数列求和说课稿

合集下载

《数列求和》优质课比赛说课教案及教学设计

《数列求和》优质课比赛说课教案及教学设计

数列求和教学设计一、学情分析和教法设计:1、学情分析:学生在前一阶段的复习,已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法,也学会了由数列的递推公式求数列的通项公式。

本节课作为一节复习课,将会根据不同的通项公式求出数列的和,并能运用通项分裂成差的两项进行相加抵消的方法求和,也用构造同类项利用错位相减法求差比数列的和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。

2、教法设计:本节课设计的指导思想是:引导学生进行探索、讨论,分析、启发、总结。

先引出相应的知识点,然后分析解决的问题,在例题及变式中巩固相应方法,再从讨论中对求和方法的理解,更好地锻炼学生探索和解决问题的能力。

在教学过程中采取如下方法:先提出问题再让学生回答,调动学生的主动性和积极性,发挥其创造性;有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性;可以及时巩固所学内容,抓住重点,突破难点。

因此本节课采用学生主讲、教师点评的授课方式,既能充分发挥学生主观能动性,又能充分暴露学生认知过程中的错误,获取理想的教学效果.二、教学设计:1、教材的地位与作用:数列求和是数列的重要内容,是研究数列的一种方法。

对数列的内容的考查是近几年高考的热点内容之一,属于高考命题中常考常新的内容;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。

2、教学目标:研究近几年的高考试卷,发现数列与不等式,三角函数,向量等知识的综合应用往往出现在高考中的最后两题,成为学生的丢分题,从而加强数列综合应用的教学显得尤为重要.根据学生的认知水平和数列求和在新课程理念的要求,确定教学目标如下:◆知识目标:①复习等差和等比数列的前n项和公式、回忆公式推导过程所用倒序想加和错位相减的思想方法,及用数列求和公式求和时,应弄清基本量中各基本量的值,特别是用等比数列求和公式求和时,应关注公比q是否为1;②记住一些常见结论便于用公式法对数列求和;③学会分析通项的结构并且对通项进行分拆;能运用拆并项求和思想方法解决非特殊数列求和问题。

初中数列求和计算教案

初中数列求和计算教案

初中数列求和计算教案教学目标:1. 理解数列求和的概念及意义;2. 掌握等差数列和等比数列的求和公式;3. 能够运用数列求和公式解决实际问题。

教学重点:1. 数列求和的概念及意义;2. 等差数列和等比数列的求和公式。

教学难点:1. 数列求和公式的运用;2. 解决实际问题。

教学准备:1. 数列求和的相关知识;2. 教学课件或黑板。

教学过程:一、导入(5分钟)1. 引导学生回顾数列的概念,复习等差数列和等比数列的定义;2. 提问:我们已经学习了数列的概念,那么数列的和有什么意义呢?二、新课讲解(15分钟)1. 讲解数列求和的概念,即数列中所有项的和;2. 介绍等差数列求和公式:S = n/2 * (a1 + an),其中S为数列的和,n为项数,a1为首项,an为末项;3. 介绍等比数列求和公式:S = a1 * (1 - q^n) / (1 - q),其中S为数列的和,a1为首项,q为公比,n为项数;4. 通过例题讲解求和公式的运用。

三、课堂练习(15分钟)1. 布置练习题,让学生运用求和公式计算;2. 引导学生独立思考,解答问题;3. 挑选学生回答问题,并给予评价和指导。

四、拓展应用(15分钟)1. 引导学生思考实际问题,如计算一组连续自然数的和;2. 让学生运用求和公式解决实际问题,并解释结果的意义;3. 引导学生总结数列求和在实际生活中的应用。

五、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结数列求和的概念和意义;2. 强调数列求和公式的运用和实际应用。

教学反思:本节课通过讲解数列求和的概念和公式,让学生掌握等差数列和等比数列的求和方法,并在实际问题中运用。

在教学过程中,要注意引导学生独立思考,培养学生的解题能力。

同时,通过拓展应用环节,让学生感受数列求和在实际生活中的意义,提高学生的学习兴趣。

《等差数列求和》说课稿

《等差数列求和》说课稿

《等差数列求和》说课稿一、教材分析:本节课教学内容是高中课程标准实验教科书必修5(北师大版)中第二章的第二节内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法二、学情分析在本节课之前学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生已有了函数知识,因此在教学中可适当渗透函数思想.高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍.三、教学目标:1.知识与技能(1)掌握等差数列前n项和公式; (2)掌握等差数列前n项和公式的推导过程; (3)会简单运用等差数列的前n项和公式。

