贵州省黔东南州2018届高考第一次模拟考试数学(理)试题有答案

合集下载

(全优试卷)贵州省黔东南州高三第一次模拟考试数学(理)试题Word版含答案

(全优试卷)贵州省黔东南州高三第一次模拟考试数学(理)试题Word版含答案

黔东南州2018届高三第一次模拟考试理科数学试卷第Ⅰ卷选择题一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A2.)A.0 B.2 C.-2 D.-13.经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误..的是()A.旅游总人数逐年增加B.2017年旅游总人数超过2015、2016两年的旅游总人数的和C.年份数与旅游总人数成正相关D.从2014年起旅游总人数增长加快4.)A.9 B.8 C.6 D.35.某正三棱锥正视图如图所示,则俯视图的面积为()A6.我国古代数学名著《九章算术》在“勾股”一章中有如下数学问题:“今有勾八步,股十五步,勾中容圆,问径几何?”.意思是一个直角三角形的两条直角边的长度分别是8步和15步,则其内切圆的直径是多少步?则此问题的答案是()A.3步 B.6步 C.4步 D.8步7.)A.2017 B.2018 C.2019 D.20208.)A.355 B.354 C.353 D.3529.)A10.25,则)A.40 B.30 C.25 D.2011.“和谐函数”.下面四个函数中,“和谐函数”的是()AC12.)A第Ⅱ卷非选择题二、填空题:本大题共4小题,每小题5分.13.的最大值是.14.取值范围是 .15.2小值是 .16.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.18.为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人参加比赛.4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”.4.19..20.动直线.值范围.21..请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程参数).选择相同的单位长度建立极坐标系,.23.选修4-5:不等式选讲.黔东南州2018届高三第一次模拟考试理科数学参考答案一、选择题1-5: CCBAD 6-10: BCBBA 11、12:DA1.{|B x ={|0x x <2..3.4.5.解:由正视图知,该正三棱锥的底边长为6,高为46.17,设其内切圆半径等积法)步).7.8.9.10.解:由抛物线的性质知,准距离依题意得,11.12.18二、填空题13.14.15.16..三、解答题17.解:(Ⅰ)(Ⅱ)由(Ⅰ)18.解:(Ⅰ)(Ⅱ)1,2,3,4.所以,.19.(Ⅰ)CD C=(Ⅱ) 由(Ⅰ)AC⊥平面20.解:(Ⅰ) 因为直线:l x my-又12AF F∆是等腰直角三角形,所以(Ⅱ)21. 解:(Ⅰ(Ⅱ)由(Ⅰ)(Ⅲ)由(Ⅱ)…(1122.,) .23. 解:(Ⅰ(Ⅱ) 由(Ⅰ)及一次函数的性质知:黔东南州2018届高三第一次模拟考试理科数学参考答案一、选择题1. {|B x ={|0x x <2. .3.4.5. 解:由正视图知,该正三棱锥的底边长为6,高为46. 17,设其内切圆半等积法)步).7.8.9.10.解:由抛物线的性质知,准距离依题意得又准距离,则有11.解:“和谐数的导函数的性质,经检验知,12.解22a b+=,由222a b c+<⇒有二、填空题13.解14.解15.解16.解.三、解答题17.解:(Ⅰ)…………………………………………………(2分)……………(4分)…………………………………………………(6分) (Ⅱ)由(Ⅰ),……(8………(10分)…………(12分) 18. 解:(Ⅰ)……………(2分)……(6分)(Ⅱ)1,2,3,4. ……………………………(7分)………………(11分)所以,.……(12分) 19. (Ⅰ)CD C=……………(6分)(Ⅱ) 由(Ⅰ)知,7分)如图建立空间直角坐标系,因为AC⊥平面9分)…………………………………………(11分)………………(12分)20.解:(Ⅰ)……………………………………………(5分)(Ⅱ)………(8分)12分)21. 解:(Ⅰ…………………………………………………(1分)………………………………(2分)…………………………………………………(4分)(Ⅱ)由(Ⅰ)8分)(Ⅲ)9分)由(Ⅱ)…(11…(12分)22.……(5分))(10分)23. 解:(Ⅰ……………………………………………(5分) (Ⅱ) 由(Ⅰ)及一次函数的性质知:…………………………………………………(10分)。

