《等比数列的前n项和公式》说课稿
等比数列的前N项和公式

等比数列的前n项和公式》说课稿今天我将要为大家讲的课题是等比数列前n项和。
对于这个课题,我主要从下面六个方面来进行讲解。
一、教材结构与内容分析:《等比数列前n项和公式》是高中数学二年级第二学期第十三章第五节内容。
教学对象为高二学生,教学课时为2课时。
本节课为第一课时。
在此之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和、数列极限打下基础。
本节课既是本章的重点,同时也是教材的重点。
从高中数学的整体内容来看,《数列与数学归纳法》这一章是高中数学的重要内容之一,在整个高中数学领域里占据着重要地位,也起着作用性的作用。
首先:数列有着广泛的实际应用。
例如产品的规格设计、储蓄、分期付款的有关计算等。
其次:数列有着承前启后的作用。
数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。
再次:数列也是培养提高学生思维能力的好题材。
学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。
本节的教学重点是等比数列前n项和公式及应用。
教学难点是等比数列前n项和公式的推导。
二、教学目标分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n 项和公式及应用。
2、能力目标:培养学生观察问题、思考问题的能力,并能灵活运用基本概念分析问题解决问题的能力,锻炼数学思维能力。
3、情感目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。
三、学生情况分析:学生在学习本节内容之前已经学习等差、等比数列的概念和通项公式,等差数列的前N项和的公式,具备一定的数学思想方法,能够就接下来的内容展开思考,而且在情感上也具备了学习新知识的渴求。
高中数学《等比数列的前n项和》说课稿

高中数学《等比数列的前n项和》说课稿各位老师你们好!今天我要为大家讲的课题是《等比数列的前n项和》首先,我对本节内容教材进行一些分析:一、教材分析(说教材)(一)教材所处的地位和作用本节内容在全书和章节的作用是:《等比数列的前n项和》选自《普通高中课程标准数学选择性必修二》(新人教A版)第四章第三节第二课时。
在此之前,学生已经学习了有关等比数列的概念以及通项公式等知识,为本节课的学习提供了知识基础。
本节内容在数列这一章中占有重要地位,同时错位相减法也是一种重要的数学思想方法,因此本节具有承上启下的作用。
在公式推导的过程中渗透的类比、划归、分类讨论、整体变化和方程等思想,都是学生在今后的学习和工作中不可或缺的数学素养。
(二)教育教学目标根据上述材料分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:1.知识目标:通过学习数学抽象、等比数列的前n项和公式的概念和意义,进行逻辑推理、等比数列前n项和公式的推导,利用等比数列的前n项和公式进行计算,归纳数学建模思想、通过与特殊的等比数列前n项和公式的类比,得出一般等比数列前n项和的公式。
2.能力目标:通过教学初步体会分析和解决问题。
通过团队协作,进行语言表达。
通过师生双边活动,运用知识,体会逻辑推理,数学抽象和数学建模的思想。
3.情感目标:通过问题——探究的教学方法,从现实的生活经历与体验出发,提高学习的兴趣。
二、教学策略(说教法)(一)教学手段如何突出重点,突破难受,从而实现教学目标。
在教学过程中坚持“以学生为主体,以教学为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。
在学生思考讨论的基础下,加以引导,运用问题解决式教法,师生交谈法,问答式和课堂讨论法。
在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。
(二)学情分析(说学法)1.学生特色分析:中学生的心理学研究指出,高中阶段需要抓住学生特点,积极采用形式多样的生动的教学方法。
等比数列的前n项和说课稿教案

等比数列的前n 项和●教课目的知识与技术:掌握等比数列的前n 项和公式及公式证明思路;会用等比数列的前n 项和公式解决相关等比数列的一些简单问题。
过程与方法:经历等比数列前n 项和的推导与灵巧应用,总结数列的乞降方法,并能在具体的问题情境中发现等比关系成立数学模型、解决乞降问题。