2.过程与方法(1) 通过对等差数列前n项和公式的推导过程,渗透倒序相加求和的数学方法;(2) 通过公式的运用体会方程的思想;(3) 通过运用公式的过程,提高学生类比化归、数形结合的能力。

3.情感、态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激四、重点、难点:1、教学重点等差数列的前项和公式及应用2、教学难点从二次函数的角度理解等差数列的前n项和公式五、教法学法本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的不同思路,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点。

六、教学过程1、创设情景,激发兴趣,引入新课由学生阅读教材(P15高斯的例子)1+2+3+……+100=?通过创设情景引入问题,从一节课的开头就引起学生的兴趣,使学生初步理解倒序相加法求和的基本原理. 使学生感受到利用公式求等差数列的前n 项和得便利. 同时使学生初步熟悉公式的应用.2、归纳抽象,形成概念 教师适时提出问题:根据2)(1n n a a n S += , d n n na S n 2)1(1++= 从方程的角度看,以上式子各有几个未知量?若要把其中某个未知量求出,需要知道几个量。

说课等比数列求和说课稿

说课等比数列求和说课稿

等比数列的前n项和(第一课时)各位评委老师,大家下午好!今天我说课的内容是《等比数列的前n项和》第一课时。

《等比数列前n项和》是人教A版必修5第二章数列中第五节的内容。

下面,我将从教材分析、教法分析、教学目标、教学过程及板书设计这5个方面进行说课。

一、教材分析(一)教材分析首先,对本节教材内容的分析,我分为三个角度:1.教材的课程设置本节内容是等差、等比数列内容的延续;同时也为以后学习数列求和提供了基本方法。

2.知识的应用价值《等比数列的前n项和》是从实际问题中抽离出来的数学模型。

在人们的日常生活有着广泛的应用,例如储蓄、分期付款等问题.在教会学生基础知识的同时,还要挖掘出只是背后的思想方法。

3.数学思想方法渗透通过本节内容的学习,可以向学生渗透数列求和的一个重要方法——错位相减法;还可以帮助学生理解由特殊到一般、类比与转化、分类讨论等数学思想.(二)课时安排《等比数列的前n项和》可安排两课时。

第一课时重在前n项和公式的推导和灵活运用;第二课时重在通过课后习题总结出前n项和的相关性质。

二、教法分析在确定具体的教学方法之前,先分析学情。

(一)学情分析等差、等比数列的定义和通项公式,等差数列的前n项和公式是学生已经具备的知识基础。

通过前面的学习,学生已经具体研究了等差数列前n项和公式的推导方法,具备了一定的探究能力。

在此基础上,学生会产生思考,有想探究等比数列前n项和公式的想法,但是学生从“倒序相加”到“错位相减”的思维定势不易突破,而且学生的逻辑思维仍不够严谨。

(二)教学方法及具体措施基于本节课是公式推导课,应着重采用类比探究式教学方法。

在教学中以学生的分组讨论和自主探究为主,辅之以启发性的问题引导点拨,充分体现“学生为主,教师为辅”的思想。

同时,利用多媒体课件教学能增强课堂的的直观性和趣味性,还可提高课堂教学的效率。

在对教材和学情分析之后,制定了如下教学目标:三、教学目标知识目标:理解并掌握等比数列前n项和公式的推导方法,在熟悉求和公式特点的基础上,能合理选择并灵活运用公式。