【数学】贵州省黔东南州2018届高三上学期第一次联考数学(理)试题

【数学】贵州省黔东南州2018届高三上学期第一次联考数学(理)试题

黔东南州2017-2018学年高三第一次联考数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】A【解析】集合.故选A.2. 设是虚数单位,复数,则复数的模为()A. B. C. D.【答案】D【解析】复数.复数的模为:.故选D.3. 近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图,其中年龄在岁的有2500人,年龄在岁的有1200人,则的值为()A. 0.013B. 0.13C. 0.012D. 0.12【答案】C【解析】由题意,得年龄在范围岁的频率为,则赞成高校招生改革的市民有,因为年龄在范围岁的有1200人,则......................故选C.4. 若,且是第二象限角,则的值为()A. B. C. D.【答案】D【解析】试题分析:已知由二倍角公式化简可得:,因为,且是第二象限角,所以可得,代入上式化简即可得D考点:1.二倍角公式;2.同角三角函数基本关系式5. 已知向量,,且,则向量的坐标为()A. B.C. 或D. 或【答案】C【解析】设,则,解得或,故向量的坐标为或.故选C.6. 如图所示,一个三棱锥的三视图是三个直角三角形(单位:),且该三棱锥的外接球的表面积为,则该三棱锥的体积为()A. 5B. 10C. 15D. 30【答案】B【解析】由三视图可知,该三棱锥的底面三角形两直角边长分别为3,5,设该三棱锥的高为H,将该三棱锥补成长方体可知,该三棱锥的外接球的直径为,该三棱锥的外接球的表面积为,解得,所以该三棱锥的体积为,故选B.7. 已知实数满足,则的取值范围是()A. B. C. D.【答案】A【解析】画出不等式组表示的可行域如图阴影区域所示.由,得,平移直线,当经过点,时,代入的取值为,所以,故选A.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.8. 下列程序框图输出的的值为()A. 5B. 0C. -5D. 10【答案】A【解析】该题的算法功能是求数列的前10项和,由于数列的周期为2,且每一个周期内的两项之和为0,故数列的前10项和为0,数列从第一项开始,每两项之和,所以前10项之和为5,故数列的前10项和为0+5=5,故选A.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 函数的图象大致为( )A. B.C. D.【答案】A【解析】,定义域为,所以函数是偶函数,图象应关于轴对称,当时,,故选A.【点睛】已知函数解析式求函数图像和已知图像求函数解析式也是高考考查的热点,本题是知道解析式求函数图像,需注意几个问题,(1)注意函数的定义域,从而判断函数图像的位置,(2)从函数的单调性,判断函数图像的变化或趋势,(3)判断函数是否具有奇偶性,判断函数图像的对称性,(4)从特殊点出发,排除选项,(5)或时函数图像的变化趋势等来判断图像.10. 在中,若,则圆与直线的位置关系是()A. 相切B. 相交C. 相离D. 不确定【答案】A【解析】因为,所以.故圆心到直线的距离,故圆与直线相切,故选A.11. 把离心率的曲线称之为黄金双曲线.若以原点为圆心,以虚半轴长为半径画圆,则圆与黄金双曲线()A. 无交点B. 有1个交点C. 有2个交点D. 有4个交点【答案】D【解析】由题意知,所以,因为,所以,所以,所以圆与黄金双曲线的左右两支各有2个交点,即圆与黄金双曲线由4个交点,故选D.12. 已知函数,若方程有两个不相等的实数根,则实数的取值范围是()A. B.C. D.【答案】C【解析】作出函数的图象如下:方程有两个不相等的实数根等价于函数与的图象有两个不同的交点,有图可知,.故选C.点睛:方程的根或函数有零点求参数范围常用方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一直角坐标系中,画出函数的图象,然后数形结合求解.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知函数的导数为,且满足关系式,则的值等于__________.【答案】-9【解析】..函数求导得:.令.得,解得:.所以,..答案为-9.14. 在中,角所对的边分别是,若将一枚质地均匀的骰子先后抛掷两次,所得的点数分别为,则满足条件的三角形恰有两解的概率是__________.【答案】【解析】根据题意,a、b的情况均有6种,则将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数的情况有6×6=36种;在△ABC中,由正弦定理可得,则b=2a sin B,若△ABC有两个解,必有B≠90°,则有b<2a,若b<a,则C为钝角,只有一解,故有a<b<2a,符合此条件的情况有:b=3,a=2;b=4,a=3;b=5,a=3;b=5,a=4;b=6,a=4;b=6,a=5;共6种;则△ABC有两个解的概率为,答案为:.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.15. 已知是直线上的动点,是圆的切线,是切点,是圆心,那么四边形面积的最小值是__________.【答案】【解析】试题分析:因为圆的方程可化为,圆心,半径为,依题作出草图,可知,所以四边形面积的最小值就是的最小值,而,本题要求出最小的的值,即为圆心到直线的最短距离,所以,即四边形面积的最小值是.考点:1.点到直线的距离;2.切线的性质;3.转换的思想.16. 定长为4的线段两端点在抛物线上移动,设点为线段的中点,则点到轴距离的最小值为__________.【答案】【解析】设,抛物线的交点为F,抛物线的准线,所求的距离,(两边之和大于第三边且M,N,F三点共线时取等号),所以.答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列满足:.(1)求数列的通项公式;(2)求数列的前项和.【答案】(1);(2).【解析】试题分析:(1)利用累乘法求数列通项即可;(2)利用乘公比错位相减即可求和.试题解析:(1),以上式子相乘得,代入,得,又符合上式,故数列的通项公式为.(2),,两式相减,得.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.18. 近年来我国电子商务行业迎来发展的新机遇,与此同时,相关管理部门推出了针对电商商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品好评率为,对服务好评率为,其中对商品和服务都做出好评的交易为80次.(1)是否可以在犯错误率不超过0.1%的前提下,认为商品好评与服务好评有关?(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.注:1.注2.【答案】(1)见解析;(2).【解析】试题分析:(1)由已知列出关于商品和服务评价的2×2列联表,代入公式求得k2的值,对应数表得答案;(2)采用分层抽样的方式从这200次交易中取出5次交易,则好评的交易次数为3次,不满意的次数为2次,利用枚举法得到从5次交易中,取出2次的所有取法,查出其中只有一次好评的情况数,然后利用古典概型概率计算公式求得只有一次好评的概率.试题解析:(1)由题意可得关于商品评价和服务评价的列联表:所以,所以可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关.(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,则好评的交易次数为3次,不满意的次数为2次,令好评的交易为,不满意的交易为.从5次交易中,取出2次的所有取法.共计10种情况.其中只有一次好评的情况是,共计6种情况.因此,只有一次好评的概率为.19. 如图所示,在四棱锥中,四边形为菱形,为正三角形,且分别为的中点,平面,平面.(1)求证:平面;(2)求与平面所成角的正弦值.【答案】(1)见解析;(2).【解析】试题分析:(1)证明:AD⊥平面PEB,利用四边形ABCD为菱形,可得AD∥BC,即可证明BC⊥平面PEB;(2)以E为原点,建立坐标系,求出平面PDC的法向量,利用向量的夹角公式,即可求EF 与平面PDC所成角的正弦值.试题解析:(1)证明:因为平面,平面,所以,又平面平面,所以平面,由四边形菱形,得,所以平面.(2)解:以为原点,分别为轴建立空间直角坐标系,不妨设菱形的边长为2,则,,则点,,设平面的法向量为,则由,解得,不妨令,得;又,所以与平面所成角的正弦值为.20. 已知分别是椭圆的左、右焦点.(1)若是第一象限内该椭圆上的一点,,求点的坐标;(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中,为坐标原点),求直线的斜率的取值范围.【答案】(1);(2).【解析】试题分析:(1)首先得到焦点的坐标,点满足两个条件,一个是点在椭圆上,满足椭圆方程,另一个是将 ,转化为坐标表示,这样两个方程两个未知数,解方程组;(2)首项设过点的直线为,与方程联立,得到根与系数的关系,和,以及,根据向量的数量积可知,为锐角,即,这样代入根与系数的关系,以及,共同求出的取值范围.试题解析:(1)易知.,设,则,又.联立,解得,故.