感情态度与价值观:在应用数列知识解决问题的过程中,要勇于探究,踊跃进步,激发学习数学的热忱和勤苦求是的精神。
●教课要点等比数列的前n 项和公式推导●教课难点灵巧应用公式解决相关问题●教课过程Ⅰ. 课题导入[创建情境][ 提出问题 ] 课本 P62“国王对国际象棋的发明者的奖赏”Ⅱ . 解说新课[ 剖析问题 ] 假如把各格所放的麦粒数当作是一个数列,我们能够获得一个等比数列,它的首项是1,公比是2,求第一个格子到第64 个格子各格所放的麦粒数总合就是求这个等比数列的前64 项的和。
下边我们先来推导等比数列的前n 项和公式。
1、等比数列的前n 项和公式:当 q 1 时,Sa1(1 q n )①或 S na1a n q②n 1 q1q当 q=1 时,S n na1当已知 a1, q, n时用公式①;当已知a1, q,a n时,用公式②.公式的推导方法一:一般地,设等比数列a1 , a2a3 , a n它的前n项和是S n a1 a2a3a n第1页共3页S n a1a2a3a n由a1q n1a nS n a1a1q a1q 2a1 q n 2a1q n 1得a1q a1q 2a1 q3a1 q n 1a1q n qS n(1 q)S n a1a1q n∴当 q 1 时,S n a1 (1qn)①或S n a1a n q②1q1q 当 q=1 时,S n na1公式的推导方法二:有等比数列的定义,a2a3a nq a1a2a n1依据等比的性质,有a2a3a n S n a1q a1a2an 1S n a n即Sn a1q(1q) S n a1a n q(结论同上)S n a n环绕基本观点,从等比数列的定义出发,运用等比定理,导出了公式.公式的推导方法三:S n a1a2a3a n= a1q(a1 a2 a3a n 1 )= a1qS n 1= a1q(S n a n )(1 q)S n a1a n q (结论同上)[ 解决问题 ]有了等比数列的前n 项和公式,就能够解决方才的问题。
《等比数列前n项和》说课

《等比数列前n项和》说课稿大家好!今天我将要为大家说课的课题是《等比数列前n项和》。
对于这个课题,我主要从教材结构与内容分析、教学的重点和难点、教学目标、学生学习情况、教学方法、教学程序设计、教学评价与反馈等七个方面来进行讲解。
一、教材结构与内容分析:《等比数列前n项和公式》是高中数学二年级第二学期第十三章第五节内容。
教学对象为高一学生,教学课时为2课时。
本节课为第一课时。
在此之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和、数列极限打下基础。
本节课既是本章的重点,同时也是教材的重点。
从高中数学的整体内容来看,本节是高中数学的重要内容之一,在整个高中数学领域里占据着重要地位。
首先,就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也经常涉及到。
其次,就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体。
二、教学的重点和难点1、教学重点是等比数列前n项和公式的推导并充分揭示公式的结构特征和内在联系及公式的简单应用。
2、教学难点是等比数列前n项和公式的推导过程及公式的结构特征和内在联系。
三、教学目标分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:1、知识与技能目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n项和公式及能运用公式解决一些简单问题。
2、能力与方法目标:通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质。
《等比数列的前 n 项和》 说课稿

《等比数列的前 n 项和》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“等比数列的前 n 项和”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“等比数列的前 n 项和”是高中数学数列这一章节的重要内容。
它不仅是等比数列知识的一个重要应用,也为后续学习数列求和的其他方法以及数学归纳法等知识奠定了基础。
在教材的编排上,通过引导学生从特殊到一般,逐步探究等比数列前 n 项和的公式推导,培养学生的逻辑推理和数学运算能力。
同时,教材中的例题和习题也有助于学生巩固所学知识,提高应用能力。
