甘油蒸馏机理的探讨

甘油蒸馏机理的探讨
甘油蒸馏机理的探讨

常减压蒸馏装置的火灾危害与预防措施分析

常减压蒸馏这第一道工序是石油化工产业中至关重要的,通过常减压蒸馏可从原油中直接得到各种燃料,润滑油馏分及裂化原料。但蒸馏过程如遇火灾爆炸危险性、危害性会很大,一旦发生火灾,火势迅速扩大,扑救困难,损失严重。生产中必须十分注意防火安全。 1、简要工艺流程 石油是一个多组分的复杂混合物,根据组分沸点的差别,可用蒸馏方法对其各组分进行分离而得到产品。这种生产过程可分为电脱盐初馏、常压和减压蒸馏三部分,工艺流程如图1。原油经换热至90-120℃,进入电脱盐脱水器,在高压电场作用下,使混悬在原油中的水、盐与原油分层后除去;再进一步换热至220—250℃进入初馏塔分出小于130℃的馏分;初馏塔底的拨顶原油经常压加热炉加热到360-370℃,进入常压分馏塔蒸馏,其各侧线馏出油再进入汽提塔用过热水蒸气进行汽提,以保证侧线馏分油质量;常压塔底重油经减压加热炉加热到410℃进入减压塔进行减压蒸馏,产品作裂化原料及用于燃料等。 2、常减压蒸馏装置的火灾爆炸危险性分析 2.1、原料和产品具有火灾爆炸危险性 石油炼制蒸馏过程中的原料、中间体及产品绝大多数属于火灾危险物品,其中原油和轻质油品易燃、易爆、易蒸发,并有可燃爆的瓦斯气,遇火源即会爆炸。 2.2、电脱盐脱水具有危险 在电脱盐脱水过程中,有高温热油,使用高电压(15kV-35kV)电场的电气装置,如果脱盐脱水罐内未充满原油或存在有空气就启动高压电源;或者高压电器绝缘不良或电场强度超过2kV/cm使绝缘击穿,会导致爆炸火灾。 2.3、容易形成爆炸性气体混合物 蒸馏过程中,由于处于沸腾状态,体系内始终呈现气—液共存状态,若因设备破裂或操作失误,使物料外泄或吸入空气,或由于冷凝、冷却不足,使大量蒸气经贮槽等部位逸出,均可形成爆炸性气体混合物,遇点火源就会发生容器内或外的爆炸燃烧。例如,某炼油厂减压塔在停工检修前,由于消除真空过快,塔内油气很浓,温度很高,空气由放空阀大量吸入,导致爆炸事故,塔内有14层塔板被炸坏脱落。 2.4、容易发生自然而引发自燃。‘ 2.5、蒸馏操作过程复杂危险 蒸馏操作是一种复杂的过程,精馏塔的辅助设备多,如进料泵、加热的再沸器、气相冷凝冷却器、回流管和受液槽以及侧线出料(包括多个侧线出料)、顶出

电力系统次同步振荡.

第8章HVDC引发SSO的机理及抑制 8.1 概述 由HVDC输电系统引起电力系统SSO的原因可以归纳为三种情况: (1)与HVDC的辅助控制器相关; (2)与HVDC系统的不正常运行方式相关; (3)与HVDC系统的电流控制器相关。 第一种情况可以通过改造辅助控制器来消除隐患,第二种情况尽管难以预测,但在实际工程中很少碰到,可以通过规范系统的运行来解决,第三种情况较为常见,可以通过在HVDC 控制器中做些改变加以解决,如加入SSDC。本文重点讨论由HVDC电流控制器引发的SSO 问题。 实际经验表明,次同步振荡基本上只涉及汽轮发电机组,尤其是30万千瓦以上的大容量机组。水轮发电机组转子的惯量比汽轮机要大得多,且水轮机的水轮上具有黏性阻尼,故其转子的固有阻尼很高,不易发生次同步振荡。对于汽轮发电机组,HVDC系统也只有在一系列不利因素同时作用时,才可能产生次同步振荡不稳定。这些不利因素主要包括:(1)汽轮发电机组与直流输电整流站之间的距离很近; (2)该汽轮发电机组与交流大电网的联系很薄弱; (3)该汽轮发电机组的额定功率与HVDC系统输送的额定功率在同一个数量级上。 其中,汽轮发电机组与交流系统大电网之间联系的强弱对其能否发生次同步振荡起着非常重要的作用。常规电力负荷的特性随频率而变化,它们对发电机组次同步振荡有一定的阻尼作用,但当发电机与大电网的联系较弱时,这个阻尼基本上不起作用。此外,若HVDC 系统所输送的功率大部分由附近的汽轮发电机组供应,则功率振荡通常发生在整流站和这些发电机组之间,当HVDC的额定功率与附近发电机组的额定容量相差不大时,振荡情况较严重。 在逆变站附近的汽轮发电机组一般不会发生次同步振荡,因为它们并不向直流输电系统提供有功功率,而只是与逆变站并列运行,向常规负荷供电。HVDC系统中的次同步振荡与HVDC运行工况、控制方式、控制参数、输送功率、直流线路参数,以及发电机同直流输电线的耦合程度等因素有关。 8.2 次同步电气量在交直流侧间的传递关系分析 HVDC换流器具有离散采样和调制的特性,可以用开关函数法对其进行分析。对换流器进行开关函数分析后,可以得到系统的次同步电气量在发电机组转子、交流网络、HVDC 直流侧系统之间的相互传递关系。 当交流侧电压中有频率为ωm的次同步分量时,经过换流器调制作用后在直流电压中将存在显著的频率为(ω0-ωm)的分量,其中ω0为系统的额定频率;反之,当直流电流中存在次同步频率为ωr的纹波分量时,经过换流器调制作用后在交流侧相电流中将存在显著的频率为(ω0±ωr)的分量。 发电机组转子与交流网络的次同步分量是通过定、转子磁场的相对运动产生的。转子上频率为ωs的扰动会在定子侧感应出与ωs互补的次同步(ω0-ωs)分量和超同步(ω0+ωs)分量。对