(2)显然不满足题设条件,可设的方程为,设,联立由,得.①又为锐角,又.②综①②可知的取值范围是【点睛】解析几何中的参数范围的考查是高考经常考的的问题,这类问题,要将几何关系转化为代数不等式的运算,必然会考查转化与化归的能力,将为锐角转化为,这样就代入根与系数的关系,转化为解不等式的问题,同时不要忽略.21. 已知函数.(1)当时,求的最小值;(2)若在上为单调函数,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)函数求导,求得函数的单调区间,利用函数的单调性即可求最值;(2)在上为单调函数,转为当时,或恒成立,即或对恒成立,令,求导求值即可.试题解析:(1)当时,,∴.令,得或(舍).极小值又当时,,∴当时,函数的最小值为.(2)∵,∴,又在上为单调函数,∴当时,或恒成立,也就是或对恒成立,即或对恒成立.令,则.∴当时,.∴在上单调递减,又当时,;当时,,∴,故在上为单调函数时,实数的取值范围为.点睛:利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f(x)≥a恒成立,只需f(x)min≥a即可;f(x)≤a 恒成立,只需f(x)max≤a即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.22. 在平面直角坐标系中,以为极点,轴正半轴为极轴且取相同的单位长度建立极坐标系.圆的极坐标方程哦,直线的参数方程为(为参数),直线和圆交于两点,是圆上不同于的任意一点.(1)求圆心的极坐标;(2)求点到直线距离的最大值.【答案】(1)圆心的极坐标为;(2).【解析】试题分析:(1)将圆:化为普通方程,得到其圆心,根据极坐标的定义可得其极坐标为;(2)把直线化为普通方程,因为直线与圆相交,根据其意义可得圆上的点到直线的最大距离为圆心到直线的距离加半径.试题解析:(1)由,得,得,故圆的普通方程为,所以圆心坐标为,圆心的极坐标为.(2)直线的参数方程为为参数)化为普通方程是,即直线的普通方程为,因为圆心到直线的距离,所以点到直线的距离的最大值.考点:(1)极坐标方程化为普通方程;(2)参数方程化为普通方程;(3)点到直线的距离公式.2018年高考考前猜题卷理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足iii z 2|2|++=,则=||z ( ) A .3 B .10 C .9 D .102.已知全集R U =,集合}012|{2≥--=x x x M ,}1|{x y x N -==,则=N M C U )(( )A .}1|{≤x xB .}121|{≤<-x xC .}121|{<<-x x D .}211|{<<-x x3.已知蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点的距离都大于2的区域内的概率P 为( ) A .631π-B .43C .63π D .414.已知双曲线)0,0(12222>>=-b a by a x ,过双曲线左焦点1F 且斜率为1的直线与其右支交于点M ,且以1MF 为直径的圆过右焦点2F ,则双曲线的离心率是( ) A .12+ B .2 C .3 D .13+5.一个算法的程序框图如图所示,如果输出y 的值是1,那么输入x 的值是( )A .2-或2B .2-或2C .2-或2D .2-或2 6.已知函数)2||,0)(3sin()(πϕωπω<>+=x x f 的图象中相邻两条对称轴之间的距离为2π,将函数)(x f y =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么)(x f y =的图象( ) A .关于点)0,12(π对称 B .关于点)0,12(π-对称C .关于直线12π=x 对称 D .关于直线12π-=x 对称7.如下图,网格纸上小正方形的边长为1,图中实线画的是某几何体的三视图,则该几何体最长的棱的长度为( )A.32 B.43C. 2D. 411 8.已知等差数列}{n a 的第6项是6)2(xx -展开式中的常数项,则=+102a a ( )A .160B .160-C .350D .320- 9.已知函数)0(212)(<-=x x f x与)(log )(2a x x g +=的图象上存在关于y 轴对称的点,则a 的取值范围是( )A .)2,(--∞B .)2,(-∞C .)22,(--∞D .)22,22(- 10.已知正四棱台1111D C B A ABCD -的上、下底面边长分别为22,2,高为2,则其外接球的表面积为( )A .π16B .π20C .π65D .π465 11.平行四边形ABCD 中,2,3==AD AB ,0120=∠BAD ,P 是平行四边形ABCD 内一点,且1=AP ,若y x +=,则y x 23+的最大值为( ) A .1 B .2 C .3 D .412.设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为,3,2,1,=n S n …,若n n a a a c b ==++1111,2,2,211nn n n n n a b c a c b +=+=++,则( ) A .}{n S 为递减数列 B .}{n S 为递增数列C .}{12-n S 为递增数列,}{2n S 为递减数列D .}{12-n S 为递减数列,}{2n S 为递增数列二、填空题(每题4分,满分20分,将答案填在答题纸上)13.函数x a x a x x f )3()1()(24-+--=的导函数)('x f 是奇函数,则实数=a .14.已知y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤-≥+-002043y x x y x (R y x ∈,),则22y x +的最大值为 .15.已知F 为抛物线x y C 4:2=的焦点,过点F 作两条互相垂直的直线21,l l ,直线1l 与C 交于B A ,两点,直线2l 与C 交于E D ,两点,则||||DE AB +的最小值为 . 16.在锐角三角形ABC 中,角C B A ,,的对边分别为c b a ,,,且满足ac a b =-22,则BA tan 1tan 1-的取值范围为 . 三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等比数列}{n a 的前n 项和为n S ,且满足)(221R m m S n n ∈+=+. (1)求数列}{n a 的通项公式; (2)若数列}{n b 满足)(log )12(112+⋅+=n n n a a n b ,求数列}{n b 的前n 项和n T .18.小张举办了一次抽奖活动.顾客花费3元钱可获得一次抽奖机会.每次抽奖时,顾客从装有1个黑球,3个红球和6个白球(除颜色外其他都相同)的不透明的袋子中依次不放回地摸出3个球,根据摸出的球的颜色情况进行兑奖.顾客中一等奖,二等奖,三等奖,四等奖时分别可领取的奖金为a 元,10元,5元,1元.若经营者小张将顾客摸出的3个球的颜色分成以下五种情况:1:A 个黑球2个红球;3:B 个红球;:c 恰有1个白球;:D 恰有2个白球;3:E 个白球,且小张计划将五种情况按发生的机会从小到大的顺序分别对应中一等奖,中二等奖,中三等奖,中四等奖,不中奖.(1)通过计算写出中一至四等奖分别对应的情况(写出字母即可); (2)已知顾客摸出的第一个球是红球,求他获得二等奖的概率;(3)设顾客抽一次奖小张获利X 元,求变量X 的分布列;若小张不打算在活动中亏本,求a 的最大值.19.如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,0160=∠CBB ,1AC AB =.(1)证明:平面⊥C AB 1平面C C BB 11;(2)若C B AB 1⊥,直线AB 与平面C C BB 11所成的角为030,求直线1AB 与平面C B A 11所成角的正弦值.20.如图,圆),(),0,2(),0,2(,4:0022y x D B A y x O -=+为圆O 上任意一点,过D 作圆O 的切线,分别交直线2=x 和2-=x 于F E ,两点,连接BE AF ,,相交于点G ,若点G 的轨迹为曲线C .(1)记直线)0(:≠+=m m x y l 与曲线C 有两个不同的交点Q P ,,与直线2=x 交于点S ,与直线1-=y 交于点T ,求OPQ ∆的面积与OST ∆的面积的比值λ的最大值及取得最大值时m 的值.(注:222r y x =+在点),(00y x D 处的切线方程为200r yy xx =+)21.已知函数x a x g x x f ln )(,21)(2==. (1)若曲线)()(x g x f y -=在2=x 处的切线与直线073=-+y x 垂直,求实数a 的值;(2)设)()()(x g x f x h +=,若对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,求实数a 的取值范围;(3)若在],1[e 上存在一点0x ,使得)(')()('1)('0000x g x g x f x f -<+成立,求实数a 的取值范围.