二、学情分析学生已经学习了等比数列的定义、通项公式等相关知识,具备了一定的数列运算和推理能力。
但对于等比数列前 n 项和公式的推导,可能会存在一定的困难,需要教师引导学生通过类比、归纳等方法进行探究。
此外,学生在数学学习中可能存在思维定式,对于新的数学方法和思路的接受需要一定的时间和过程。
因此,在教学中要注重启发式教学,引导学生积极思考,主动参与到知识的构建过程中。
三、教学目标1、知识与技能目标(1)理解等比数列前 n 项和公式的推导过程。
(2)掌握等比数列前 n 项和公式,并能熟练运用公式解决相关问题。
2、过程与方法目标(1)通过公式的推导,培养学生的逻辑推理和数学运算能力。
(2)让学生经历从特殊到一般、类比、归纳等数学思想方法的运用过程,提高学生的数学思维能力。
3、情感态度与价值观目标(1)通过探究等比数列前 n 项和公式,激发学生的学习兴趣和求知欲。
(2)培养学生勇于探索、敢于创新的精神,以及严谨的科学态度。
四、教学重难点1、教学重点等比数列前 n 项和公式的推导及应用。
2、教学难点等比数列前 n 项和公式的推导过程中错位相减法的理解和运用。
五、教法与学法1、教法为了突出重点,突破难点,我将采用启发式、探究式的教学方法。
引导学生通过自主探究、合作交流等方式,逐步推导等比数列前 n 项和公式。
《等比数列的前n项和公式》说课稿(附教学设计)

《等比数列的前n项和》说课稿各位专家、评委,大家上午好!我是来自__________,今天我要说课的题目是等比数列的前n项和.我的说课从以下六个环节来进行.一、教材分析●教学内容《等比数列的前n项和》是高中数学人教版第一册(上)第三章第五节的内容,本节计划授课2课时,今天我的说课为第一课时.●地位与作用本节是数列这章中的一个重要内容,在现实生活中有着广泛的实际应用,另外公式推导过程中所渗透的数学思想方法,是学生今后学习和工作的必备数学素养.二、学情分析●知识基础:前几节课学生已学习了等差数列求和、等比数列的定义、通项公式等知识内容,这为过渡到本节的学习起着铺垫作用.●认知水平与能力:高一学生初步具有自主探究的能力,能把本节内容与等差数列前n 项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导,但不利因素是本节公式的推导与等差数列前n项和公式的推导又有所不同,另外,对于q=1这一特殊情况,学生往往容易忽视.●任教班级学生特点:我班学生基础知识较扎实、思维较活跃.依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:1.教学目标●知识与技能目标:理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式.●过程与方法目标:在推导公式的过程中渗透数学思想、方法,优化学生思维品质.●情感、态度与价值目标:通过学生自主探索公式,激发他们的求知欲,体验错位相减法所折射出的数学方法美.2.教学重点、难点●重点:等比数列的前n项和公式的推导和公式的简单应用.突出重点的方法:“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.●难点::错位相减法的生成和等比数列前n项和公式的运用突破难点的手段:“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.四、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.学生的学法:突出探究、发现与交流.五、【教学过程分析】(一)教学环节创设情景提出问题类比探索形成公式公式应用培养能力解决问题前呼后应归纳总结加深理解延伸拓展发散思维下面,我就重点介绍一下我的教学过程教学过程一.创设情境、提出问题在这个环节,我分两个部分来完成.首先复习旧知,铺垫新知.接着用多媒体向学生演示了一个他们所熟悉的动画<喜羊羊与灰太狼>的故事.通过学生观看动画,教师提出问题,学生发现问题暂不能解决,从而引出课题.这样设计的目的是:复习旧知识可以引导学生发现等比数列各项特点,从而为“错位相减法”推导等比数列前n和埋下伏笔.而情景动画的引入让引出课题的同时激发学生的兴趣,, a = a q调动学习的积极性.二.类比探索、形成公式在这个环节中,我主要依托以下两个探究来完成探究一:如何求和:1 +2 + 22 + 23 + + 258 + 259我先引导学生回忆:等差数列求和的重要方法是倒序相加法,剖析倒序相加法的本质即整体设元,构造等式,利用方程的思想化繁为简,把不易求和的问题转化为易于求和的问题.从而得出求和的实质是减少了项 .同时又引导学生思考现在用这种方法还行吗?若不行,那该怎样简化运算?能否类比倒序相加的本质,根据等比数列项之间的特点,也构造一个式子,通过两式运算来解决问题? 从而引发学生的思考、讨论.这就是学生在讨论这个问题的一个片段。