第三章 蒸馏和吸收塔设备自测

第三章蒸馏和吸收塔设备 一、填空题(40分) 1.板式塔是_ ___接触式气液传质设备;填料塔是____接触式气液传质设备。 2.塔板的主要类型有____、____、____、____等。 3.气体通过塔板的总压降包括____、____和____。 4.塔板上的异常操作现象包括____、____、____。 4.塔板的负荷性能图由五条线构成,它们是____、____、____、____、____,塔板适宜的操作区是____区域,而实际操作时应尽可能将操作点位于适宜操作区的。 5.塔板的操作弹性是指________。 6.填料的几何特性参数主要包括____、____、____等。 7.填料塔内件主要有____、____、____、____。 8.填料操作压降线(D p/Z~u)大致可分为三个区域,即____、____和____。填料塔操作时应控制在____区域。

1.逐级(不连续);微分(连续) 2.筛式板、浮阀板、泡罩塔板、舌型塔板 3.干板压降以及克服板上液层的静压强和液体的表面张力 4.漏液现象、液泛现象、雾沫夹带现象 5.两极限的气相流量之比---- 操作弹性 6.比表面积、空隙率、填料因子 7.填料支撑板、液体分布器、液体再分布器、除沫装置 8.恒持液量区、载液区和液泛区;载液区 二、选择题(30分) 1.气液在塔板上有四种接触状态, 优良的接触状态是(),操作时一般控 制在()。 ①鼓泡接触状态②蜂窝接触状态③ 泡沫接触状态④喷射接触状态 2.板式塔塔板的漏液主要与()有关,液沫夹带主要与()有关,液泛主要与()有关。 ①空塔气速②液体流量③板上液面落差④塔板间距 3.()属于散装填料,()属于规整填料。

常减压蒸馏装置开工方案

常减压蒸馏装置开工方案 装置开工程序包括:物质、技术准备、蒸汽贯通试压,开工水联运、烘炉和引油开工等几部份,蒸汽贯通试压已完成,装置本次检修为小修,水联运、烘炉可以省略,本次开工以开工前的准备,设备检查,改流程,蒸汽暖线,装置引油等几项内容为主。 一、开工前的准备 1、所有操作工熟悉工作流程,经过工艺、设备、仪表以及安全操作等方面知识的培训. 2、所有操作工已经过DCS控制系统的培训,能够熟练操作DCS。 3、编制开工方案和工艺卡片,认真向操作工贯彻,确保开车按规定程序进行。 4、准备好开工过程所需物资。 二、设备检查 设备检查内容包括塔尖、加热炉、冷换设备、机泵、容器、仪表、控制系统、工艺管线的检查,内容如下: (一)塔尖 1、检查人孔螺栓是否把好,法兰、阀门是否把好,垫片是否符合安装要求。 2、检查安全阀、压力表、热电偶、液面计、浮球等仪表是否齐全好用。 3、检查各层框架和平台的检修杂物是否清除干净。 (二)机泵:

1、检查机泵附件、压力表、对轮防护罩是否齐全好用。 2、检查地脚螺栓,进出口阀门、法兰、螺栓是否把紧。 3、盘车是否灵活、电机旋转方向是否正确,电机接地是否良好。 4、机泵冷却水是否畅通无阻。 5、检查润滑油是否按规定加好(油标1/2处)。 6、机泵卫生是否清洁良好。 (三)冷换设备 1、出入口管线上的连接阀门、法兰是否把紧。 2、温度计、压力表、丝堵、低点放空,地脚螺栓是否齐全把紧。 3、冷却水箱是否加满水。 (四)容器(汽油回流罐、水封罐、真空缓冲罐、真空罐、真空放空罐) 1、检查人孔螺栓是否把紧,连接阀门、法兰是否把紧。 2、压力表、液面计、安全阀是否齐全好用。 (五)加热炉 1、检查火嘴、压力表、消防蒸汽、烟道挡板,一、二次风门、看火门、防爆门、热电偶是否齐全好用。 2、检查炉管、吊架、炉墙、火盆是否牢固、完好,炉膛、烟道是否有杂物。 3、用蒸汽贯通火嘴,是否畅通无阻,有无渗漏。 (六)工艺管线 1、工艺管线支架、保温、伴热等是否齐全。