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎪⎩⎪⎨⎧==21t a y t x (其中t 为参数,0>a ),以坐标原点O 为极点,x 轴的正半轴为极轴建立的极坐标系中,直线l :0sin cos =+-b θρθρ与2C :θρcos 4-=相交于B A ,两点,且090=∠AOB . (1)求b 的值;(2)直线l 与曲线1C 相交于N M ,两点,证明:||||22N C M C ⋅(2C 为圆心)为定值. 23.选修4-5:不等式选讲已知函数|1||42|)(++-=x x x f . (1)解不等式9)(≤x f ;(2)若不等式a x x f +<2)(的解集为A ,}03|{2<-=x x x B ,且满足A B ⊆,求实数a的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分,共20分. 13.3 14.8 15.16 16.)332,1( 三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.解:(1)由)(221R m m S n n ∈+=+得⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=282422321m S m S m S ,)(R m ∈,从而有4,2233122=-==-=S S a S S a , 所以等比数列}{n a 的公比223==a a q ,首项11=a ,因此数列}{n a 的通项公式为)(2*1N n a n n ∈=-.(2)由(1)可得12)22(log )(log 1212-=⋅=⋅-+n a a n n n n , ∴)121121(21)12)(12(1+--⨯=-+=n n n n b n ∴)1211215131311(2121+--++-+-⨯=+++=n n b b b T n n 12+=n n. 18.解:(1)4011203)(31023===C C A P ;12011)(310==C B P ,10312036)(3102416===C C C C P ,2112060)(3101426===C C C D P ,6112020)(31036===C C E P∵)()()()()(D P C P E P A P B P <<<<, ∴中一至四等奖分别对应的情况是C E A B ,,,.(2)记事件F 为顾客摸出的第一个球是红球,事件G 为顾客获得二等奖,则181)|(2912==C C F G P .(3)X 的取值为3,2,2,7,3---a ,则分布列为由题意得,若要不亏本,则03212103)2(61)7(401)3(1201≥⨯+⨯+-⨯+-⨯+-⨯a , 解得194≤a ,即a 的最大值为194.19.解:(1)证明:连接1BC ,交C B 1于O ,连接AO , ∵侧面C C BB 11为菱形,∴11BC C B ⊥ ∵为1BC 的中点,∴1BC AO ⊥ 又O AO C B = 1,∴⊥1BC 平面C AB 1又⊂1BC 平面C C BB 11,∴平面⊥C AB 1平面C C BB 11.(2)由B BO AB C B BO C B AB =⊥⊥ ,,11,得⊥C B 1平面ABO 又⊂AO 平面ABO ,∴C B AO 1⊥,从而1,,OB OB OA 两两互相垂直,以O 为坐标原点,的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz O -∵直线AB 与平面C C BB 11所成角为030,∴030=∠ABO设1=AO ,则3=BO ,∵0160=∠CBB ,∴1CBB ∆是边长为2的等边三角形∴)0,1,0(),0,1,0(),0,0,3(),1,0,0(1-C B B A ,则)1,0,3(),0,2,0(),1,1,0(1111-==-=-=AB B A C B AB 设),,(z y x =是平面C B A 11的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00111C B n B A n 即⎩⎨⎧=-=-0203y z x ,令1=x ,则)3,0,1(=n设直线1AB 与平面C B A 11所成的角为θ, 则46||||||,cos |sin ==><=n AB θ. 20.解:(1)易知过点),(00y x D 的切线方程为400=+y y x x ,其中42020=+y x ,则)24,2(),2,2(000y x F y x E +--, ∴4116416416424424220020000021-=-=--=-⋅-+=y y y x y x y x k k 设),(y x G ,则144122412221=+⇒-=+⋅-⇒-=y x x y x y k k (0≠y ) 故曲线C 的方程为1422=+y x (0≠y ) (2)联立⎩⎨⎧=++=4422y x mx y 消去y ,得0448522=-++m mx x ,设),(),,(2211y x Q y x P ,则544,5822121-=-=+m x x m x x ,由0)44(206422>--=∆m m 得55<<-m 且2,0±≠≠m m∴22221221255245444)58(24)(11||m m m x x x x PQ -=-⨯--⨯=-++=,易得)1,1(),2,2(---+m T m S , ∴)3(2)3()3(||22m m m ST +=+++=,∴22)3(554||||m m ST PQ S S OSTOPQ +-===∆∆λ,令)53,53(,3+-∈=+t t m 且5,3,1≠t ,则45)431(4544654222+--⨯=-+-=t t t t λ, 当431=t ,即43=t 时,λ取得最大值552,此时35-=m . 21.解:(1)xax y x a x x g x f y -=-=-=',ln 21)()(2 由题意得322=-a,解得2-=a (2))()()(x g x f x h +=x a x ln 212+=对任意两个不等的正数21,x x ,2)()(2121>--x x x h x h 恒成立,令21x x >,则)(2)()(2121x x x h x h ->-,即2211)(2)(x x h x x h ->-恒成立 则问题等价于x x a x x F 2ln 21)(2-+=在),0(+∞上为增函数 2)('-+=xax x F ,则问题转化为0)('≥x F 在),0(+∞上恒成立,即22x x a -≥在),0(+∞上恒成立,所以1)2(max 2=-≥x x a ,即实数a 的取值范围是),1[+∞. (3)不等式)(')()('1)('0000x g x g x f x f -<+等价于0000ln 1x ax a x x -<+,整理得01ln 000<++-x ax a x ,构造函数x a x a x x m ++-=1ln )(, 由题意知,在],1[e 上存在一点0x ,使得0)(0<x m2222)1)(1()1(11)('x x a x x a ax x x a x a x m +--=+--=+--=因为0>x ,所以01>+x ,令0)('=x m ,得a x +=1①当11≤+a ,即0≤a 时,)(x m 在],1[e 上单调递增,只需02)1(<+=a m ,解得2-<a ; ②当e a ≤+<11,即10-≤<e a 时,)(x m 在a x +=1处取得最小值.令01)1ln(1)1(<++-+=+a a a a m ,即)1l n (11+<++a a a ,可得)1ln(11+<++a aa (*) 令1+=a t ,则e t ≤<1,不等式(*)可化为t t t ln 11<-+ 因为e t ≤<1,所以不等式左端大于1,右端小于或等于1,所以不等式不能成立. ③当e a >+1,即1->e a 时,)(x m 在],1[e 上单调递减,只需01)(<++-=eaa e e m 解得112-+>e e a .综上所述,实数a 的取值范围是),11()2,(2+∞-+--∞e e . 22.解:(1)由题意可得直线l 和圆2C 的直角坐标方程分别为0=+-b y x ,4)2(22=++y x∵090=∠AOB ,∴直线l 过圆2C 的圆心)0,2(2-C ,∴2=b . (2)证明:曲线1C 的普通方程为)0(2>=a ay x ,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+-=ty t x 22222(t 为参数),代入曲线1C 的方程得04)2222(212=++-t a t , 04212>+=∆a a 恒成立,设N M ,两点对应的参数分别为21,t t ,则821=t t , ∴8||||22=N C M C , ∴||||22N C M C 为定值8.23.解:(1)由9)(≤x f 可得9|1||42|≤++-x x ,即⎩⎨⎧≤->9332x x 或⎩⎨⎧≤-≤≤-9521x x 或⎩⎨⎧≤+--<9331x x解得42≤<x 或21≤≤-x 或12-<≤-x , 故不等式9)(≤x f 的解集为]4,2[-.(2)易知)3,0(=B ,由题意可得a x x x +<++-2|1||42|在)3,0(上恒成立⇒1|42|-+<-a x x 在)3,0(上恒成立1421-+<-<+-⇒a x x a x 在)3,0(上恒成立 3->⇒x a 且53+->x a 在)3,0(上恒成立⎩⎨⎧≥≥⇒50a a 5≥⇒a .。

