利用空间向量解决立体几何的向量方法—解决空间角的问题PPT课件

合集下载

高中数学选修2-1精品课件:§3.2 第3课时 用空间向量解决空间角

高中数学选修2-1精品课件:§3.2  第3课时 用空间向量解决空间角

所成的角

|a·b| |a||b|
范围 0,π2
直线与平面 所成的角
设直线l与平面α所成的角为θ,l的方向向量为a, 平面α的法向量为n,则sin θ=_|_co_s_〈__a_,__n_〉__|_

|a·n| |a||n|
0,π2
二ห้องสมุดไป่ตู้角
设二面角α-l-β为θ,平面α,β的法向量分别 为n1,n2,则|cos θ|= |cos〈n1,n2〉| = |n1·n2|
|n1||n2|
[0,π]
思考辨析 判断正误
SIKAOBIANXIPANDUANZHENGWU
1.两条异面直线所成的角与两直线的方向向量所成的角相等.( × ) 2.直线与平面所成的角等于直线与该平面法向量夹角的余角.( × ) 3.二面角的大小就是该二面角两个面的法向量的夹角.( × ) 4.若二面角两个面的法向量的夹角为120°,则该二面角的大小等于60°或 120°.( √ )
(3)求平面的法向量n; →
(4)设线面角为 θ,则 sin θ=|P→A·n|. |PA||n|
跟 踪 训 练 2 如 图 所 示 , 三 棱 柱 ABC - A1B1C1 中 , CA = CB , AB = AA1 , ∠BAA1=60°. (1)证明:AB⊥A1C;
证明 取AB的中点O,连接OC,OA1,A1B. 因为CA=CB,所以OC⊥AB. 由于AB=AA1,∠BAA1=60°, 故△AA1B为等边三角形,所以OA1⊥AB. 因为OC∩OA1=O,所以AB⊥平面OA1C. 又A1C⊂平面OA1C,故AB⊥A1C.
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正 弦值.

用空间向量解决空间角和距离问题

用空间向量解决空间角和距离问题

0,π2
二面角
设二面角α-l-β为θ,平面α,β的法向量分别为n1,
n2,则|cos
θ|=
|cos〈n1,n2〉|

|n1·n2| |n1||n2|
[0,π]
知识点二 利用空间向量求距离(※) 点到平面的距离:用空间向量法求点到平面的距离具体步骤如下: 先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面 的 法 向 量 上 的 射 影 长 . 如 图 , 设 n = (a , b , c) 是 平 面 α 的 一 个 法 向 量 , P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到 平面 α 的距离 d=|P→P|n0|·n|=|ax0-x+ab2+y0-b2+y+c2 cz0-z|.
证明
②若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角 的正弦值.
解答
类型二 求二面角问题 例2 如图所示,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1的中点, 求二面角A-A1D-B的余弦值.
解答
反思与感悟 求角二面角时,可以用方向向量法,也可以采用法向量 法求解.
2.向量法求距离(※) (1)求 P,Q 两点间的距离,可转化为求P→Q的模. (2)点到平面距离的求法:设 n 是平面 α 的法向量,B 是平面 α 外一点,A 是平面 α 内一点,AB 是平面 α 的一条斜线,则点 B 到平面 α 的距离为
→ d=|A|Bn·|n|.
(3)线面距离、面面距离均可转化为点面距离,利用(2)中的方法求解.
4 2×2
2=12,
且〈P→B,D→B〉∈[0,π],∴〈P→B,D→B〉=π3, ∴BD 与平面 ADMN 所成的角为π6.

用空间向量求空间角课件(共22张PPT)

用空间向量求空间角课件(共22张PPT)

向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,

高中数学3.2立体几何中的向量方法课件-(共43张PPT)

高中数学3.2立体几何中的向量方法课件-(共43张PPT)

,即14x+ 43y+12z=0

令 y=2,则 z=- 3,∴n=(0,2,- 3).
∵ PD =0,23 3,-1,显然 PD =
3 3 n.
26
∵ PD ∥n,∴ PD ⊥平面 ABE,即 PD⊥平面 ABE.
探究提高 证明线面平行和垂直问题,可以用 几何法,也可以用向量法,用向量法的关键在 于构造向量,再用共线向量定理或共面向量定 理及两向量垂直的判定定理。若能建立空间直 角坐标系,其证法较为灵活方便.
7
r 平面的法向量:如果表示向量 n的有向线段所在
直线垂直于r平面 ,则称r这个向量垂直于平r
面 ,记作 n⊥ ,如果 n⊥ ,那 么 向 量n
叫做平面 的法向量.
r
l
给定一点Ar 和一个向量 n,那么 过点A,以向量 n 为法向量的平面是
r 完全确定的.
n
几点注意:
1.法向量一定是非零向量;
17
题型分类 深度剖析
题型一 利用空间向量证明平行问题 例 1 如图所示,在正方体 ABCD—A1B1C1D1
中,M、N 分别是 C1C、B1C1 的中点.求证: MN∥平面 A1BD.
18
证明 方法一 如图所示,以 D 为原点,DA、DC、DD1 所在
直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的
1,得
x
1 2
y 1
r n
(
1
,
1,1),
2
10
思考2:
因为方向向量与法向量可以确定直线和平面的 位置,所以我们应该可以利用直线的方向向量与平 面的法向量表示空间直线、平面间的平行、垂直、 夹角等位置关系.你能用直线的方向向量表示空间两 直线平行、垂直的位置关系以及它们之间的夹角吗? 你能用平面的法向量表示空间两平面平行、垂直的 位置关系以及它们二面角的大小吗?