数列求和免费教案

数列求和免费教案

数列求和免费教案教案标题:数列求和免费教案教学目标:1. 学生能够理解数列的概念和性质。

2. 学生能够应用递推公式求解数列的前n项和。

3. 学生能够解决实际问题中与数列求和相关的计算。

教学准备:1. 教师准备白板、黑板笔、教学投影仪等教学工具。

2. 学生准备纸和笔。

教学过程:步骤一:导入(5分钟)教师通过提问引导学生回顾数列的概念,并与学生一起讨论数列的应用领域,如金融、物理等。

步骤二:概念讲解(10分钟)教师通过示例和图示解释数列的递推公式和通项公式,并与学生一起探讨数列的性质,如等差数列和等比数列的特点。

步骤三:数列求和方法介绍(10分钟)教师向学生介绍数列求和的常用方法,包括等差数列求和公式和等比数列求和公式,并通过实例演示求解数列的前n项和。

步骤四:练习与讨论(15分钟)教师提供一些练习题,要求学生独立解答,并在解答完成后进行讨论和答疑。

教师可以选择一些实际问题,让学生应用数列求和的方法解决问题。

步骤五:拓展应用(10分钟)教师引导学生思考更复杂的数列求和问题,如求解部分项和、求解无穷级数等,并与学生一起探讨解决方法。

步骤六:总结与归纳(5分钟)教师与学生一起总结数列求和的方法和应用,并提醒学生在实际问题中灵活运用数列求和的知识。

步骤七:作业布置(5分钟)教师布置相关的作业,要求学生练习数列求和的应用,并在下节课前完成。

教学延伸:1. 学生可以通过编写程序来计算数列的前n项和,进一步巩固数列求和的概念和方法。

2. 学生可以研究更复杂的数列求和问题,如级数求和、递归数列求和等,拓展数列求和的应用领域。

教学评估:1. 教师通过课堂练习和讨论,观察学生对数列求和的理解和应用能力。

2. 教师可以布置作业来评估学生的数列求和能力,并及时给予反馈。

教学反思:教师可以根据学生的学习情况和反馈,调整教学方法和内容,以提高学生对数列求和的理解和应用能力。

数列求和说课稿

数列求和说课稿

课题 数列的求和 说课稿制作人:袁红 单 位:沂水四中一、考纲分析1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差、等比数列求和的几种常见方法;3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题.二、考情分析五年考情:在近5年山东高考理科卷中,数列在试卷中的位置:14年,T 19(12分); 13年,T 20(12分); 12年,T 20(12分); 11年,T 20(12分); 10年,T 9 (5分),T 18(12分)从近5年的考情看,数列是必考的一个解答题:1.数列求和主要考查:(1)等差数列和等比数列的求和.(2)使用裂项法、错位相减法的求和.(3)根据周期性、奇偶数项的不同的分组求和.2.数列求和问题一般以数列的基本问题为先导,在解决数列基本问题后考查数列求和.3.以解答题为主,难度中等或稍难.三、学生感悟1.(2014新课标全国卷)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1) C.n (n +1)2 D.n (n -1)2【解析】由题意,得a 2,a 2+4,a 2+12成等比数列,即(a 2+4)2=a 2(a 2+12),解得a 2=4,即a 1=2,所以S n =2n +n (n -1)2×2=n (n +1).【答案】A通过此题,引出基础知识1.数列求和的基本方法—公式法.2.(2012大纲全国高考)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为( )(A )100101 (B )99101(C )99100 (D )101100 【解析】设{}n a 的公差为d,则有115a 4d 55(a a )152+=⎧⎪⎨⨯+=⎪⎩,,解得1,11==d a ,则n a n =,111)1(111+-=+=+n n n n a a n n ,设数列11{}n n a a +的前100项和为T 100,100111111100T (1)()()1223100101101101∴=-+-+⋅⋅⋅+-=-=. 【答案】A通过此题,引出基础知识2.数列的求和方法--裂项法. 3.(2011安徽高考)若数列{}n a 的通项公式是()()132nn a n =--,则12a a ++…10a +=( )(A )15 (B)12 C )-12 (D) -15【解析】观察数列{}n a 的性质,得到.31094321=+==+=+a a a a a a 故()()()1210123492015.a a a a a a a a a +++=++++++=【答案】A通过此题,引出基础知识3.数列的求和方法—并项法. 4.(2012山东高考改编)已知等差数列{}n a 中,98nan =-,对任意*m N ∈,将数列{}n a 中落入区间2(9,9)m m内的项的个数记为m b ,则数列{}m b 的前m 项和m S.【解析】由题意知mn ma 299<<,即mm n 29899<-<,所以989989121+<<+--m m n ,11211299)989()989(-----=+-+=m m m m m b ,于是)999(999110123121--+++-+++=+++=m m m m b b b S8980198019109819809991919199121212212mm m m m m m m -+=+⋅-=---=-----=++++, 即89801912mm m S -+=+.【答案】89801912mm m S -+=+ 通过此题,引出基础知识4.数列的求和方法—分组求和..5.(2014四川高考改编)已知等差数列{a n }的公差为1,首项a 1=1,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).则数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n 等于 .【解析】由题意有a n =n ,22na n nb ==,所以数列{a n b n}的通项公式为a n b n=n2n ,所以T n =12+222+323+…+n -12n -1+n 2n ,2T n = 11+22+ 322 +… +12n n -+n 2n -1,因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以,T n =2n +1-n -22n.【答案】T n =2n +1-n -22n.通过此题,引出基础知识5.数列的求和方法—错位相减法.这5个高考题,学生课前完成,根据学生做题情况,制定如下教学目标和要求.四、教学目标和要求根据上述教材分析和考情分析,制定如下教学目标:1、知识与技能目标:(1)掌握数列求和的几种常用方法; (2)灵活运用数列求和的几种常用方法.2、过程与方法目标:(1)提前让学生做这份学案,以学定教,体现学生自主学习;(2)在学生自主学习中,发现问题,找出错误,师生共同寻找解决问题的突破口; (3)通过分析高考题目,了解数列在高考中的地位及高考动向.3、情感态度与价值观目标:通过学生独立思考,培养学生分析问题、解决问题的能力。