贵州省黔东南州2018届高三第一次模拟考试理科数学(含解析)

贵州省黔东南州2018届高三第一次模拟考试理科数学(含解析)

故 an a1qn1 3 3n1 3n . (Ⅱ)由(Ⅰ)得 S n 则 Tn
„„„„„„„„„„„„„„„„„„„(6 分) „„(8 分)则 cn
a 2 b2 1 c2


1 1 a 2 b 2 (a b) 2c 2 2
2 2 a 1 2 b 2 c 2



18
9
5 1 2 1 ,故选 A . 36 9
11
(2,5)
3 1
2
13. 解:本题考查线性规划,答案为 11 . 14. 解:因为 f ( x ) 在 0, 上单调递增,所以 f (1) f (2) 0 2 m 5 . 15. 解:依题意知,该正方体的内切球半径为 1 ,外接球的半径为 3 ,且这两个球同心,则线段 PQ 长度 的最小值是 3 1 . 16. 解:由已知得 tan
8r 15r 17 r 1 8 15 (等积法),解得 r 3 ,故其直径为 6 (步). 2 2 2 2 1 r r nr r n r r n 3r 7. 解:通项 Tr 1 Cn (2 x) ( 2 ) ( 1) 2 Cn x , x 依题意得 n 3r 0 n 3r .故 n 是 3 的倍数,只有选项 C 符合要求. 8. 解:① n 351 ,则 k 351 , m 0 ,
黔东南州 2018 届高三第一次模拟考试 理科数学参考答案
一、选择题 题号 答案 1 2 3 4 5 6 7 8 9 10 11 12
C
C
B
A
D
B
C
B
B
A
D
A
1. 解:由 x 2 2 x 0 0 x 2 ,故 ð U A B {x | x 1} {x | 0 x 2} (0,1] .

2018全国贵州高考数学(理)试题高考真题及答案解析

2018全国贵州高考数学(理)试题高考真题及答案解析

2018年普通高等学校招生全国统一考试理科数学 2018.11.14注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =(A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43-(B )34-(C )3(D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为 (A )x =k π2–π6 (k ∈Z ) (B )x =k π2+π6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π12(k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34(9)若cos(π4–α)=35,则sin 2α= (A )725 (B )15 (C )–15 (D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn(11)已知F 1,F 2是双曲线E 22221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为(A )2 (B )32(C )3 (D )2(12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A =45,cos C =513,a =1,则b =. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(共三套)(含答案)

2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。

2018届贵州省黔东南州高三第一次模拟考试(套题)数学(理)试题(解析版)

2018届贵州省黔东南州高三第一次模拟考试(套题)数学(理)试题(解析版)

黔东南州2018届高三第一次模拟考试理科数学试卷第Ⅰ卷选择题一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,,则()A. B. C. D.【答案】C【解析】由,故,故选C.2. 对于复数,若,则()A. 0B. 2C. -2D. -1【答案】C【解析】由得,解得,故选C.3. 经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误..的是()A. 旅游总人数逐年增加B. 2017年旅游总人数超过2015、2016两年的旅游总人数的和C. 年份数与旅游总人数成正相关D. 从2014年起旅游总人数增长加快【答案】B【解析】从图表中看出,旅游的总人数逐年增加时正确的;年份数与旅游总人数成正相关,是正确的;从2014年起旅游总人数增长加快是正确的;其中选项明显错误,故选B.4. 在等差数列中,若,则()A. 9B. 8C. 6D. 3【答案】A【解析】设的公差为,由得,所以,则,故选A.5. 某正三棱锥正视图如图所示,则俯视图的面积为()A. B. C. D.【答案】D【解析】由正视图知,该正三棱锥的底边长为,高为,则侧视图是一个底边长为,高为的三角形,其面积为,故选D.6. 我国古代数学名著《九章算术》在“勾股”一章中有如下数学问题:“今有勾八步,股十五步,勾中容圆,问径几何?”.意思是一个直角三角形的两条直角边的长度分别是8步和15步,则其内切圆的直径是多少步?则此问题的答案是()A. 3步B. 6步C. 4步D. 8步【答案】B【解析】由于该直角三角形的两直角边长分别是和,则得其斜边长为,设其内切圆半径为,则有 (等积法),解得,故其直径为 (步),故选B.7. 在展开式中存在常数项,则正整数可以是()A. 2017B. 2018C. 2019D. 2020【答案】C【解析】由通项,依题意得,解得,故是的倍数,只有选项符合要求,故选C.8. 执行如图的程序框图,当输入的时,输出的()A. 355B. 354C. 353D. 352【答案】B【解析】由题意,①,则,,成立,,;②成立,,;③成立,,;④不成立,所以输出,故选.9. 给出函数,点,是其一条对称轴上距离为的两点,函数的图象关于点对称,则的面积的最小值为()A. B. C. D.【答案】B【解析】由是其一条对称轴上距离的零点,所以函数的最小正周期为,则点到直线距离的最小值为,从而得到面积的最小值为,故选B.10. 过抛物线:的焦点的直线交抛物线于、两点,以线段为直径的圆的圆心为,半径为.点到的准线的距离与之积为25,则()A. 40B. 30C. 25D. 20【答案】A【解析】由抛物线的性质知,点到的准线的距离为,依题意得,又点到的准线的距离为,... ... ... ... ... ...则有,故,故选A.11. 已知、,如果函数的图象上存在点,使,则称是线段的“和谐函数”.下面四个函数中,是线段的“和谐函数”的是()A. B.C. D.【答案】D【解析】由于线段的垂直平分线方程为,则函数是线段的“和谐函数”则与直线有公共点,即函数有零点.利用导函数的性质,经检验知,只有函数的图像上存在点满足上上述条件,故选D.点睛:本题主要考查了函数的新定理的理解与应用问题,其中解答中正确理解函数的新定义,把线段的“和谐函数”,转化为函数与直线有公共点,得到函数有零点是解答点关键,着重考查了学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题.12. 在中,角、、所对的边分别为、、.、是线段上满足条件,的点,若,则当角为钝角时,的取值范围是()A. B. C. D.【答案】A【解析】依题意知分别是线段上的两个三等分点,则有,,则,而,则,得,由为钝角知,又,则有,故选.点睛:本题主要考查了向量的数量积的运算和三角形中正、余弦定理的应用,对于平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.第Ⅱ卷非选择题二、填空题:本大题共4小题,每小题5分.13. 若实数,满足,则的最大值是__________.【答案】11【解析】作出约束条件所表示的平面区域,如图所示,把目标函数化为,由,解得,当目标函数经过点时,取得最大值,此时最大值为.14. 已知函数有唯一零点,如果它的零点在区间内,则实数的取值范围是_______.【答案】【解析】因为在上单调递增,因为函数的零点在区间内,所以,即,解得,所以实数的取值范围是.15. 已知、分别是棱长为2的正方体的内切球和外接球上的动点,则线段长度的最小值是________.【答案】【解析】依题意知,该正方体的内切球半径为,外接球的半径为,且这两个球同心,则线段长度的最小值是.点睛:本题考查了空间几何体的结构特征以及组合体的结构问题,着重考查了空间想象能力和转化与化归思想的应用,对于多面体的外接球问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16. 已知点是双曲线:右支上一点,的左、右顶点分别为、,的右焦点为,记,,当,且时,双曲线的离心率__________.【答案】【解析】由已知得,,则又,则有或(舍).点睛:本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程式解得关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 各项均为正数的等比数列的前项和为.已知,.(Ⅰ)求数列的通项公式;(Ⅱ)设数列满足,求数列的前项和.【答案】(1) ;(2) .【解析】试题分析:(Ⅰ)设的公比为,由,,解得,即可求解数列的通项公式;(Ⅱ)由(Ⅰ)得,可得,利用等比数列的求和公式,即可求解数列的前项和.试题解析:(Ⅰ)设的公比为,由,得,于是,解得(不符合题意,舍去)故.(Ⅱ)由(Ⅰ)得,则,则….18. 为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人参加比赛.(Ⅰ)设为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件发生的概率.(Ⅱ)设为选出的4人中高级导游的人数,求随机变量的分布列和数学期望.【答案】(1);(2)见解析.【解析】试题分析:(Ⅰ)由已知条件知,当两名高级导游来自甲旅游协会时,有种不同选法,当两名高级导游来自乙旅游协会时,有种不同选法,利用古典概型及其概率的计算公式,即可求解事件发生的概率;(Ⅱ)由题意,得随机变量的所有可能取值为,求得随便取每个值的概率,列出分布列,利用公式求解随机变量的期望.试题解析:(Ⅰ)由已知条件知,当两名高级导游来自甲旅游协会时,有种不同选法;当两名高级导游来自乙旅游协会时,有种不同选法,则,所以事件发生的概率为.(Ⅱ)随机变量的所有可能取值为1,2,3,4.,,,.所以,随机变量的分布列为则随机变量的数学期望(人).19. 如图所示,在三棱锥中,平面,,,、分别为线段、上的点,且,.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.【答案】(1)见解析;(2).【解析】试题分析:(Ⅰ)由平面,证得,再由为等腰直角三角形,得到,即可利用线面垂直的判定定理,证得平面.(Ⅱ) 由(Ⅰ)知,以为坐标原点,如图建立空间直角坐标系,求得平面的法向量为,又平面的法向量可取,利用向量的夹角公式,即可求解二面角的余弦值.试题解析:(Ⅰ)证明:由平面,平面,故由,得为等腰直角三角形,故又,故平面.(Ⅱ) 由(Ⅰ)知,为等腰直角三角形,过作垂直于,易知又已知,故以为坐标原点,建立空间直角坐标系,则则有,.设平面的法向量为,则有,可取;因为平面,所以平面的法向量可取.则.而二面角为锐二面角,故其余弦值为.20. 已知椭圆:的左、右焦点分别为、,上顶点为.动直线:经过点,且是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线交于、两点,若点在以线段为直径的圆外,求实数的取值范围.【答案】(1)椭圆的标准方程为;(2)实数的取值范围是.【解析】试题分析:(Ⅰ) 由题意德,在等腰直角和关系式,求得的值,即可得到椭圆的方程;(Ⅱ) 设,,联立方程组,求得,又点在以线段为直径的圆外等价于,列出关于的不等式,求得实数的范围.试题解析:(Ⅰ) 因为直线经过点,所以,又是等腰直角三角形,所以所以故椭圆的标准方程为.(Ⅱ) 设,,将与联立消得.,点在以线段为直径的圆外等价于,,解得故实数的取值范围是.点睛:本题主要考查椭圆的方程与性质、直线与圆锥曲线的位置关系,解答此类题目,通常利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数的性质求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.21. 函数在点处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)求的单调区间;(Ⅲ),成立,求实数的取值范围.【答案】(1);(2)函数的减区间是,增区间是;(3)的取值范围是.. 【解析】试题分析:(Ⅰ)求得,分别令,,即可求得的值;(Ⅱ)由(Ⅰ)得和,由于在区间上为增函数,且,进而得到函数的单调区间;(Ⅲ)构造函数,由成立,等价于,再由(Ⅱ)知当时,,即(当且仅当时取等号),即可求解实数的取值范围.试题解析:(Ⅰ),依题意得,,则有.(Ⅱ)由(Ⅰ)得,,由于在区间上为增函数,且,则当时,;当时,,故函数的减区间是,增区间是.(Ⅲ) 因为,于是构造函数,,成立,等价于,由(Ⅱ)知当时,,即对恒成立.即(当且仅当时取等号)所以函数,又时,,所以.故的取值范围是.点睛:本题主要考查导数、函数的性质,考查了转化与化归思想、逻辑推理能力与计算能力.导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决生活中的优化问题; (4)考查数形结合思想的应用.22. 在直角坐标系中,点的坐标为,直线的参数方程为(为参数).以坐标原点为极点,以轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆极坐标方程为.(Ⅰ)当时,求直线的普通方程和圆的直角坐标方程;(Ⅱ)直线与圆的交点为、,证明:是与无关的定值.【答案】(1)直线的普通方程为,圆的直角坐标方程为;(2)见解析.【解析】试题分析:(Ⅰ)当时,消去得到直线的普通方程,由圆极坐标方程,根据极坐标与直角坐标的互化公式,即可得到原的直角坐标方程.(Ⅱ)将直线的参数方程代入圆的方程,,得,由的几何意义可求得的值.试题解析:(Ⅰ)当时,的参数方程为(为参数),消去得.由圆极坐标方程为,得.故直线的普通方程为圆的直角坐标方程为.(Ⅱ)将代入得,.设其两根分别为,则.由的几何意义知.故为定值(与无关) .23. 设.(Ⅰ)求不等式的解集;(Ⅱ),,求实数的取值范围.【答案】(1)解集为;(2)实数的取值范围是.【解析】试题分析:(Ⅰ)去掉绝对值,得到分段函数,由,即可取得不等式的解集;(Ⅱ) 由(Ⅰ)及一次函数的性质,求得区间上,的值,进而求得实数的取值范围.试题解析:(Ⅰ),由解得,故不等式的解集为.(Ⅱ) 由(Ⅰ)及一次函数的性质知:在区间为减函数,在区间上为增函数,而,故在区间上,,.由.所以且,于是且,故实数的取值范围是.。