电网次同步振荡对保护装置的影响

电网次同步振荡对保护装置的影响 发表时间:2019-04-01T11:49:09.707Z 来源:《电力设备》2018年第29期作者:谐波[导读] 摘要:伴随着国民经济的迅猛发展和人民生活水平的不断提高,人们对电力供应的依赖程度加深,对电力的需求越来越大。 (囯网新疆电力有限公司哈密供电公司新疆哈密 839000)摘要:伴随着国民经济的迅猛发展和人民生活水平的不断提高,人们对电力供应的依赖程度加深,对电力的需求越来越大。且随着电力系统的不断改革,分布式电网的应用改变了传统配电网模式,推动了配电网的更新与发展,但在一定程度上增加了配电网运行难度。大量电力电子器件的应用会引起电力系统中次同步振荡现象,严重影响了电力系统的运行稳定性。本文简单分析了电力系统次同步振荡现象 及相关的抑制措施。 关键词:电力系统;同步振荡;抑制措施近年来,电网建设规模不断扩张,供电难度和设备负荷随之提高,越来越多的分布式新能源接入配电网。分布式新能源具有环保的优点,应用在电力系统中可以满足社会发展对于电力的需求,有效降低电力运输过程中的损耗,提高供电质量,对我国电力事业的发展有重要的意义。分布能源系统模型高维性、运行方式的不确定性、元件的强非线性、扰动的随机性,使得电力系统稳定现象多变,稳定机理十分复杂,电力系统动态机理与控制越来越困难。此外,由于电网的运行形式不断变化,规模越来越大,大量电力电子设备及系统的应用会使电网呈现不稳定的运行状态,产生低于基波的次同步振荡现象,其安全稳定运行面临严峻挑战。 一、概述电力系统次同步振荡 1基本概念 通过串联电容的形式进行无功补偿可以提高输电线路的输送能力,优化输电线路间的功率分布,并提高电力系统的稳定性,是交流输电系统中广泛采用的方法。但这种方法也可能引发电气系统或汽轮发电机组以小于同步频率的振动频率进行能量交换,称为次同步振荡。在电力系统运行中,针对电网的运行状态,在不同带宽频率下,控制的环节有所不同,如图1所示,在额定频率附近,属于电网同步和电流控制环节,当电力系统受到扰动后,系统平衡点偏移,在这种运行状态下,电网与发电机组之间存在一个或多个低于系统同步频率的频率,在该频率下进行显著能量交换,因而出现次同步谐振现象。 2产生机理 次同步振荡在交流输电系统和直流输电系统中的产生机理不同,在交流输电系统由于有谐振回路的存在所以称为次同步谐振,主要从发电机效应、暂态力矩放大作用和机电扭振相互作用三个角度进行描述和分析。第一,发电机效应,假设发电机转子以常速旋转,由于转子的转速高于由次同步电流分量引起的旋转磁场的转速,在次同步频率下从电枢终端分析,转子电阻呈负值,当这个视在负值电阻超过电枢和电网在次同步频率下的等效电阻的总和时,就会发生电气自振荡,这种自激振荡认为是由过电压和过电流引起的;第二,暂态力矩放大作用,当系统发生干扰时,电磁转矩就会施加于发电机转子上,使发电机轴段承受转矩压力,串联电容补偿输电系统中的干扰,会造成电磁转矩振荡,如果此频率接近于任何转子段的自然振荡频率,会导致转子转矩远远大于无串补系统的三相故障转矩;第三,扭转相互作用,设发电机转子在一个扭转频率fm下发生振荡,fm能导出电枢电压分量频率fem,其表达式为fem=fo+fm,当其中的次同步频率分量接近电气谐振频率fer时,电枢电流产生一个磁场,该磁场能产生使发电机转子振荡加强的转矩,这使次同步电压分量导致的次同步转矩得以维持。 二、分析次同步振荡对保护装置的影响 1电力系统振荡是由于系统和发电机并列运行时失去了同步,不能稳定运行,就形成了电力系统震荡,对保护装置造成影响。从而可能造成电网大面积停电,严重的使系统瓦解。根据发生振荡时电力系统是否稳定,可以分为同步振荡和非同步振荡,同步振荡指系统稳定在有限时间内衰减后达到新的平衡;非同步振荡指不稳定系统产生的振荡导致系统和发电机同步运行受到破坏。现在电网结构和发电机组越来越庞大,还出现了低频振荡和次周期振荡。 2同步振荡异常时,各级保护自动装置动作,会产生海量的报警信息,这些装置动作信息不加选择地涌入监控报警系统,如果同时出现了多种故障并伴随有保护和断路器的拒动、误动时,警报信息在传输中也可能会发生丢失,问题就会变得异常复杂, 三、加强电力系统次同步振荡抑制措施,减少对保护装置的影响 1应用滤波器 第一,应用无源滤波器,该滤波器主要由电感元件、电容元件以及电阻元件组成,这种滤波器一般装设在次同步振荡源的附近交流侧,由L、C元件构成谐振回路,当谐振频率与高次谐波电流频率相匹配时,可以阻止该高次谐波流入电网,其优点是投资较小、维护方便、结构简单等,是同步振荡抑制以及无功补偿的主要措施;第二,应用有源滤波器,有源滤波器产生与振荡波形一致、方向相反的电流,输入需要治理的网络,进而抵消非线性负荷产生的振荡电流,使得电网中仅含基波电流,随着PWM控制技术、全控型半导体器件的成熟和基于瞬时无功理论的检测理论的提出,有源电力滤波器得到了迅速发展。 2提高阻尼 电力系统次同步振荡是一种振荡失稳现象,增加振荡模态的阻尼是一种有效的抑制手段,如采用FACTS装置、SSDC和附加励磁阻尼控制器,均是在此基础上对次同步振荡进行控制和抑制。此外,励磁系统阻尼器针对汽轮发电机的扭转振荡来调制系统的输出。来自转子振荡的信号移相放大之后,通过励磁系统控制增加系统的有效阻尼来抑制次同步振荡。对于电网与发电机组转子之间相互作用产生的次同步振荡现象,除增加阻尼外,还可在电路中附加阻塞滤波器、旁路阻尼滤波器、线路滤波器和动态滤波器等,通过阻断相应的次同步电气量通道也能有效地抑制次同步振荡。 3应用轴系扭振保护装置当次同步振荡对发电机组的运行安全造成巨大影响时,可以应用轴系扭振保护装置,通过事故告警、保护跳闸及采取切除机组的形式抑制次同步振荡。轴系扭振保护装置监测的参数是发电机的轴系转速、轴系的寿命疲劳定值、次同步振荡的幅度。将相关事故机组切除后,电力系统中的负阻尼状况消失,再通过原动机的配合可以使转矩在短时间内减小,从而避免次同步振荡和轴系扭振影响扩大。对于剩余的在线机组,切除机组将改变系统结构和等效串补度,一定程度上能增强在线机组的模态阻尼,有利于抑制次同步振荡。 4应用可控串联补偿装置

化工原理下册第三章 蒸馏和吸收塔设备习题解答

化工原理下册第三章 蒸馏和吸收塔设备习题解答 1.解: 由于设计类题目并不一定有“标准答案”,此处的解仅供参考 (1) 精馏段塔 取板间距0.45T H m =,又知总板效率0.6T E =,则实际塔板数 /6/0.610P T T N N E === 精馏段塔高100.4545T T Z N H =?=?= (2) 塔径 下降液体的平均流量 3 11.8/36000.00328/S L m s == 上升蒸汽的平均流量3 14600/3600 4.05/S V m s == 11 220.00328801.5()()0.0215 4.05 1.13S L S V L V ρρ=?= 取板上液层高度 0.07l h m = 则 0.450.070.38T l H h m -=-= 由以上数据查史密斯关联图,得200.078C = 液体表面张力 20.1/mN m σ=,故C 值不需校正 C =C 20=0.078 极限空塔气速 max 0.078 2.07/m s μ=== 取安全系数为0.7,则空塔气速 0.7 2.07 1.45/m s μ=?= 塔径 1.87D m === 根据塔径标准圆态,取D =2.0m 实际空塔气速 22 4/4 4.05/3.142 1.29/S V D m s μπ==??= (3) 溢流装置 选用单溢流弓形降液管,取溢流延堰长 0.6550.6552 1.31l D m ==?= 则 25211.8 6.03(1.31)n W L l -== 因/0.655W l D =,查取材图3-8知液流收缩系数E =1.02 则堰上液层高度 2 32.8411.81.02()0.013100 1.31ow h m =??= 溢流堰高 0.070.0130.0 w l o w h h h m =-=-= 降液管底隙高度 0.0060.0570.0060.051o w h h m =-=-= 按0.65w l D =,,查取材图(3-10),得 0.122 d w D =,0.07f T A A =