§7.6 立体几何中的向量方法——求空间角和距离

§7.6 立体几何中的向量方法——求空间角和距离

§7.6立体几何中的向量方法——求空间角和距离【知识梳理】1.空间向量与空间角的关系(1)设异面直线l1,l2的方向向量分别为m1,m2,则l1与l2所成的角θ满足cos θ=(2)设直线l的方向向量和平面α的法向量分别为m,n,则直线l与平面α所成角θ满足sin θ=(3)求二面角的大小1°如图①,AB、CD是二面角α—l—β的两个面内与棱l垂直的直线,则二面角的大小θ=.2°如图②③,n1,n2分别是二面角α—l—β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=或.2.点面距的求法如图,设AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离d=.【课前热身】1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.()(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(3)两个平面的法向量所成的角是这两个平面所成的角.()(4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].() (5)直线l的方向向量与平面α的法向量夹角为120°,则l和α所成角为30°. ()(6)若二面角α-a-β的两个半平面α、β的法向量n1,n2所成角为θ,则二面角α-a -β的大小是π-θ.( )2. 二面角α-l -β的大小是π3,m ,n 异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )A.2π3B.π3C.π2D.π63. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( )A .4B .2C .3D .14. 若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为_________.5. P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM=∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________. 【典例分析】题型一 求异面直线所成的角例1 长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010变式训练 已知直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为正方形AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( )A.1010B.15C.31010D.35题型二 求直线与平面所成的角例2 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点.(1)证明:PE ⊥BC ;(向量法) (2)若∠APB =∠ADB =60°,求直线P A 与平面PEH 所成角的正弦值.题型三 求二面角例3 (2013·课标全国Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB .(1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.题型四 求空间距离例4 已知正方形ABCD 的边长为4,CG ⊥平面ABCD ,CG =2,E ,F 分别是AB ,AD的中点,求点C 到平面GEF 的距离。

3.2立体几何中的向量方法 第3课时 空间向量与空间角 课件

3.2立体几何中的向量方法 第3课时 空间向量与空间角 课件

研一研· 问题探究、课堂更高效
3.2 第3课时
例 2 如图所示,已知直角梯形 ABCD,其中 AB=BC=2AD,AS⊥平面 ABCD, AD∥BC, AB⊥BC, 且 AS=AB.求直线 SC 与底面 ABCD 的夹角 θ 的余弦值.

由题设条件知,以点 A 为坐标原点,
分别以 AD、AB、AS 所在直线为 x 轴、y 轴、z 轴建立空间直角坐标系(如图所示). 设 AB=1,则 A(0,0,0),B(0,1,0), 1 C(1,1,0),D2,0,0,S(0,0,1). → → ∴AS=(0,0,1),CS=(-1,-1,1).
3.2 第3课时

建立如图所示的空间直角坐标系,则
O(0,0,0),O1(0,1, 3),A( 3,0,0), A1( 3,1, 3),B(0,2,0), → → ∴A1B=(- 3,1,- 3),O1A=( 3,-1,- 3). → → → → |A1B· O1A| ∴|cos〈A1B,O1A〉|= → → |A1B|· |O1A| |- 3,1,- 3· 3,-1,- 3| 1 = =7. 7· 7 1 ∴异面直线 A1B 与 AO1 所成角的余弦值为 . 7
3.2 第3课时
∴PB⊥AD. 又∵PB⊥DM,DM∩AD=D, ∴PB⊥平面 ADMN, → 即PB为平面 ADMN 的一个法向量. → → 因此〈PB,DB〉的余角即是 BD 与平面 ADMN 所成的角. → → PB· DB 4 1 → → ∵cos〈PB,DB〉= = = , → → 2 2×2 2 2 |PB||DB| π π → → ∴〈PB,DB〉=3,∴BD 和平面 ADMN 所成的角为6.
研一研· 问题探究、课堂更高效
3.2 第3课时