等比数列的前n项和公式说课稿.doc

《等比数列的前n项和公式》说课稿休宁一职高吴水仙一、教材分析:1、地位和作用《等比数列前n项和公式》是高教版中等职业教育课程改革国家规划新教材《基础模块》下册高一年级第二学期第六章第三节内容。
教学对象为高一学生,教学课时为2课时,本节课为第一课时。
在此之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和打下基础。
本节课既是本章的重点,同时也是教材的重点。
2、重点和难点本节的教学重点是等比数列的前n项和的公式;教学难点是等比数列前n项和公式的推导。
3、教学目标知识目标:理解等比数列前n项和公式。
能力目标:通过学习等比数列前n项和公式,培养学生处理数据的能力。
情感目标:培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神。
4、教学方法本节课将采用类比推导法教学模式进行教学。
该模式能够将教学过程中的各要素进行积极的整合,使其融为一体,创造最佳的教学氛围。
5、教学手段教学中,利用多媒体等现代化教学手段来激发学生的学习兴趣,启发学生思维,增大课堂容量,提高课堂效率。
二、教学过程1、课题的引入首先给出以下实例(多媒体演示):传说国际象棋的发明人是印度的大臣西萨·班·达依尔,舍罕王为了表彰大臣的功绩,准备对大臣进行奖赏。
国王问大臣:“你想得到什么样的奖赏?”,这位聪明的大臣达依尔说:“陛下,请您在这张棋盘的第一个格子内放上1颗麦粒,在第二个格子内放上2颗麦粒,在第三个格子内放上4颗麦粒,在第四个格子内放上8颗麦粒,…,依照后一格子内的麦粒数是前一格子内的麦粒数的2倍的规律,放满棋盘的64个格子,并把这些麦粒赏给您的仆人吧”.国王认为这样的奖赏很轻,于是爽快地答应了,命令如数付给达依尔麦粒。
计数麦粒的工作开始了,在第一个格内放1粒,第二个格内放2粒,第三个格内放4粒,第四个格内放8粒,……,国王很快就后悔了,因为他发现,即使把全国的麦子都拿来,也兑现不了他对这位大臣的奖赏承诺。
《等比数列前n项和》说课稿(精选10篇)

《等比数列前n项和》说课稿(精选10篇)因为an = a1q^(n-1)这次为您整理了《等比数列前n项和》说课稿(精选10篇),在大家参照的同时,也可以分享一下给您最好的朋友。
《等比数列前n项和》说课稿篇一一、教材分析《等比数列前n项和》选自北师大版高中数学必修5第一章第3节的内容。
等比数列的前n 项和是“等差数列及其前n项和”与“等比数列”内容的延续,也是函数的延续,它实质上是一种特殊的函数;公式推导中蕴涵的数学思想方法如分类讨论等在各种数学问题中有着广泛的应用,如在“分期付款”等实际问题中也经常涉及到。
具有一定的探究性。
二、学情分析在认知结构上已经掌握等差数列和等比数列的有关知识。
在能力方面已经初步具备运用等差数列和等比数列解决问题的能力;但学生从特殊到一般、分类讨论的数学思想还需要进一步培养和提高。
在情感态度上学习兴趣比较浓,表现欲较强,但合作交流的意识等方面尚有待加强。
并且让学生在探究等比数列前n项和的过程中体会合作交流的重要性。
三、教学目标分析:知识与技能目标:(1)能够推导出等比数列的前n项和公式;(2)能够运用等比数列的前n项和公式解决一些简单问题。
过程与方法目标:提高学生的建模意识及探究问题、分析与解决问题的能力。
体会公式探求过程中从特殊到一般的思维方法、错位相减法和分类讨论思想。
情感与态度目标:培养学生勇于探索、敢于创新的精神,磨练思维品质,从中获得成功的体验。
四、重难点的确立《等比数列的前n项和》是这一章的重点,其中公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了多种重要的数学思想,因此,本节课的教学重点为等比数列的前n项和公式的推导及其简单应用.而等比数列的前n项和公式的推导过程中用到的方法学生难以想到,因此本节课的难点为等比数列的前n项和公式的推导。
五、教学方法为突出重点和突破难点,我将采用的教学策略为启发式和探究式相结合的教学方法,教学手段采用计算机进行辅助教学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等比数列的前n项和公式》说课稿今天我将要为大家讲的课题是等比数列前n项和。