次同步谐振

次同步谐振 定义1:交流输电系统采用串联电容补偿后,其电气系统固有频率可能会与汽轮发电机轴系的自然扭振频率形成谐振关系,此时如系统受到扰动,电气系统与汽轮发电机轴系之间可能会产生的次同步频率功率交换。 定义2:当有串联电容补偿的电力系统受到扰动发生电感电容谐振时,其谐振频率与汽轮发电机组的轴系扭振某一振型的频率之和接近或等于系统的同步频率时发生的谐振。调整直流输电的功率,或有串联补偿装置的电力系统重合闸时也有可能引起次同步谐振(汽轮发电机轴系会与电力系统功率控制设备,如高压直流输电系统,静止无功补偿系统等,发生相互作用,产生的低于同步频率的振荡。)。 次同步谐振(SubSynchrous Resonance SSR)物理概念比较复杂。当高压远距离输电采用串联电容补偿时,电容量C与线路的电感量L组成一个固有谐振频率。 F=1/(2πLC) 此频率一般低于50Hz。发电机定子也出现频率为的三相自激电流,在气隙中产生频率为的旋转磁场。此旋转磁场的转速,低于主磁场的同步转速。气隙中两个磁场同时存在对轴系产生一个交变扭矩,其频率为: ft=f-fs 式中ft——交变扭矩的频率; f——电网频率; fs——串联电容补偿固有频率。 如果轴系的自然扭振频率fv 正好等于交变扭矩频率ft,即fv=ft=f-fs或fv+fs=f,此时,发电机组轴系的自然扭振频率fv 与串联补偿产生的电磁谐振频率fs 相加恰好等于电网频率f0 ,相互“激励”,形成“机一电谐振”。因为fs 低于电网频率,所以叫“次同步谐振”。 1、次同步振荡原理 交流输电系统中采用串联电容补偿是提高线路输送能力、控制并行线路之间的功率分配和增强电力系统暂态稳定性的一种十分经济的方法。但是,串联电容补偿可能会引起电力系统的次同步谐振(SSR,SubsynchronousResonance),进而造成汽轮发电机组的轴系损坏。次同步谐振产生的原因和造成的影响可以从三个不同的侧面来加以描述,即异步发电机效应(IGE,InductionGeneratorEffect)、机电扭振互作用(TI,

蒸馏设备

蒸馏设备 一、蒸馏: 二、蒸馏设备: 一种在高真空条件下进行的分离技术。 特点:蒸馏温度低,体系真空度高,物料受热时间短,分离程度高等特点;且分离过程不可逆,没有沸腾鼓泡现象。 适用范围:适用于于分离高沸点、热敏性和易被氧化的物质,已被广泛应用于医药行业的维生素和中草药有效成分-的提取、石油化工、食品工业、化妆品工业和农业等各行各 三.几种蒸馏设备简介 1.分子蒸馏设备

⑴、普通蒸馏是在沸点温度下进行分离操作:而分子蒸馏只要冷热两个面之间达到足够的温度差.就可以在任何温度下进行分离.因而分子蒸馏操作温度远低于物料的沸点. ⑵、普通蒸馏有鼓泡.沸腾现象:而分子蒸馏是液膜表面的自由蒸发.操作压力很低.一般为0.1-1Pa数量级,受热时间很短.一般仅为十秒至几十秒. ⑶、普通蒸馏的蒸发和冷凝是可逆过程.液相和气相之间处于动态相平衡,而在分子蒸馏过程中.从加热面逸出的分子直接飞射到冷凝面上.理论上没有返回到加热面的可能性.所以分子蒸馏没有不易分离的物质. 2.酒精蒸馏设备 装置原理:本装置适用于制药、食品、轻工、化工等待业的稀酒精回收,也适用于甲醇等其他溶煤的蒸馏。本装置根据用户的要求,可将30%左右的稀酒精蒸馏至90%-95%酒精,成品酒精度数要求再高。可加大回流比,但产量就相应减少。 采用高效的不锈钢波纹填料。蒸馏塔体采用不锈钢制作,从而防止了铁屑堵塞填料的现象,延长了装置的使用期限。本装置中凡接触酒精的设备部分如冷凝器、稳压罐、冷却蛇管等均采用不锈钢,以确保成品酒精不被污染。蒸馏釜采用可拆式U型加热管,在检修时可将U型加热管移出釜外,便于对加热管外壁及蒸馏釜内壁进行清洗。本装置可间歇生产,也可连续生产。 特点:节能,生产强度高,排污性能好,充分考虑塔器的放大效应,结构简单,造价降低。 3.减压蒸馏设备:减压蒸馏装置通常包括三部分 (1)原油预处理。采用加入化学物质和高压电场联合作用下的电化学法除去原油中混杂的水和盐类。

(完整word版)车间设备布置设计

5.车间设备布置设计 5.1车间设备布置的原则 5.1.1车间设备布置的原则 1 从经济和压降观点出发,设备布置应顺从工艺流程,但若与安全、维修和施工有矛盾时,允许有所调整。 2 根据地形、主导风向等条件进行设备布置,有效的利用车间建筑面积(包括空间)和土地(尽量采用露天布置及建筑物能合并者尽量合并)。 3 明火设备必须布置在处理可燃液体或气体设备的全年最小频率风向的下侧,并集中布置在装置(车间)边缘。 4控制室和配电室应布置在生产区域的中心部位,并在危险区外。 5 充分考虑本装置(车间)与其他部门在总平面布置图上的位置,力求紧凑、联系方便,缩短输送管线,达到节省管材费用及运行费用的目的。 6 留有发展的余地 7 所采取的劳动保护、防火要求、防腐蚀措施要符合有关标准、规范的要求。 8 有毒、有腐蚀性介质的设备应分别集中布置,并设围堰,以便集中处理。 9 设备安全通道、人流、物流方向应错开。 10 设备布置应整齐,尽量使主要管道走向一致[13]。 5.1.2 车间设备平面布置的原则 车间平面布置首先必须适合全厂总平面布置的要求,应尽可能使个车间的平面布置在总体上达到协调、整齐、紧凑、美观,相互融合,浑成一体。其次,必须从生产需要出发,最大限度的满足生产包括设备维修的要求。即要符合流程、满足生产、便于管理、便于运输、利于设备安装和维修。第三,生产要安全。即要全面妥善的解决防火、防爆、防毒、防腐、卫生等方面的问题,符合国家的各项有关规定。第四,要考虑将来扩建及增建的余地,为今后生产发展、品种改革、技术改造提供方便。但这些一定要最有效的利用车间的建筑面积(包括空间)和土地(设备装置能露天布置的尽量露天布置,建筑物能合并的应尽量合并)。5.1.3 车间设立面布置的原则 厂房的立面形式有单层、多层和单层与多层相结合的形式。多层厂房占地少但造价高,而单层厂房占地多但造价低。采用单层还是多层主要应根据工艺生产的需要。例如制碱车间的碳化塔,根据工艺要求须放在厂房内,但塔有比较高,