2018年贵州省贵阳市高考一模数学试卷(理科)【解析版】

2018年贵州省贵阳市高考一模数学试卷(理科)【解析版】

2018年贵州省贵阳市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设A={x|2x>},B={﹣3,﹣2,﹣1},则A∩B=()A.∅B.{﹣3,﹣2,﹣1}C.{﹣2,﹣1}D.{x|x>﹣3}2.(5分)设是复数z的共轭复数,满足=,则|z|=()A.2B.2C.D.3.(5分)贵阳地铁1号线12月28日开通运营,某机车某时刻从下麦西站驶往贵阳北站的过程中,10个车站上车的人数统计如下:70、60、60、50、60、40、40、30、30、10,则这组数据的众数、中位数、平均数的和为()A.170B.165C.160D.1504.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为()A.3B.6C.10D.125.(5分)某程序框图如图所示,若该程序运行后输出的值是,则整数a的值为()A.6B.7C.8D.96.(5分)《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,丙所得为()A.钱B.钱C.钱D.1钱7.(5分)把函数y=sin(x+)+1图象上各点的横坐标缩短为原来的倍(纵坐标不变),那么所得图象的一条对称轴方程为()A.x=B.C.D.8.(5分)已知等比数列{a n}的前n项和为S n,且a1=,a2a6=8(a4﹣2),则S2018=()A.22017﹣B.1﹣()2017C.22018﹣D.1﹣()20189.(5分)已知奇函数f(x)在R上是减函数,且a=﹣f(log3),b=f(log39.1),c=f(20.8),则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b 10.(5分)如图,格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的四个面的面积中最大与最小之和是()A.8+4B.12C.8+4D.1011.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为,△AOB的面积为2,则p=()A.2B.1C.2D.312.(5分)已知函数f(x)=的图象上有两对关于y轴对称的点,则实数k的取值范围是()A.(0,e)B.(0,e﹣2)C.(0,2e2)D.(0,e﹣2)二、填空题,本题共4小题,每小题5分,共20分.13.(5分)若向量=(x,1)与向量=(1,﹣2)垂直,则|+|=.14.(5分)某校选定4名教师去3个边远地区支教(每地至少1人),则甲、乙两人不在同一边远地区的概率是.15.(5分)若直线l:ax﹣3y+12=0(a∈R)与圆M:x2+y2﹣4y=0相交于A、B 两点,若∠ABM的平分线过线段MA的中点,则实数a=.16.(5分)已知底面是正六边形的六棱锥P﹣ABCDEF的七个顶点均在球O的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为,则球O 的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知在△ABC中,角A,B,C所对的边长分别是a,b,c,AB边上的高h=c.(Ⅰ)若△ABC为锐角三角形,且cos A=,求角C的正弦值;(Ⅱ)若∠C=,M=,求M的值.18.(12分)某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6道问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.(Ⅰ)求甲、乙两名学生共答对2个问题的概率.(Ⅱ)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大?19.(12分)如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面P AD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,P A=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.20.(12分)已知椭圆C:+=1(a>0,b>0)的左、右焦点分别为F1,F2,点M为短轴的上端点,•=0,过F2垂直于x轴的直线交椭圆C 于A,B两点,且|AB|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过点(2,﹣1)且不经过点M的直线l与C相交于G,H两点.若k1,k2分别为直线MH,MG的斜率,求k1+k2的值.21.(12分)已知函数f(x)=lnx+x2﹣ax+a(a∈R).(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求实数a的取值范围;(Ⅱ)若函数f(x)在x=x1和x=x2处取得极值,且x2≥x1(e为自然对数的底数),求f(x2)﹣f(x1)的最大值.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修坐标系与参数方程选讲]22.(10分)在平面直角坐标系xOy中,曲线C:(α为参数),在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ+)=﹣1.(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)过点M(﹣1,0)且与直线l平行的直线l1交曲线C于A,B两点,求点M到A,B两点的距离之和.[选修不等式选讲]23.已知函数f(x)=|x﹣2|﹣|x+1|.(Ⅰ)解不等式f(x)>﹣x;(Ⅱ)若关于x的不等式f(x)≤a2﹣2a的解集为R,求实数a的取值范围.2018年贵州省贵阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设A={x|2x>},B={﹣3,﹣2,﹣1},则A∩B=()A.∅B.{﹣3,﹣2,﹣1}C.{﹣2,﹣1}D.{x|x>﹣3}【解答】解:A={x|2x>}={x|x>﹣3}B={﹣3,﹣2,﹣1},则A∩B={﹣2,﹣1},故选:C.2.(5分)设是复数z的共轭复数,满足=,则|z|=()A.2B.2C.D.【解答】解:∵==,∴|z|=||=.故选:B.3.(5分)贵阳地铁1号线12月28日开通运营,某机车某时刻从下麦西站驶往贵阳北站的过程中,10个车站上车的人数统计如下:70、60、60、50、60、40、40、30、30、10,则这组数据的众数、中位数、平均数的和为()A.170B.165C.160D.150【解答】解:数据70、60、60、50、60、40、40、30、30、10的众数是60、中位数是45、平均数是45,故众数、中位数、平均数的和为150,故选:D.4.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为()A.3B.6C.10D.12【解答】解:实数x,y满足约束条件的可行域如图所示:联立,解得A(3,﹣4).化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最小,z有最大值为2×3+4=10.故选:C.5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则整数a的值为()A.6B.7C.8D.9【解答】解:当S=1,k=1时,应不满足退出循环的条件,故S=,k=2;当S=,k=2时,应不满足退出循环的条件,故S=,k=3;当S=,k=3时,应不满足退出循环的条件,故S=,k=4;当S=,k=4时,应不满足退出循环的条件,故S=,k=5;当S=,k=5时,应不满足退出循环的条件,故S=,k=6;当S=,k=6时,应不满足退出循环的条件,故S=,k=7;当S=,k=7时,应满足退出循环的条件,故整数a的值为6,故选:A.6.(5分)《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,丙所得为()A.钱B.钱C.钱D.1钱【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,∴在这个问题中,丙所得为1钱.故选:D.7.(5分)把函数y=sin(x+)+1图象上各点的横坐标缩短为原来的倍(纵坐标不变),那么所得图象的一条对称轴方程为()A.x=B.C.D.【解答】解:函数y=sin(x+)+1图象上各点的横坐标缩短为原来的倍(纵坐标不变),可得:y=sin(2x+)+1.令2x+=,k∈Z.可得:x=,令k=0,可得图象的一条对称轴方程为x=.故选:D.8.(5分)已知等比数列{a n}的前n项和为S n,且a1=,a2a6=8(a4﹣2),则S2018=()A.22017﹣B.1﹣()2017C.22018﹣D.1﹣()2018【解答】解:根据题意,设等比数列{a n}的公比为q,若a2a6=8(a4﹣2),则有(a4)2=8(a4﹣2),即a42﹣8a4+16=0,解可得a4=4,则q3===8,则q=2,则S2018==22017﹣,故选:A.9.(5分)已知奇函数f(x)在R上是减函数,且a=﹣f(log3),b=f(log39.1),c=f(20.8),则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b【解答】解:∵奇函数f(x)在R上是减函数,且a=﹣f(log3),b=f(log39.1),c=f(20.8),∴a=﹣f(log3)=f(log310)<b=f(log39.1)<c=f(20.8),则a,b,c的大小关系为a<b<c.故选:B.10.(5分)如图,格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的四个面的面积中最大与最小之和是()A.8+4B.12C.8+4D.10【解答】解:三视图可知三棱锥是从长方体中截出来的P﹣ABC,数据如图:S P AB=×4×4=8,S△P AC=×2 ×4=4 .S△ABC=×4×2=4,S△PBC=×2 ×2 =4 .