空间向量在立体几何中的应用 ppt课件

空间向量在立体几何中的应用 ppt课件
解 建立如图所示的空间直角坐标系,
则 A(0,0,0),M(0,a2, 2a),
C1(- 23a,a2, 2a),B(0,a,0),
故A→MA→=C1(=0,(-a2,23a2,a)a2,, 2a),
B→C1=(- 23a,-a2, 2a).
15
设平面 AMC1 的法向量为 n=(x,y,z).
则A→C1·n=0,∴- 23ax+a2y+ 2az=0,
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
4
2.空间中的角
角的分类
向量求法
设两异面直线所成的角为θ,它们的方
异面直线 所成的角
21
【变式3】 若 PA⊥平面 ABC,AC⊥BC,PA=AC=1,BC= 2,
求二面角 A-PB-C 的余弦值. 解 如图所示建立空间直角坐标系,则
A(0,0,0),B( 2,1,0),
C(0,1,0),P(0,0,1),
故A→P=(0,0,1),A→B=( 2,1,0),
C→B=( 2,0,0),C→P=(0,-1,1),
17
题型三 二面角的求法
【例3】 (12分)如图所示,正三棱柱ABC- A1B1C1的所有棱长都为2,D为CC1的中 点,求二面角AA1DB的余弦值.
18
[规范解答]如图所示,取BC中点O,连 结AO.因为△ABC是正三角形,所以 AO⊥BC,因为在正三棱柱ABC — A1B1C1中,平面ABC⊥平面BCC1B1,所 以AO⊥平面BCC1B1. 取 B1C1 中点为 O1,以 O 为原点,O→B,O→O1,O→A为 x,y,z 轴的 正方向建立空间直角坐标系,则 B(1,0,0),D(-1,1,0),

空间向量在立体几何中的应用PPT优秀课件

空间向量在立体几何中的应用PPT优秀课件

返回目录
*对应演练*
如图,四棱锥P—ABCD中, 底面ABCD为矩形,PD⊥ 底面ABCD,AD=PD, E,F分别为CD,PB的中点. (1)求证:EF⊥平面PAB;
【分析】可用空间向量的坐标运算来证明. 【证明】以A为原点,AB,AD,AP分别为x轴,y轴,z 轴建立空间直角坐标系,如图所示. 设AB=a,PA=AD=1,
a 则P(0,0,1),C(a,1,0),E( ,0,0), 2 1 1 D(0,1,0),F(0, 2 , 2 ). 1 1 a (1)AF=(0, , ),EP=(- ,0,1), 2 2 2 a 1 1 EC=( ,1,0),∴AF= EP+ EC, 2 2 2 又AF⊂ 平面PEC,∴AF∥平面PEC.
空间向量在立体几何
考点一
考点二 考点三 考点四
考点五
1.平面的法向量
直线l⊥α,取直线l的 做平面α的法向量.
方向向量a,则 向量a 叫
2.直线l的方向向量是u=(a1,b1,c1),平面α的法向
a1a2+b1b2+c1c2=0 u· v=0 量v=(a2,b2,c2),则l∥α ⇔ . ⇔
返回目录
(2)PD=(0,1,-1),CD=(-a,0,0), 1 1 ∴AF· PD=(0, , )· (0,1,-1)=0, 2 2 1 1 AF· CD=(0, , )· (-a,0,0)=0, 2 2 ∴AF⊥PD,AF⊥CD,又PD∩CD=D, ∴AF⊥平面PCD.
【评析】用向量证明线面平行时,最后应说明向量 所在的基线不在平面内.
返回目录
*对应演练*
如图,在正方体ABCD— A1B1C1D1中,E,F,M分别 为棱BB1,CD,AA1的中点. 证明:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 AF1 ( 2 , 0,1),
A
BD1
(1 2
,
1 2
,1)
cos
AF1, BD1
|
AF1 BD1 AF1 || BD1
|
x
1 1 4
53
30 10
By
42
所以 BD与1 A所F成1 角的余弦值为
30 10
题题型型二二::线线面面角角
直线与平面所成角的范围: [0, ]
2
An
思考:
B O
求B1C1与面AB1C所成的角.
A1
B1
D1 C1
A B
D C
题型三:二面角
二面角的范围: [0, ]
n2
n1
O
n2 n1
cos | cos n1, n2 |
cos | cos n1, n2 |
关键:观察二面角的范围
题型三:二面角 例三 如所示,A B C D 是一直角梯形,A B C = 900,
3
小结:
1.异面直线所成角:
cos |cos CD, AB |
2.直线与平面所成角:
sin | cos n, AB |
3.二面角:
cos | cos n1, n2 | cos | cos n1, n2 |
关键:观察二面角的范围
C
D
A D1
B
A
n
B O
n2 n1
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
AP =(0,0,1), AB ( 2,1,0), CB ( 2, 0,x0), CP (0, 1,1) ,
设平面
PAB
的法向量为
m
=(x,y,z),则
m
AP
0