等比数列求和说课稿

等比数列求和说课稿

等比数列求和说课稿尊敬的各位评委、老师们:大家好!今天我说课的内容是等比数列求和。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析等比数列求和是数列这一章节中的重要内容,它不仅是等比数列知识的一个重要应用,也为后续学习数列的综合问题奠定了基础。

在教材中,等比数列求和公式的推导过程蕴含了重要的数学思想方法,如错位相减法,对于培养学生的逻辑思维能力和运算能力具有重要的作用。

本节课的内容在教材中起着承上启下的作用,通过对前面等比数列通项公式的学习,学生已经具备了一定的知识基础和方法储备,为探究等比数列求和公式做好了铺垫。

同时,等比数列求和的知识在实际生活中也有着广泛的应用,如金融领域中的利息计算、工程中的增长问题等,能够让学生感受到数学与生活的紧密联系,提高学生学习数学的兴趣和积极性。

二、学情分析在知识储备方面,学生已经学习了等差数列的相关知识,掌握了数列的基本概念和通项公式的求解方法,对数列的研究有了一定的经验。

同时,学生也学习了等比数列的定义、通项公式等基础知识,为本节课的学习打下了良好的基础。

在能力水平方面,高二的学生已经具备了一定的观察、分析、归纳和推理能力,但对于较为复杂的数学问题,还需要进一步的引导和启发。

在学习态度方面,学生对数学有一定的兴趣,但在学习过程中可能会遇到困难,容易产生畏难情绪,需要教师给予及时的鼓励和帮助。

三、教学目标基于以上对教材和学情的分析,我确定了以下教学目标:1、知识与技能目标(1)掌握等比数列求和公式及其推导方法。

(2)能够运用等比数列求和公式解决相关的数学问题。

2、过程与方法目标(1)通过对等比数列求和公式的推导,培养学生的逻辑思维能力和运算能力。

(2)让学生经历从特殊到一般、类比、归纳等数学思想方法的运用过程,提高学生的数学素养。

3、情感态度与价值观目标(1)通过等比数列求和公式的探究,激发学生的学习兴趣和求知欲,培养学生勇于探索、敢于创新的精神。

数列求和说课稿

数列求和说课稿

《数列求和》教学设计说明南皮一中刘宝杰由于本次课内容是高中的重点与难点,学生对除了等差和等比数列以外的其他数列了解太少,思维范畴比较狭窄,所以在学习过程中会摸不着门,找不着规律。