常减压蒸馏装置的操作

常减压蒸馏装置的操作 主讲人:王立芬 一、操作原则 ●根据原料性质,选择适宜操作条件,实现最优化操作。 ●严格遵守操作规程,认真执行工艺卡片,搞好平稳操作。 ●严格控制各塔、罐液面、界面30~70%。 ●严格控制塔顶及各部温度、压力,平稳操作 ●根据原油种类、进料量、进料温度调整各段回流比,在提高产品质量的同时提高轻质油 收率和热量回收率。 二、岗位分工 ●负责原油进料、电脱盐罐、初馏塔液面、常顶回流罐、初顶回流罐液面界面、常一线、 常二线、常三线汽提塔液面以及常一中、常二中蒸发器液面调节,和本岗位计量仪表的数据计量工作。 ●调节各回流量及各部温度、流量,保证产品合格。 ●负责空冷风机的开停操作。 ●负责低压瓦斯罐及低压瓦斯去减压炉操作。 ●负责本岗位塔、容器、换热器、冷却器及所属工艺管线、阀门、仪表等设备的正确操作、 维护保养、事故处理。 ●负责与中心化验室的联系工作,及时记录各种分析数据。 ●负责本岗位消防设施管理。 ●负责本岗安全生产工作,生产设备出现问题要及时向班长汇报,并迅速处理。 ●.负责本岗位所属工艺管线、阀门等防凝防冻工作。 ●如果班长不在,常压一操执行班长的生产指挥职能或由车间指派。 ●负责仪表封油、循环水、风、9公斤蒸汽等系统的调节。 1 正常操作法 初馏塔底液面调节 控制目标:50% 控制范围:±20% 控制方式:正常操作时,初馏塔底液面LIC-105与原油控制阀FIC-102进行 串级控制,当LIC-105低于设定时,FIC-102开大,当LIC-105 高于设定时,FIC-102关小,从而实现初馏塔底液面的控制。

2 初馏塔塔顶压力调节 控制目标:≤0.08MPa 控制方式:正常操作时,初馏塔塔压通过塔顶风机运转数量调节,压力升高, 增加风机的运转数量,压力下降,减少风机运转的数量,从而实现 初馏塔塔压的控制。 异常处理 3 初馏塔塔顶温度调节 控制目标:≤125℃ 控制范围:视加工原油情况和产品质量控制调节,上下波动不超过10% 控制方式:正常操作时,初馏塔塔顶温度TIC-107与塔顶回流控制阀FIC- 103进行串级控制,当TIC-107低于设定时,FIC-103开大,当 TIC-107高于设定时,FIC-103关小,从而实现初馏塔塔顶温度 的控制。

下册 第3章 蒸馏和吸收塔设备

下册 第3章 蒸馏和吸收塔设备 B3-1评价气液传质设备性能的主要指标是 、 、 、 和 。 B3-2按结构塔设备分为 和 。按气液接触方式分为 和 填料塔是 接触式气液传质设备,塔内 为连续相, 为分散相。错流板式塔是 接触式气液传质设备,塔内 为连续相, 为分散相。 B3-3工业上应用最广泛的板式塔类型有 、 、 和 。 B3-4板式塔操作中可能出现的非理想流动有 、 、 和 。 B3-5板式塔设计中,加大板间距的优点是 和 ,其缺点是 。 B3-6板式塔流体力学验算的项目为 、 、 、 和 。 B3-7板式塔的负荷性能图由 、 、 、 和 五条曲线包围的区域构成。 B3-8负荷性能图的作用是 、 和 。 B3-9 评价填料性能优劣的主要参数是 、 和 。 B3-10在填料塔的-u 曲线图上,有 /P Z Δ和 两个折点,该两个折点将曲线分为三个区,它们分别是 、 、 ;塔的操作应在 。 B3-1 填料塔设计时,空塔气速一般取泛点气速的 。 B3-12 填料层高度的计算可采用 和 。 B3-13下面三类塔板相比较,操作弹性最大的是 ,单板压降最小的是 ,造价最低的是 。 A .板式塔 B .浮阀塔 C .泡罩塔 B3-14 在板式塔设计中,加大板间距,负荷性能图中有关曲线变化的趋势是:液泛线 ,雾沫夹带线 ,漏液线 。 A .下移 B .不变 C .上移 D .不确定 B3-15填料因子φ值减小,填料板的液泛气速 ,流动阻力 。 A .增大 B .不变 C .不确定 D .减小