对于这个课题,我主要从下面六个方面来实行讲解。
一、教材结构与内容分析:《等比数列前n项和公式》是高中数学二年级第二学期第十三章第五节内容。
教学对象为高二学生,教学课时为2课时。
本节课为第一课时。
在此之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和。
本节课既是本章的重点,同时也是教材的重点本节的教学重点是等比数列前n项和公式及应用。
教学难点是等比数列前n项和公式的推导。
二、教学目标分析:作为一名数学老师,不但要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:1、知识目标:理解等比数列前n项和公式的推导方法,掌握等比数列前n 项和公式及应用。
2、水平目标:培养学生观察问题、思考问题的水平,并能灵活使用基本概念分析问题解决问题的水平,锻炼数学思维水平。
三、学生情况分析:学生在学习本节内容之前已经学习等差、等比数列的概念和通项公式,等差数列的前N项和的公式,具备一定的数学思想方法,能够就接下来的内容展开思考,而且在情感上也具备了学习新知识的渴求。
四、教学方法分析:教法:数学是一门培养和发展人的思维的重要学科,所以在教学中不但要让学生“知其然”,还要“知其所以然”,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进和启发式教学原则,我实行这样的教学设计:在教师的引导下,创设情景,通过开放式问题的设置来启发学生实行思考,在思考中体会数学概念形成过程中蕴涵的数学方法和思想,使之获得内心感受。
五、教学程序设计:1、创设情景:引例:某公司,因为资金短缺,决定向银行实行贷款,双方约定,在3年内,公司每月向银行借款10万元,为了还本付息,公司第一个月要向银行还款10元,第二个月还款20元,第三个月还款40元,……。
即每月还款的数量是前一个月的2倍,请问,假如你是公司经理或银行主管,你会在这个合约上签字吗?这是一个悬念式的实例,后面的“假如”又把学生带入了实例创设的情境,让学生直接参与了“市场经济”。
根据心理学,情境具有暗示作用,在暗示作用下,学生自觉不自觉地参与了情境中的角色,这样他们的学习积极性和思维活动就会极大的调动起来。
这样引入课题有以下几个好处:(1) 利用学生求知好奇心理,以一个实际问题为切入点,便于调动学生学习本节课的趣味性和积极性。
(2) 在实际情况下实行学习,能够使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(3) 问题内容紧扣本节课教学内容的主题与重点。
(4) 有利于知识的迁移,使学生明确知识的现实应用性。
在教师的诱导下,学生根据自己掌握的知识和经验,很快建立起两个等比数列的数学模型。
数列{an}是以100000为首项,1为公比的等比数列,即常数列。
数列{bn}是以10为首项,2为公比的等比数列。
当学生跃跃欲试要求这两个数列的和的时候,课题的引入已经水到渠成。
教师再由特殊到一般、具体到抽象的启示,正式引入课题。
2、讲授新课:本节课有两项主要内容,等比数列的前n项和公式的推导和等比数列的前n 项和公式及应用。
等比数列的前n项和公式的推导是本节课的难点。
依据如下:(1) 从认知领域上讲,它在陈述性知识、程序性知识与策略性知识的分类中,属于学生最高需求层次的掌握策略与方法的策略性知识。
(2) 从学科知识上讲,推导属于学科逻辑中的“瓶颈”,突破这个“瓶颈”则后面的问题迎刃而这里我讲述的主要是怎样利用多媒体激励、启发学生思维,突破教材难点。
等比数列有两大类:公比q=1和q 1两种情形当q=1时,Sn=na1当q≠1时,Sn=a1+a1q+……+a1qn-1=q≠1时,Sn的结果是怎么推导出来的呢?本节课的难点就在于此。
预习过课本的学生会知道这个结果以及推导过程,但是他们知其不过不知其所以然,能够说绝绝绝绝大部分学生根据他们掌握的知识和经验是难以推出这个公式的。
这时候我们能够首先让学生们实行思考,如果使用数学中“从特殊到一般”的数学思想方法,能不能向这个结果靠拢呢?我们不难得到下述结论:S1=a1,S2=a1+a2=a1+a1q=a1(1+q)S3=a1+a2+a3=a1+a1q+a1q2=a1(1+q+q2)……Sn=a1+a2+……+an=a1(1+q+q2+……+qn-1)很多同学根据这个式子可能会想到a1(1+q+q2+……+qn-1)= a1(1+q+q2+……+qn-1)(1-q)/(1-q)=这时我要向学生说明,这种从特殊到一般,逐步归纳的思想方法很好,是我们解决数学问题中经常会使用到的方法。