则该三棱锥的四个面的面积中最大的是:8.面积的最小值为4.所以则该三棱锥的四个面的面积中最大与最小之和是:12,故选:B.11.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为,△AOB的面积为2,则p=()A.2B.1C.2D.3【解答】解:双曲线﹣=1(a>0,b>0)的离心率e=,∴e2===1+=5,∴=4,∴=2,∴双曲线﹣=1(a>0,b>0)的两条渐近线方程为y=±2x,∵抛物线y2=2px(p>0)的准线方程为x=﹣,∴或,解得,或,∴|AB|=p﹣(﹣p)=2p,点O到AB的距离为d=,=|AB|×d==2,∴S△AOB解得p=2,故选:A.12.(5分)已知函数f(x)=的图象上有两对关于y轴对称的点,则实数k的取值范围是()A.(0,e)B.(0,e﹣2)C.(0,2e2)D.(0,e﹣2)【解答】解:当x<0时,f(x)=ln(﹣2x),则此时函数f(x)关于y轴对称的函数为y=ln2x,x>0,若函数f(x)=的图象上有两对关于y轴对称的点,等价为当x≥0时,函数f(x)=kx﹣3与函数g(x)=ln2x,x>0有两个交点即可,由题意可得g(x)的图象和y=kx﹣3(x>0)的图象有两个交点.设直线y=kx﹣3与y=g(x)相切的切点为(m,ln2m)由g(x)的导数为g′(x)==,即有切线的斜率为=k,又ln2m=km﹣3,即ln2m=•m﹣3=1﹣3=﹣2,解得m=e﹣2,k=2e2,由图象可得0<k<2e2时,有两个交点,故选:C.二、填空题,本题共4小题,每小题5分,共20分.13.(5分)若向量=(x,1)与向量=(1,﹣2)垂直,则|+|=.【解答】解:根据题意,向量=(x,1)与向量=(1,﹣2)垂直,则有•=x﹣2=0,则x=2;则向量=(2,1),则+=(3,﹣1),则|+|==;故答案为:14.(5分)某校选定4名教师去3个边远地区支教(每地至少1人),则甲、乙两人不在同一边远地区的概率是.【解答】解:某校选定4名教师去3个边远地区支教(每地至少1人),基本事件总数n=•=36,甲、乙两人在同一边远地区包含的基本事件个数m==6,∴甲、乙两人不在同一边远地区的概率是p=1﹣=1﹣=.故答案为:.15.(5分)若直线l:ax﹣3y+12=0(a∈R)与圆M:x2+y2﹣4y=0相交于A、B两点,若∠ABM的平分线过线段MA的中点,则实数a=.【解答】解:如图,由圆M:x2+y2﹣4y=0,得x2+(y﹣2)2=4,圆心M(0,2),半径为2,直线l:ax﹣3y+12=0(a∈R)过定点A(0,4),要使∠ABM的平分线过线段MA的中点,则AM=BM,∴B为(,3)或(,3),∴,即a=.故答案为:.16.(5分)已知底面是正六边形的六棱锥P﹣ABCDEF的七个顶点均在球O的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为,则球O的表面积为.【解答】解:当六棱锥P﹣ABCDEF为正六棱锥时,体积最大,由于底面正六边形的边长为1,故底面外接圆半径r=1,底面面积S==,设高为h,则V==,解得:h=2,设此时外接球半径为R,则球心到底面的距离d=|h﹣R|=|2﹣R|,由R2=d2+r2得:R2=(2﹣R)2+1,解得:R=,故球O的表面积为4πR2=,故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知在△ABC中,角A,B,C所对的边长分别是a,b,c,AB边上的高h=c.(Ⅰ)若△ABC为锐角三角形,且cos A=,求角C的正弦值;(Ⅱ)若∠C=,M=,求M的值.【解答】解:(Ⅰ)作CD⊥AB与D,∵△ABC为锐角三角形,且cos A=,∴sin A==.⇒AD=cot A•CD=.,∴=.由正弦定理得=.(Ⅱ)∵S=.△ABC∴.由余弦定理得.∴M==.18.(12分)某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6道问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.(Ⅰ)求甲、乙两名学生共答对2个问题的概率.(Ⅱ)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大?【解答】解:(Ⅰ)由题意得甲、乙两名学生共答对2个问题的概率:P=×+=.(Ⅱ)设学生甲答对的题数为X,则X的所有可能取值为1,2,3,P(X=1)==,P(X=2)==,P(X=3)==,E(X)==2,D(X)=(1﹣2)2×+(2﹣2)2×+(3﹣2)2×=,设学生乙答对题数为Y,则Y所有可能的取值为0,1,2,3,由题意知Y~B(3,),E(Y)=3×=2,D(Y)==,E(X)=E(Y),D(X)<D(Y),∴甲被录取的可能性更大.19.(12分)如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面P AD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,P A=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.【解答】(I)证明:∵P A=PD,Q是AD的中点,∴PQ⊥AD,又平面P AD⊥底面ABCD,平面P AD∩底面ABCD=AD,PQ⊂平面P AD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面P AD⊥底面ABCD,平面P AD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面P AD,∴BQ⊥平面P AD,又BQ∥CD∥MN,∴MN⊥平面P AD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=P A=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.20.(12分)已知椭圆C:+=1(a>0,b>0)的左、右焦点分别为F1,F2,点M为短轴的上端点,•=0,过F2垂直于x轴的直线交椭圆C 于A,B两点,且|AB|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过点(2,﹣1)且不经过点M的直线l与C相交于G,H两点.若k1,k2分别为直线MH,MG的斜率,求k1+k2的值.【解答】解:(Ⅰ)由•=0,可得b=c,∵过F2垂直于x轴的直线交椭圆C于A,B两点,且|AB|=,∴=,由,解得a2=2,b2=1,∴椭圆C的方程为+y2=1(Ⅱ)经过点(2,﹣1)且不经过点M的直线l的方程为y+1=k(x﹣2),即y =kx﹣2k﹣1,代入椭圆程+y2=1可得(2k2+1)x2﹣4k(1+2k)x+(8k2+8k)=0,△=﹣16k(k+2)>0,设G(x1,y1),H(x2,y2).则x1+x2=,x1x2=,∴k1+k2=+=+=2k﹣=2k﹣(2k+1)=﹣1,即k1+k2=﹣121.(12分)已知函数f(x)=lnx+x2﹣ax+a(a∈R).(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求实数a的取值范围;(Ⅱ)若函数f(x)在x=x1和x=x2处取得极值,且x2≥x1(e为自然对数的底数),求f(x2)﹣f(x1)的最大值.【解答】解:(Ⅰ)∵f′(x)=+x﹣a,(x>0),又f(x)在(0,+∞)递增,故恒有f′(x)≥0,即+x﹣a≥0(x>0)恒成立,a≤(x+)min,而x+≥2=2,当且仅当x=1时取“=”,故a≤2,即函数f(x)在(0,+∞)递增时a的范围是(﹣∞,2];(Ⅱ)f(x2)﹣f(x1)=ln+(﹣)﹣a(x2﹣x1),又f′(x)=(x>0),故x1,x2是方程x2﹣ax+1=0的2个根,由韦达定理得:x1+x2=a,x1x2=1,故f(x2)﹣f(x1)=ln+(﹣)﹣a(x2﹣x1),=ln﹣(﹣),设t=(t≥),令h(t)=lnt﹣(t﹣),(t≥),h′(t)=<0,∴h(t)在[,+∞)递减,h(t)≤h()=(1﹣+),故f(x2)﹣f(x1)的最大值是(1﹣+).请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修坐标系与参数方程选讲]22.(10分)在平面直角坐标系xOy中,曲线C:(α为参数),在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ+)=﹣1.(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)过点M(﹣1,0)且与直线l平行的直线l1交曲线C于A,B两点,求点M到A,B两点的距离之和.【解答】解:(Ⅰ)∵曲线C:(α为参数),∴曲线C化为普通方程得:+y2=1,∵直线l的极坐标方程为ρcos(θ+)=﹣1.∴ρcosθ﹣ρsinθ=﹣2,∴直线l的直角坐标方程为x﹣y+2=0.(Ⅱ)直线l1的参数方程为(t为参数),代入=1,化简,得:,设A,B两点对应的参数分别为t1,t2,则t1+t2=,t1t2=﹣1,∴点M到A,B两点的距离之和:|MA|+|MB|=|t1|+|t2|=|t1﹣t2|===.[选修不等式选讲]23.已知函数f(x)=|x﹣2|﹣|x+1|.(Ⅰ)解不等式f(x)>﹣x;(Ⅱ)若关于x的不等式f(x)≤a2﹣2a的解集为R,求实数a的取值范围.【解答】解:(Ⅰ)不等式f(x)>﹣x,即为|x﹣2|﹣|x+1|>﹣x,当x≥2时,x﹣2﹣x﹣1>﹣x,可得x>3,即x>3;当x≤﹣1时,2﹣x+x+1>﹣x,解得x>﹣3,即﹣3<x≤﹣1;当﹣1<x<2时,2﹣x﹣x﹣1>﹣x,解得x<1,即﹣1<x<1,综上可得原不等式的解集为{x|x>3或﹣3<x<1};(Ⅱ)关于x的不等式f(x)≤a2﹣2a的解集为R,即有a2﹣2a≥f(x)的最大值,由|x﹣2|﹣|x+1|≤|x﹣2﹣x﹣1|=3,当且仅当x≤﹣1时,等号成立,可得a2﹣2a≥3,解得a≥3或a≤﹣1.第21页(共21页)。