B3-16下面参数中,属于板式塔结构参数的是和;属于操作参数的是和。 A.板间距B.孔数C.孔速D.板上清液层高度

次同步振荡机理分析

次同步振荡机理分析 1、次同步振荡原理 交流输电系统中采用串联电容补偿是提高线路输送能力、控制并行线路之间的功率分配和增强电力系统暂态稳定性的一种十分经济的方法。但是,串联电容补偿可能会引起电力系统的次同步谐振(SSR,SubsynchronousResonance),进而造成汽轮发电机组的轴系损坏。次同步谐振产生的原因和造成的影响可以从三个不同的侧面来加以描述,即异步发电机效应(IGE,InductionGeneratorEffect)、机电扭振互作用(TI,TorsionalInteraction)和暂态力矩放大作用(TA,TorqueAmplification)。对次同步谐振问题,主要关心的是由扭转应力而造成的轴系损坏。轴系损坏可以由长时间的低幅值扭振积累所致,也可由短时间的高幅值扭振所致。 由直流输电引起的汽轮发电机组的轴系扭振与由串联电容补偿引起的汽轮发电机组的轴系扭振在机理上是不一样的,因为前者并不存在谐振回路,故不再称为次同步谐振(SSR),而称为次同步振荡(SSO,SubsynchronousOscillation),使含意更为广泛。 2、次同步振荡种类 由直流输电引起的次同步振荡具有定电流(定功率)控制的直流输电系统所输送的功率是与网络频率无关的,因此直流输电系统对汽轮发电机组的频率振荡不起阻尼作用,对汽轮发电机组的次同步振荡也不起阻尼作用。但这本身不足以构成次同步振荡不稳定。 产生不稳定的因素只有在一系列不利因素同时作用时,才可能产生次同步振荡不稳定。这些不利因素包括: 汽轮发电机组与直流输电整流站距离很近; 该汽轮发电机组与交流大电网联系薄弱; 该汽轮发电机组的额定功率与直流输电输送的额定功率在同一个数量级上。 汽轮发电机组与交流大电网之间联系的强弱(可以用联络线的阻抗来表达)起着非常重要的作用。常规的电力负荷具有随频率而变化的特性,它们对汽轮发电机组的次同步振荡起阻尼作用。但是,当汽轮发电机组与交流大电网弱联

常减压蒸馏装置的主要问题和应对措施

中国常减压蒸馏装置的主要问题和应对措施 凌逸群 中石化公司炼化部门,北京100029 1 引言 虽然在过去的几十年里,中国的直流催化裂化技术已取得了突飞猛进的成就,将来加氢处理,加氢裂化,加氢精制,催化重整技术也将随着环境规则的越来越严格,汽油、柴油燃料标准的越来越精确而经历飞速的发展。尽管如此,常减压蒸馏装置作为原油加工的第一道工序有着非常大的处理能力,它影响着炼油厂的工艺流程,对经济效益也有着重要影响。最近几年,随着实用技术和高效设备的发展及应用,关于常减压塔操作的问题引起了高度重视。 2 生产和操作上的主要问题 到2001年底,中石化拥有的48套常减压蒸馏装置,其总设计处理量为139百万吨,包括一个8百万的装置,六个5百万吨的装置,14个3-4百万吨的装置和一些处理量少于3百万吨的装置。47套蒸馏装置是在2001年开始运行的并以平均72.7%的负荷率加工了总共104.42百万吨的原油。目前,在蒸馏装置的操作上存在四个主要问题。 2.1 总能量消耗量较高 总能量消耗量是常减压蒸馏装置的一个重要的经济技术困难。2001年中石化的蒸馏装置的总能量消耗量是11.85千克SOE/吨(包括荒废的减压蒸馏装置的能量消耗),变化范围在10.47到16.41千克/吨,与国外先进装置的能量消耗水平相比,中国总的能量消耗量更高些,这种现象的原因归咎于以下几个方面。

2.1.1 小型装置检修率低 国外独立蒸馏装置的处理量一般在5百万吨/年到1千万吨/年,这些装置的维修率超过85%,在2001年,中石化的独立蒸馏装置的平均处理能力在290万吨/年,其平均负荷率为72.7%,导致了更高的原料和能量消耗。 2.1.2 加热炉燃料消耗量高 常减压蒸馏装置中加热炉的燃料消耗量占蒸馏装置总燃料消耗量的70% 以上。加热炉的燃料消耗量过高是造成常减压蒸馏装置总消耗量高的主要原因。 在生产和操作方面的两个主要问题会导致加热炉燃料消耗量高,蒸馏装置的总能量消耗量也高。 (1)加热炉热效率低 以54个加热热效率的平均比重来说,中石化的24个常减压装置的热效率为88.1%,然而实际上,热效率才达到85.2%,比近期少了3个百分点,总体上说,国外加热炉的热效率超过90%,最多的可达到94%。加热炉热效率低的主要原因是: ●烟道气的温度过高 导致烟道气温度过高的主要原因是:炉管上的灰沉积,盐沉积和污垢,空气的余热效率低,热回收系统的设计参数不恰当。 ●烟道气中的氧含量高 空气流速按需要调整的不精确和空气漏进加热炉都会导致烟道气中氧含量过高。 ●辐射管和对流管表面灰沉积严重

“电力系统低频振荡与次同步振荡”专题

2017年3月电工技术学报Vol.32 No. 6 第32卷第6期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Mar. 2017 “电力系统低频振荡与次同步振荡”专题 特约主编寄语 低频振荡与次同步振荡是电力系统的经典问题之一,随着同步电网规模的扩大、固定串联电容补偿输电技术和柔性交流输电技术的大范围应用以及大规模新能源接入电网,目前低频振荡与次同步振荡问题仍然是迫切需要解决的重大工程问题,而且这两方面的问题又呈现出新的特征。 总体上看,对于低频振荡与次同步振荡问题,不管是在理论上还是在工程实践上,都还没有完全解决。主要表现在四个方面:①物理机理上的挑战;②分析方法上的挑战;③实时监测上的挑战;④阻尼控制上的挑战。 物理机理上的挑战:电力系统将包含越来越多的采用电力电子换流器接口的新能源电源,加上早已存在的直流输电和柔性交流输电装置,使得电力系统除了传统的电磁元件外还包含了相当数量的电力电子装置。传统上,低频振荡问题特指同步电网中同步发电机转子的功角小扰动稳定问题,它与电力系统小扰动稳定问题不是完全对等的。电力系统小扰动稳定问题考虑的状态变量包括系统中所有动态元件的状态变量,而低频振荡问题考虑的状态变量仅仅包括系统中所有同步发电机转子的功角和转速。低频振荡问题分为局部振荡问题和区域间振荡问题,一般关注的是区域间振荡问题。次同步振荡主要关注的是大型同步发电机组的轴系扭振问题,且次同步振荡问题主要局限于单个电厂。而在大量新能源电源接入后,低频振荡和次同步振荡问题的定义开始存在歧义。电力电子装置实际上可以存在很宽频率范围的电压和电流量,包括次同步频段和高次谐波频段。由于电力电子装置控制器设计不合理以及多电力电子装置的相互作用,可能引起频率范围很宽的电压和电流振荡,其中落在低频振荡和次同步振荡的频率范围也是完全可能的。包含大量新能源电源的电力系统其电源构成包括同步发电机电源、异步发电机电源和换流器电源等,经典的功角稳定理论只关注同步发电机电源之间的功角稳定,且认为同步发电机电源之间的功角稳定是电力系统能够稳定运行的必要条件。那么,对于包含大量新能源电源的电力系统,经典的功角稳定理论是否仍然成立呢?显然,同步发电机电源之间的功角稳定仍然是此类电力系统能够稳定运行的必要条件。然而,如何考虑非同步机电源对同步机功角稳定的影响呢?非同步机电源在低频振荡分析中应采用什么样的模型呢?非同步机电源的局部振荡会导致系统功角失稳吗?若整个系统不包含同步机电源,还有低频振荡问题吗?对于包含同步机电源和非同步机电源的电力系统,通过建立统一的小扰动状态空间模型进行小扰动稳定性分析,能得到有用的信息吗? 分析方法上的挑战:经典的小扰动分析方法可以分为两类,一类是特征值分析法,另一类是模态辨识法。特征值分析法发展较早,需要建立整个系统的状态空间模型。特征值计算的方法主要为两类,一类是求系统全部特征值的方法,另一类是求系统部分特征值的方法。求全部特征值方法的主要代表是QR法,其局限性是不能计算特大型矩阵的特征值,通常要求矩阵阶数小于1 000阶。求系统部分特征值的方法有多种,其中基于Krylov子空间投影的Arnoldi法比较受青睐。Arnoldi法可以计算特大型矩阵的部分特征值,但也存在遗漏指定区域特征值的可能。模态辨识法基于物理量的时域波形辨识系统的振荡模态信息,近二三十年来得到了快速发展和广泛应用,其

