为x,则所列方程为1_800(1-x)2=1_100.
15.两个连续奇数的积为35,则这两个连续奇数分别为5,7或-5,-7.
三、解答题(本大题共8个小题,满分75分) 16.(8分)用适当的方法解方程:
(1)x 2
-x -1=0; 解:x 1=1+52,x 2=1-5
2.
(2)(x -2)2
=2x -4. 解:x 1=2,x 2=4.
17.(9分)已知关于x 的一元二次方程x 2
-4x +k =0有两个不相等的实数根. (1)求k 的取值范围;
(2)若k 取符合条件的最大整数,且一元二次方程x 2
-4x +k =0与x 2
+mx -1=0有一个相同的根,求此时m 的值.
解:(1)由题意知:Δ=16-4k >0,∴k <4. (2)取k =3,
∴x 2
-4x +k =0的解为x =1或x =3. 当两方程相同根为1时,m =0; 当两方程相同根为3时,m =-8
3.
故m 的值为0或-8
3.
18.(9分)有一个两位数,个位数字与十位数字的和为14,交换数字的位置后,得到的新两位数比这两个数字的积还大38,求这个两位数.
解:设这个两位数的个位数字是x ,十位数字是14-x ,则 10x +14-x =x(14-x)+38, 即x 2-5x -24=0.
解得x 1=-3(舍去),x 2=8. 10×(14-8)+8=68.
答:这个两位数是68.
19.(9分)汽车产业的发展,有效促进了我国现代化建设.某汽车销售公司2017年盈利1 000万元,2019年盈利1 440万元,且从2017年到2019年,每年盈利的年增长率相同. (1)求每年盈利的年增长率;
(2)若该公司盈利的年增长率继续保持不变,预计2020年盈利多少万元? 解:(1)设每年盈利的年增长率为x ,根据题意,得 1 000(1+x)2
=1 440.
解得x 1=0.2,x 2=-2.2(不合题意,舍去). 答:每年盈利的年增长率为20%. (2)1 440(1+0.2)=1 728(万元). 答:预计2020年该公司盈利1 728万元.
20.(9分)已知关于x 的一元二次方程x 2
+mx +n =0的一个根是2,另一个根是正数,而且也是方程(x +4)2
-52=3x 的根. (1)求m ,n 的值;
(2)求一次函数y =mx +n 与坐标轴围成的三角形的面积. 解:(1)把x =2代入x 2
+mx +n =0,得2m +n +4=0.① 解方程(x +4)2
-52=3x ,得x 1=4,x 2=-9(舍去). 把x =4代入x 2+mx +n =0,得4m +n +16=0.② 由①②得m =-6,n =8.
(2)由(1)知y =-6x +8,它与坐标轴围成的三角形面积为16
3.
21.(10分)如图,若要建一个长方形养鸡场,养鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.
(1)若墙长为18米,要围成养鸡场的面积为150平方米,则养鸡场的长和宽各为多少米? (2)围成养鸡场的面积可能达到200平方米吗?
解:(1)设养鸡场垂直于墙的一边长为x 米,根据题意,得 x(33-2x +2)=150,解得x 1=10,x 2=15
2(不合题意,舍去).
33-2x +2=15.
∴长为15米,宽为10米.
(2)设养鸡场垂直于墙的一边长为y 米,根据题意,得 y(33-2y +2)=200,整理,得2y 2
-35y +200=0. ∵Δ=(-35)2
-4×2×200=1 225-1 600=-375<0, ∴方程没有实数根.
∴围成养鸡场的面积不能达到200平方米.
22.(10分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x 元,据此规律,请回答:
(1)商场日销售量增加2x 件,每件商品盈利(50-x)元;(用含x 的代数式表示)
(2)在上述条件不变、销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2 100元?
解:由题意,得(50-x)(30+2x)=2 100. 化简,得x 2
-35x +300=0, 即(x -15)(x -20)=0. 解得x 1=15,x 2=20.
∵该商场为了尽快减少库存,∴x =20.
答:每件商品降价20元时,商场日盈利可达到2 100元.
23.(11分)在长方形ABCD 中,AB =5 cm ,BC =6 cm ,点P 从点A 开始沿边AB 向终点B 以1 cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2 cm/s 的速度移动.如果P ,Q 分别从A ,B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t s. (1)填空:BQ =2tcm ,PB =(5-t)cm(用含t 的代数式表示); (2)当t 为何值时,PQ 的长度等于5 cm?
(3)是否存在t 的值,使得五边形APQCD 的面积等于26 cm 2
?若存在,请求出此时t 的值;若不存在,请说明理由.
解:(2)由题意,得(5-t)2
+(2t)2
=52
, 解得t 1=0(不合题意,舍去),t 2=2. 故当t =2时,PQ 的长度等于5 cm.
(3)存在t =1,能够使得五边形APQCD 的面积等于26 cm 2
. 长方形ABCD 的面积为5×6=30(cm 2
),
若五边形APQCD 的面积等于26 cm 2
,则△PBQ 的面积为30-26=4(cm 2
), 即(5-t)×2t ×1
2
=4,
解得t 1=4(不合题意,舍去),t 2=1.
即当t =1时,五边形APQCD 的面积等于26 cm 2
.。

相关文档
最新文档