( x, y, z) (0, 0,1) 0

y
2
x
,令
m AB 0 x=1,则 m =(1,
2,0) ,
( x, y, z) ( 2,1, 0) 0 z 0
SA 平面ABCD, SA AB BC 1, AD 1 ,求面SCD与面SBA 2
所成二面角的余弦值.
z
S
B
C
A
x
Dy
例三 如所示, A B C D 是一直角梯形,A B C = 900 ,
SA 平面ABCD, SA AB BC 1, AD 1 , 求面SCD与面SBA
2z
所成二面角的余弦值.
0,
2
C
D
思考:
A D1 B
CD, AB 与的关系?
DC, AB 与的关系?
结论: cos | cos CD, AB |
题型一:线线角
例一:Rt ABC中,BCA 900,现将 ABC沿着
平面ABC的法向量平移到A1B1C1位置,已知
BC CA CC1,取A1B1、A1C1的中点D1、F1,
分析:

若用几何法本题不太好处
理,注意到适当建立空间直角坐
y
标系后各点坐标容易处理,可考
虑尝试用向量法处理,从而把问 x
题转化为向量运算问题.
.如图,PA⊥平面 ABC,AC⊥BC,PA=AC=z1, BC= 2 ,求二面角 A-PB-C 的余弦值.
解:建立坐标系如图,
y
则 A(0,0,0),B( 2 ,1,0),C(0,1,0),P(0,0,1),
x
y 2
y 2
z
0 0
x z
y 2 y 2
任取n2 (1, 2,1)
cos
n1, n2
|
n1 n2 n1 || n2
|
6 3
即所求二面角得余弦值是 6 3
练习2:
如图,PA⊥平面 ABC, AC⊥BC,PA=AC=1,BC= 2 , 求二面角 A-PB-C 的余弦值.
z
y
x
练习2: 如图,PA⊥平面 ABC,AC⊥BC,PA=AC=1, BC= 2 ,求二面角 A-PB-C 的余弦值.
解:建立空直角坐系A - xyz如所示,
S
A (0,0,0), C (- 1,1,0), D (0,1 , 0), S(0, 0,1)
B
C
易知面SBA的法向量n1
2
AD
(0,
1
, 0)
CD (1, 1 , 0), SD (0, 1 , 1) 2
xA D y
2
2
设平面SCD的法向量n2 (x, y, z), 由n2 CD, n2 SD, 得:
求BD1与AF1所成的角的余弦值. C1
F1
B1
A1
D1 C
B
A
题型一:线线角
解:以点C为坐标原点建立空间直角坐标系C x如yz图
所示,设 则CC:1 1 A(1, 0, 0), B(0,1, 0),
C1 z
F1
B1
1
11
F1( 2 , 0, a), D1( 2 , 2 ,1)
A1
D1 C
所以:
设平面
PBC
的法向量为 n
( x,
y, z)
,

n
CB
0
( (
x, x,
y, y,
z) z)
( 2,0,0) 0 (0, 1,1) 0

x y
0 z

y
n
1,
CP
n
0
(0, 1,
1)
∴cosm,n m n
3
,∵二面角为锐角∴二面角 A-PB-C 的余弦值为
3
| m || n | 3
n, BA 与的关系?
结论: sin | cos n, AB |
题型二:线面角
例二: 在长方体 ABCD A1B1C1D1 中,AB= 5,AD 8,
AA1 4, M为BC1上的一点,且B1M 2,点N在线段A1D上,
A1D AN. (1)求证:A1D AM .
z
(2)求AD与平面ANM 所成的角. A1 N
A(0, 0, 0), A1(0, 0, 4), D(0,8, 0),
B1 M
A
AD (0,8, 0), A1D (0,8, 4),
25
cos AD, A1D 5
AD与平面ANM 所成角的正弦值是
xB
25
5
D1 C1
Dy
C
题型二:线面角
练习1:正方体 ABCD A1B1C1D1 的棱长为1.
利用向量解决 空间角问题
求空间角与距离是立体几何的一类重要 的问题,也是高考的热点之一。本节课主要 是讨论怎么样用向量的办法解决空间角问题。
1.若a (a1, a2 , a3),b (b1, b2 , b3),则:
数量积: a b | a | | b | cos a, b
a1b1 a2b2 a3b3
夹角公式:cos a b a b
a1b1 a2b2 a3b3
| a | | b | a12 a22 a32 b12 b22 b32
2.若A(x1, y1, z1), B(x2 , y2 , z2 ),则:
AB (x2 x1, y2 y1, z2 z1)
题型一:线线角
异面直线所成角的范围:
相关文档
最新文档