蒸馏和吸收塔设备试题

第3章蒸馏和吸收塔设备 一、选择题 1.下述说法中错误的是()。 A、板式塔内气液逐级接触,填料塔内气液连续接触 B、精馏用板式塔,吸收用填料塔 C、精馏既可以用板式塔,又可以用填料塔 D、吸收不可以用板式塔,但可以用填料塔 2.在精馏塔的设计中,设计思想是:在全塔汽液两相总体呈()接触,而在每一块塔板上汽液 两相以()方式接触。 A、逆流 B、并流 C、错流 D、不确定 3.溢流液泛是由于()造成的。 A、降液管通过能力太小 B、液流分布不均匀 C、塔板上严重漏液 D、液相在塔板间返混 4.下列属于错流塔板的有()。 A、喷射塔板 B、浮阀塔板 C、舌形塔板 D、浮舌塔板 5.下面三类塔板相比较,操作弹性最大的是(),单板压降最小的是(),造价最低的是 ()。 A、筛板塔 B、浮阀塔 C、泡罩塔 6.在板式塔设计中,加大板间距,负荷性能图中有关曲线的变化趋势是:液泛线(),液沫夹带 线(),漏液线()。 A、上移 B、不变 C、下移 D、不确定 二、填空题 7.填料的种类很多,大致可分为实体填料和网体填料两大类,请写出三种常见的填料的名称 ___________、___________、_______________。 8.填料塔的塔径与填料直径之比不能太小,一般认为比值至少要等于_______。填料塔适宜的空塔气速 一般可取_______气速的50%~80%。 9.筛板塔两相接触的传质面积为。若处理的液体量很大或塔径很大时,一般采用,以 达到的目的。 10.板式塔与填料塔比较:精馏操作中,对易起泡体系应选用塔更适合;对热敏性物系,精馏塔 此时应选用塔更适合。 11.填料塔的持液量增加,则压降,动力消耗,汽液允许流速度。 12.写出三种常见填料的名称 _______、____________、________ 。 13.写出三种常用板式塔的名称、、。 14.在浮阀塔的负荷性能图中,塔的适宜操作范围通常是由下列5条边界线圈定的;雾沫夹带线:液泛线: _____________、_____________、____________。 15.塔板负荷性能图由、、 、、线所组成。 16.板式塔的全塔效率是指与之比。 17.实体填料的类型有(写出三种) 18.板式塔的三种不正常操作现象是、和。 19.板式塔的单板效率是指气相(或液相)与 之比。 20.生产中常用的三种塔板型式是。 21.板式塔的设计原则是:总体上______________________________________ ,在每层塔板上

炼油厂常减压蒸馏装置危险有害因素分析

炼油厂常减压蒸馏装置危险有害因素分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

常减压蒸馏装置 (1)装置中存在的主要危险有害因素 装置中存在的主要危险有害因素是火灾、爆炸和中毒;此外,装置中还存在噪声、烫伤等危险有害因素。主要危险化学品分布见下表 装置主要危险化学品及危险有害因素分布

(2)火灾爆炸危险有害分析 1)电脱盐罐 装置设有电脱盐罐,其目的主要是除去原油中的盐和水。常会出现的危险因素有: 脱盐脱水如达不到设计要求,含盐含水过高,会影响初馏塔的平稳操作,加重设备、管线的腐蚀。原油带水进入初馏塔,造成塔安全阀起跳,热油喷落在高温管线上发生火灾事故。 罐中油水界面太低,易造成脱水带油;界面过高,易造成电气负荷增大,跳闸,严重时会造成电极棒击穿和漏油火灾。 罐内操作压力过高,造成安全阀起跳发生大量跑油,甚至发生重大火灾事故。某炼油厂由于安全阀起跳,大量热油排入污水系统,油气挥发,遇明火引发一场严重的火灾事故,损失严重。 2)塔区 初馏塔、常压塔、减压塔和稳定塔顶回流罐油水界面过低,会造成脱水时带油;界面过高,会造成回流带水,造成冲塔事故,严重时会造成安全阀跳起。油液面过低会使回流中断,打乱操作,油液面过高或满罐,塔顶压力急剧上升,造成塔超压。 塔区介质温度有的在自燃点以上,一旦泄漏会自燃着火。轻质油和瓦斯泄漏扩散遇火源会闪爆起火。要防止蒸汽线串油,出现油中带水。某炼油厂常压三线汽提塔因水进塔突沸,造成塔内爆炸着火,停产17天。