学生在学习过程中容易受等差数列和等比数列的影响,会不自然的往上述两个数列方面思考,但又缺乏对两个特殊数列的深层次理解,故而在研究数列求和时对出现的新问题感到束手无策,和老知识联系不起来。

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

引导学生分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

本次课我将采用多媒体教学,以节省课堂教学时间,提高课堂效率,同时增加学生的学习兴趣,使课堂教学达到尽可能大的学习效果,完成教学任务。

由于本次课难度较大,内容较多,所以课程设计很紧凑,学生在40分钟内能简单了解数列的几种常见求和方法及其针对的题型,但要想掌握也不是很容易。

课下,学生需要通过针对性练习,对新知识加深理解,从而熟练掌握。

以下是我对本次课的设计说明,如有不妥之处,请各位老师批评指正。

一、教材分析1、教材的地位和作用:“数列”是中学数学的重要内容之一。

是进行计算,推理等基本训练,综合训练的重要题材,它与高等数学有较为密切的联系,是进一步学习必备基础知识,因而是历年高考命题的热点之一,而且在实际生活中也经常要用到数列的一些知识。

例如:银行存款的单利和复利、分期付款中的有关计算就要用到数列知识。

教材分析就本节课而言,数列求和问数列的的一个重要问题,同时也是高考高查的重点和难点,它涉及到等差、等比数列求和,以及构造数列等多方面的知识,必须讲清、讲透。

二、教学目标分析(1)知识目标数列求和的几种常用方法:公式求和法;分解重组求和法;错位相减求和法;裂项相消求和法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数列求和》说课稿
武威十八中鲁文霞
一、教材分析
1. 教材地位及作用
本节课的内容选自《普通高中课程标准实验教科书数学必修5(A)版》第二章章复习内容,数列求和的第一课时:分组求和法与裂项求和法的应用。

数列求和是在学生学习了等差数列与等比数列求和问题的基础上,对数列求和问题的进一步深入和拓广,是《数列》一章中重要的基础内容,无论在知识,还是在能力上,都在数列中占有重要地位。

知识方面:数列求和有广泛的实际应用。

能力方面:可考查学生的运算、推理、及等价转化能力,使学生进一步深入体会学习函数方程、数形结合、化归等重要数学思想方法。

因此数列求和在《数列》一章具有极为重要的地位,也是高考命题的热点。

2. 教材处理
教材当中关于本节内容是以习题的形式出现,通过结合习题把数列求和问题做成专题形式,分为两节内容完成。

本节课是求和专题第一课时,内容为分组求和法与裂项求和法的应用。

除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。

通过设问、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,使学生体会体会数列求和的基本思想,掌握数列求和的基本方法。

二、教学目标
(1)知识与技能:掌握数列求和问题中的两种方法,分组求和法和裂项求和法。

(2)过程与方法:通过求和方法的探究,体会化归思想、函数思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。

(3)情感态度与价值观:认识事物间的内在联系和相互转化,培养学生的探索、创新精神。

三、学情分析
1. 知识储备:学生已经学习了等差数列与等比数列基本内容,会判断数列是否等差、等比数列,并会利用公式解决等差、等比数列的求和问题。

2. 能力水平:具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

3. 本校学情:二中高二学生,学习程度较好,知识面较广,对于大多数学生,能利用公式法解决等差、等比数列的求和问题,课堂新知探究中,讨论参与的积极性较高。

四、重点、难点
重点:探索并掌握数列求和的两种方法,分组求和法和裂项求和法。

难点:解决求和问题基本思想方法,两种求和方法的获得。

五、教学方法
通过设问、启发、当堂训练的教学程序,采用启发式讲解、互动式讨论、反馈式评价的授课方式,培养学生的自学能力和分析与解决问题的能力,借助幻灯片辅助教学,达到增加课堂容量、提高课堂效率的目的,营造生动活泼的课堂教学氛围.
六、教学程序分析
七、评价与分析
本节课通过启发式教学,让学生自己观察、分析,探究求和问题的解决办法,尤其是掌握分组求和法和裂项求和法的数列类型与基本解决方法。

在这个过程中,培养了学生的观察、分析、归纳、解决问题的能力,体会了函数思想与化归思想在数列问题中的应用,也使本节课的三维目标真正落到实处。

相关文档
最新文档