然后又要指出在现阶段,我们还无法对这个过程实行证明,所以它的给出是不严密的。
这样不但让学生再一次体会到数学的最基本特点,严密的逻辑性。
也为将来学习二项式展开的内容打下了伏笔。
此时,仅仅从形式上实行的归纳在现阶段是无法实行系统而严谨的证明的,那我们只能在思想的过程中另辟蹊径,所以,要通过复习等差数列的求和公式,借助推导等差数列求和公式的思想方法,来找到推导等比数列的前n项和公式的方法!让学生们一起回忆一下等差数列的前n项和公式的推导过程.。
那么等比数列是不是也能够用类似的方法,构造出一个常数列或者部分常数列呢?让学生亲自去试一试,结果呢?这时候学生们很自然的会用倒序相加的方法来实行思考。
结果显然是行不通的。
此时教师的主要任务是要让学生的思维迅速发散——从倒序相加的定势中解脱出来。
抓住学生迫切想解决这个问题的心态,即时地通过媒体实行启发。
老师要告诉学生,构造常数列或者部分常数列的思路是准确的。
既然倒序行不通,那么还有没有其它的方式构造常数列呢?接着要引导学生从等比数列的定义出发,进一步理解等比数列从第二项起,每一项都是前一项的q倍,也就是说将每一项乘以q以后就变成了它的后一项,那么将Sn这个和式的两边同时乘以q,在q Sn这个和式中的第一项就是Sn的第二项,也就是Sn和q Sn之间产生了一个错位。
由两个和式能否构造常数列或者部分常数列的和式呢?相加行不行?显然不行!相减行不行?显然行。
将Sn和q Sn相减后,中间就得到了n-1项各项都是0的常数列, 找到了这个常数列,难点就突破了,Sn的导出就容易了,导出了Sn就基本上达到了本节课的认知目标。
为了加深理解,这时还应该对等差、等比两种数列的求和公式的推导过程实行类比和分析:两种数列求和的基本思路都是构造常数列,构造常数列的思想也是其他一些数列求和的基本思想。
等比数列在构造常数列的过程中,采用“错位相减”,等差数列采用的是“倒序相加”,倒序相加本质上也是“错位相加”,是一种大幅度的“错位相加”,等比数列只不过是步幅为1的小幅度的“错位相加”。
说明一下,在Sn 的和式中,两边同时乘以q是解决问题——构造常数列的关键所在,是推导等比数列求和公式的一把钥匙。
推导出公式之后,对公式的特征要加以说明,以便学生记忆。
同时还要对公式的另一种表示形式和应用中的注意事项加以说明。
协助学生弄清其形式和本质,明确其内涵和外延,为灵活使用公式打下基础。
有了求和公式后,回头让学生亲自计算一下引例中的钱款数量,从计算结果中让学生明确实际问题的解决离不开数学,在市场经济中必须有敏锐的数学头脑才行。
3.例题讲解。
我们在讲解例题时,不但在于怎样解,更在于为什么这样解,而即时对解题方法和规律实行概括,有利于发展学生的思维水平。
本节课设置如下两种类型的例题:1)等比数列中知三求二的解答题例:求首项为2,公比为2的等比数列的前8项和以及第5项的值。
以及书上的例42)实际应用题。
例:某制糖厂第1年制糖5万吨,如果平均每年的产量比上一年增加10%,那么从第1年起,约几年内可使总产量达到30万吨(保留到个位)?这样设置主要依据:(1)例题与大纲中规定的教学目标与任务及本节课的重点、难点有相对应的匹配关系。
(2)遵循巩固性原则和传授——反馈——再传授的教学系统的思想确立这样的例题。
(3)应用题比较切合对智力技能实行检测,有利于数学水平的提升。
同时,它能够使学生在后半程学习中保持兴趣的持续性和学习的主动性。
4.形成性练习:例题处理后,设置一组形成性练习,作为对本节课的实时检测。
练习基本上是直接使用公式求和,三个练习是按由易到难、由简单到复杂的理解规律和心理特征设计的,有利于提升学生的积极性。
学生练习时,教师巡查,观察学情,即时从中获取反馈信息。
对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误实行辨析、指正。
通过形成性练习,培养学生的应变和举一反三的水平,逐步形成技能。
5.课堂小结本节课的小结从以下几个方面实行:(1) 等比数列的前n项和公式(2) 公式的推导方法——错位相减法(3) 求和思路——构造常数列或部分常数列。
6.布置作业补充练习1,2,3。
针对学生素质的差异实行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提升,从而达到拔尖和“减负”的目的。
并可布置相对应的研究作业,思考如何用其他方法来推导等比数列的前N项和公式,来加深学生对这个知识点的理解水准。