3)加热炉 加热炉为多路进料,偏流是主要危险。某炼油厂因50%负荷操作,造成一路偏流结焦堵塞炉管事故。 常压炉出口转油线因高温油气冲刷,含硫物质腐蚀,导致减薄、穿孔,热油喷出会引起火灾事故。 加热炉点火时,操作不当有可能发生回火伤人事故,冬季瓦斯带液会引发炉膛火灾。 燃料气瓦斯罐系统阀门法兰泄漏气体易引起爆炸事故,瓦斯罐凝液排地漏也易发生火灾爆炸事故。 4)换热区 换热区的换热器在框架上分层布置,由于介质温度大都大于自燃点,在高温热应力作用或硫化物的腐蚀下,会发生泄漏,引发火灾爆炸事故。某炼油厂常压装置减压渣油与拔头原油换热器的渣油出口管,因严重减薄而破裂,管内370℃的渣油喷出自燃起火,大火持续燃烧40分钟,停产10多个小时。 5)泵和管带 机泵输送高温热油时,若端面密封呲开,或泵出入口阀门、放空泄漏,热油将会自燃起火。 在维修热油泵时,若事前处理不当或维修人员未检查处理就拆泵,会发生热油泄漏,发生火灾事故。某炼油厂在修蜡油泵时,因阀关不严,采用冷水喷淋、使管线内油凝固,不料在拆泵时热油喷出自燃起火,烧伤2人。 常压塔顶油气挥发线,空冷器的气、液相变等部位易发生腐蚀穿孔和减薄的的爆裂事故。

第八章 蒸馏和吸收塔设备自测

第六章 蒸馏和吸收塔设备(二) 一、填空题(40分) 1.板式塔是____接触式气液传质设备,操作时为____连续相;填料塔是____接触式气液传质设备,操作时为____连续相。 2.塔板的主要类型有____、____、____、____等。 3.气体通过塔板的总压降包括____、____和____。 4.塔板上的异常操作现象包括____、____、____。 4. 塔板的负荷性能图由五条线构成,它们是____、____、____、____、____,塔板适宜的操作区是____区域,而实际操作时应尽可能将操作点位于适宜操作区的。 5.塔板的操作弹性是指________。 6.填料的几何特性参数主要包括____、____、____等。 7.通常根据____、____及____ 三要素衡量填料性能的优劣。 8.填料因子是指____________。 9.填料塔内件主要有____、____、____、____。 10.填料操作压降线(Dp/Z~u)大致可分为三个区域,即____、____和____。填料塔操作时应控制在____区域。 二、选择题(30分) 1.气液在塔板上有四种接触状态,优良的接触状态是(),操作时一般控制在()。 ①鼓泡接触状态②蜂窝接触状态③泡沫接触状态④喷射接触状态 2.板式塔塔板的漏液主要与()有关,液沫夹带主要与()有关,液泛主要与()有关。 ①空塔气速②液体流量③板上液面落差④塔板间距 3.()属于散装填料,()属于规整填料。 ①格栅填料②波纹填料 ③矩鞍填料 ④鲍尔环填料 ⑤脉冲填料 ⑥弧鞍填料 4.填料的静持液量与()有关,动持液量与()有关。

GMP车间设计

GMP车间设计 GMP ——Good Manufacturing Practices for Drug " :指从负责指导药品生产质量控制的人员和生产操作者的素质,到生产厂房,设施,建筑,设备,仓储,生产过程,质量管理,工艺卫生,包装材料与标签,直至成品的贮存与销售 的一整套保证药品质量的管理体系. GMP的基本点是为了要保证药品质量,必须做到防止生产中药品的混批,混杂污染和交叉污染,以确保药品的 质量. GMP基本内容涉及到人员,厂房,设备,卫生条件,起始原料,生产操作,包装和贴签,质量控制系统,自我检查,销售记表,用户意见和不良反应报告等方面.在硬件方面要有符合要求的环境,厂房,设备;在软件方面要有可靠的生 产工艺,严格的管理制度,完善的验证系统. 1 、车间GMP设计 车间设计任务中的车间布置设计是关键,要求以工艺为主导,并在其他专业如总图,土建,设备,安装,电力,暖风, 外管等密切配合下完成车间工艺布置: (1)生产区应有足够的平面和空间,要有足够的地方合理安放设备和材料,防止不同药品的中间体之间发生混 杂,防止由其他药品或其他物质带来的交叉污染. ①存放待检原料,半成品的面积;②中间体化验室面积;③设备清洗面积;④清洁工具间面积; ⑤原辅料的加工,处理面积; ⑥存放待处理的不合格时原材料,半成品的面积,以免错误投产. (2)有相应措施来保证不同操作不在同一区域同时进行; (3)相互联系的洁净级别不同的房间之间要有防污染措施; (4)在布置上要有与洁净级别相适应的净化设施与房间; (5)原辅料,半成品和成品以及包装材料的存贮区域应明显,待验品,合格品和不合格品应有足够区域存放并严 格分开,存放区与生产区的距离要尽量缩短; (6)全车间的人流,物流应简单,合理,避免人流,物流混杂; (7)不同生产工序的生产区最好按工序先后次序合理连接; (8)应有足够宽的过道,结合处注以标志以防混药; (9)应有无菌服装(特别是生产或分装青霉素类药物) 的洗涤,干燥室,并符合相应的空气洁净度要求; (10)应有设备及容器具洗涤区. 在满足工艺条件的前提下,有洁净级别要求的房间按下列要求布置: ①洁净级别高的洁净室(区)宜布置在人员最少到达的地方,并宜靠近空调机房; ②不同洁净度等级的洁净室(区)宜按洁净度等级的高低由里及外布置; ③空气洁净度等级相同的洁净室(区)宜相对集中; ④不同空气洁净度等级房间之间人员及物料的出入应有防止污染措施,如设置更衣间,缓冲间,传递窗等; ⑤洁净室(区)的净化空气如何循环使用,应采取有效措施避免污染和交叉污染. 洁净室(区)内安装的水池,地漏不得对药品产生污染;100级洁净室(区)内不得设置地漏,操作人员不应裸手操作,当不可避免时,手部应及时消毒;10000级洁净室(区)使用的传输设备不得穿越较低级别区域;100 000级以上区域的洁净工作服应在洁净室(区)内洗涤,干燥,整理,必要时应按要求灭菌. 质量部门的设计要求: ①检验室,中药标本室,留样观察室以及其他各类实验室应与药品生产区分开; ②生物检定室,微生物检定室,放射性同位素检定室应分别设置; ③有特殊要求的仪器应设专门仪器室; ④对精密仪器室,需恒温的样品留样室需设置恒温恒湿装置. 2、原料药生产车间GMP设计

相关文档
最新文档