贵州黔东南州2019高三第一次重点考试试卷--数学理

贵州黔东南州2019高三第一次重点考试试卷--数学理

贵州黔东南州2019高三第一次重点考试试卷--数学理2018年黔东南州第一次高考模拟考试试题理科数学本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两部分。

第一卷1至2页。

第Ⅱ3至4页。

第一卷〔本卷共12小题,每题5分,共60分〕考前须知1、每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮檫檫干净后,再选涂其它答案标号,不能答在试题卷上。

2、答题前认真阅读答题卡上的“考前须知”。

参考公式:假如事件A 、B 互斥,那么)()()(B P A P B A P +=+ 假如事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅假如事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中事件A 发生k 次的概率为0()1()(=-=-k p p C k P k n kk n n ,1,2,…,)n球的表面积公式:24R S π=〔R 为球的半径〕球的体积公式:334R V π=〔R 为球的半径〕在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1、在集合}4,1,1|),{(≤+≥≥=y x y x y x A 中,y x 2+的最大值是A 、5B 、6C 、7D 、8、2、i 是虚数单位,复数),(12R b a bi a i∈+=-,那么=+b aA 、0B 、2C 、1D 、2-、3、函数)0(log 1)(2>+=x x x f 的反函数是A 、)(21R x y x ∈=-B 、)1(21>=-x y xC 、)(21R x y x ∈=+D 、)1(21>=+x y x 、4、正方体1111D C B A ABCD -中,二面角D AC D --1的正切值为A 、1B 、2C 、22D 、2、 5、)32sin()(π-=x x f ,那么=+)32()3(//ππf f A 、21-B 、1-C 、21D 、1、6、向量a =)2,3(-,b =)2,1(2x x -+,那么条件“2=x ”是条件“a //b ”成立的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件、7、函数)0)(sin(2)(>+=ωϕωx x f 的图象通过)2,12(--πA 、)2,4(πB 两点,那么ω的 A 、最大值为3B 、最小值为3C 、最大值为6D 、最小值为6、8、圆C :822=+y x 上有两个相异的点到直线5-=x y 的距离为都为d ,那么d 的取值范围是A 、)29,21(B 、]29,21[C 、)229,22(D 、]229,22[、 9、春节期间,某单位要安排3位行政领导从初一至初六值班,每天安排1人,每人值班两天,那么共有多少种安排方案?A 、90B 、120C 、150D 、15、10、正三棱锥ABC P -中,3=PA ,2=AB ,那么PA 与平面PBC 所成角的余弦值为A 、932B 、126C 、1227D 、42、11、函数mx x x f -+-=1|2|)(的图象总在x 轴的上方,那么实数m 的取值范围是A 、)21,1[-B 、)21,1(-C 、]21,1(-D 、]21,1[-、12、过椭圆C :)0(12222>>=+b a by a x 的右焦点2F 引直线l ,与C 的右准线交于A 点,与C 交于B 、C 两点,与y 轴交于D 点,假设CD BC AB ==,那么C 的离心率为A 、21B 、35C 、33D 、22、绝密★使用完毕前3月3日15∶00—17∶002018年黔东南州第一次高考模拟考试试题理科数学第二卷〔本卷共10小题,共90分〕考前须知1、考生不能将答案直截了当答在试卷上,必须答在答题卡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黔东南州2018届高三第一次模拟考试理科数学试卷第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合{|1}A x x =>,2{|20}B x x x =-<,则()U C A B =I ( )A .(1,2)B .(0,)+∞C .(0,1]D .(,2)-∞ 2.对于复数(,)z a bi a b R =+∈,若212iz i i-+=+,则b =( ) A .0 B .2 C .-2 D .-13.经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误..的是( )A .旅游总人数逐年增加B .2017年旅游总人数超过2015、2016两年的旅游总人数的和C .年份数与旅游总人数成正相关D .从2014年起旅游总人数增长加快4.在等差数列{}n a 中,若1232318a a a ++=,则152a a +=( ) A .9 B .8 C .6 D .35.某正三棱锥正视图如图所示,则俯视图的面积为( )A .122B .123C .62D .636.我国古代数学名著《九章算术》在“勾股”一章中有如下数学问题:“今有勾八步,股十五步,勾中容圆,问径几何?”.意思是一个直角三角形的两条直角边的长度分别是8步和15步,则其内切圆的直径是多少步?则此问题的答案是( )A .3步B .6步C .4步D .8步 7.在21(2)nx x-展开式中存在常数项,则正整数n 可以是( ) A .2017 B .2018 C .2019 D .2020 8.执行如图的程序框图,当输入的351n =时,输出的k =( )A .355B .354C .353D .3529.给出函数()2sin cos f x x x =22cos 1x +-,点A ,B 是其一条对称轴上距离为5π的两点,函数()f x 的图象关于点C 对称,则ABC ∆的面积的最小值为( ) A .516 B .58 C .54 D .5210.过抛物线C :24y x =的焦点F 的直线交抛物线C 于11(,)A x y 、22(,)B x y 两点,以线段AB 为直径的圆的圆心为1O ,半径为r .点1O 到C 的准线l 的距离与r 之积为25,则12()r x x +=( ) A .40 B .30 C .25 D .2011.已知(0,3)A 、(2,1)B ,如果函数()y f x =的图象上存在点P ,使PA PB =,则称()y f x =是线段AB 的“和谐函数”.下面四个函数中,是线段AB 的“和谐函数”的是( )A .ln 2e y x =+B .1x y e e =+C .ln x y x=D .11x y e -=+ 12.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+u u u r u u u r u u u r,1()2CE CA CD =+u u u r u u u r u u u r的点,若2CD CE c λ⋅=u u u r u u u r ,则当角C 为钝角时,λ的取值范围是( )A .12(,)369-B .12(,)189-C .11(,)369-D .11(,)189- 第Ⅱ卷 非选择题二、填空题:本大题共4小题,每小题5分.13.若实数x ,y 满足116x y x y ≥⎧⎪≥⎨⎪+≤⎩,则2z x y =+的最大值是.14.已知函数2()log 2x f x x m =+-有唯一零点,如果它的零点在区间(1,2)内,则实数m 的取值范围是. 15.已知P 、Q 分别是棱长为2的正方体的内切球和外接球上的动点,则线段PQ 长度的最小值是.16.已知点P 是双曲线C :22221(0,0)x y a b a b-=>>右支上一点,C 的左、右顶点分别为A 、B ,C 的右焦点为F ,记PAF α∠=,PBF β∠=,当5cos()5αβ+=-,且0PF AB ⋅=u u u r u u u r 时,双曲线C 的离心率e =.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.各项均为正数的等比数列{}n a 的前n 项和为n S .已知13a =,339S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列{}n c 满足nn nS c a =,求数列{}n c 的前n 项和n T . 18.为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人 参加比赛.(Ⅰ)设A 为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件A 发生的概率.(Ⅱ)设ξ为选出的4人中高级导游的人数,求随机变量ξ的分布列和数学期望. 19.如图所示,在三棱锥P ABC -中,PC ⊥平面ABC ,3PC =,2ACB π∠=,D 、E 分别为线段AB 、BC 上的点,且2CD DE ==,22CE EB ==.(Ⅰ)求证:DE ⊥平面PCD ; (Ⅱ)求二面角D PE C --的余弦值.20.已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A .动直线l :10()x my m R --=∈经过点2F ,且12AF F ∆是等腰直角三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 交C 于M 、N 两点,若点A 在以线段MN 为直径的圆外,求实数m 的取值范围. 21.函数()ln xf x e a x b =--在点(1,(1))P f 处的切线方程为0y =. (Ⅰ)求实数a ,b 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)1x ∀≥,22ln (ln )x xex x ke e+≤成立,求实数k 的取值范围. 请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,点P 的坐标为(1,0)-,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数).以坐标原点O 为极点,以x 轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆C 极坐标方程为2ρ=. (Ⅰ)当3πα=时,求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 的交点为A 、B ,证明:PA PB ⋅是与α无关的定值. 23.选修4-5:不等式选讲 设()221f x x x =-++. (Ⅰ)求不等式()6f x ≤的解集;(Ⅱ)[2,1]x ∀∈-,()2f x m -≤,求实数m 的取值范围.黔东南州2018届高三第一次模拟考试理科数学参考答案一、选择题1-5: CCBAD 6-10: BCBBA 11、12:DA1.解:由22002x x x -<⇒<<,故()U A I ð{|B x =1}{|02}(0,1]x x x ≤<<=I . 2.解:由212iz i i-+=+得22z i b =-⇒=-. 3.解:从图表中看出,选项B 明显错误.4.解:设{}n a 的公差为d ,由1232318a a a ++=得116818349a d a d +=⇒+=,则1512349a a a d +=+=.5.解:由正视图知,该正三棱锥的底边长为6,高为4,则侧视图是一个底边长为34的三角形,其面积为36.解:由于该直角三角形的两直角边长分别是8和15,则得其斜边长为17,设其内切圆半径为r ,则有8151718152222r r r ++=⨯⨯(等积法),解得3r =,故其直径为6(步). 7.解:通项3121(2)()(1)2r n r r r n r r n rr n n T C x C x x---+=-=-, 依题意得303n r n r -=⇒=.故n 是3的倍数,只有选项C 符合要求. 8.解:①351=n ,则351=k ,0=m ,20000≤=m 成立,3521351=+=k ,02352704m =+⨯=;②7042000m =≤成立,3531352=+=k ,70423531410m =+⨯=; ③14102000m =≤成立,3541353=+=k ,141023542118m =+⨯=; ④21182000m =≤不成立,所以输出354=k .故选B .9.解:本题抓住一个主要结论——函数()f x 的最小正周期为π,则C 点到直线AB 距离的最小值为4π,从而得到ABC ∆面积的最小值为58,故选B . 10.解:由抛物线的性质知,点1O 到C 的准线l 的距离为1||2AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为121(2)52x x r ++== ,则有128x x +=,故12()r x x +=40.11.解:由于线段AB 的垂直平分线方程为1y x =+,则函数()y f x =是线段AB 的“和谐函数”()y f x ⇔=与直线1y x =+有公共点()1y f x x ⇔=--函数有零点.利用函数的导函数的性质,经检验知,只有函数11x y e -=+的图像上存在点(1,2)P 满足上上述条件,故选D .12.解:依题意知D 、E 分别是线段AB 上的两个三等分点,则有2133CD CB CA =+u u u r u u u r u u u r , 1233CE CB CA =+u u u r u u u r u u u r,则22225999a b CD CE CB CA =++⋅⋅u u u r u u u r u u u r u u u r ,而2222a b c CB CA +-=⋅u u u r u u u r , 则222222225()9918a b CD CE a b c c λ=+++-=⋅u u u r u u u r ,得2221859a b cλ++=, 由C 为钝角知2222221a b a b c c ++<⇒<,又222211()22a b a b c +≥+>⇒22212a b c +>, 则有1185129λ+<<⇒12369λ-<<,故选A .二、填空题13.解:本题考查线性规划,答案为11.14.解:因为()f x 在()0,+∞上单调递增,所以(1)(2)025f f m <⇒<<.15.解:依题意知,该正方体的内切球半径为13,且这两个球同心,则线段PQ 长度的最31.16.解:由已知得2tan 1()b e a c a α==-+,2tan 1()b e ac a β==+-,则22tan()2e e αβ+=- 又5cos()tan()2αβαβ+=⇒+=-,则有22222ee e=-⇒=-或1e =-(舍). 三、解答题17.解:(Ⅰ)设{}n a 的公比为q ,由13a =,339S =得12111=3 39a a a q a q ⎧⎨++=⎩, 于是2120q q +-=,解得3q =(4q =-不符合题意,舍去)故111333n n n n a a q --==⨯=. (Ⅱ)由(Ⅰ)得3(31)2nn S =-,则331223n n n n S c a ==-⨯,则23311(2233n T n =-++ (1))3n + 111(1)3331333122243413n n n n --=-⨯=+-⨯-. 18.解:(Ⅰ)由已知条件知,当两名高级导游来自甲旅游协会时,有22233C C =种不同选法; 当两名高级导游来自乙旅游协会时,有22339C C =种不同选法,则 22222333486()35C C C C P A C +==,所以事件A 发生的概率为635. (Ⅱ)随机变量ξ的所有可能取值为1,2,3,4.1353481(1)14C C P C ξ===,2253483(2)7C C P C ξ===, 3153483(3)7C C P C ξ===,4053481(4)14C C P C ξ===. 所以,随机变量ξ的分布列为ξ1 2 3 4p114 37 37 114则随机变量ξ的数学期望12341477142E ξ=⨯+⨯+⨯+⨯=(人). 19.(Ⅰ)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,故.PC DE ⊥ 由2,2CE CD DE ===CDE ∆为等腰直角三角形,故.CD DE ⊥又PC CD C =I ,故DE ⊥平面PCD .(Ⅱ) 由(Ⅰ)知,CDE ∆为等腰直角三角形,,4DCE π∠=过D 作DF 垂直CE 于F ,易知1,DF FC FE ===又已知1EB =,故 2.FB = 以C 为坐标原点,如图建立空间直角坐标系,则(0,0,0),(0,0,3),(0,2,0),(1,1,0),C P E D则有(1,1,0)DE =-u u u r ,(1,1,3)DP =--u u u r. 设平面PDE 的法向量为(,,)x y z =m ,则有00300DE x y x y z DP ⎧⋅=-+=⎧⎪⇒⎨⎨--+=⋅=⎩⎪⎩u u u r u u ur m m ,可取(3,3,2)=m ;因为AC ⊥平面PCE ,所以平面PCE 的法向量可取(1,0,0)=n . 则322cos ,⋅<>==m n m n |m ||n |. 而二面角D PE C --为锐二面角,故其余弦值为32222.20.解:(Ⅰ) 因为直线:10l x my --=经过点2F ,所以1c =,又12AF F ∆是等腰直角三角形,所以()222222a a c a +=⇒=所以2221b a c =-=故椭圆C 的标准方程为2212x y +=. (Ⅱ) 设11(1,)M my y +,22(1,)N my y +,将:10l x my --=与2212x y +=联立消x 得 22(2)210m y my ++-=.12122221,22m y y y y m m +=-=-++, 点A 在以线段MN 为直径的圆外等价于0AM AN >⋅u u u u r u u u r, ()()()21212112AM AN m y y m y y =++-++⋅u u u u r u u u r()()22212112022m m m m m ⎛⎫⎛⎫=+-+--+> ⎪ ⎪++⎝⎭⎝⎭2230m m ⇒--<,解得13m -<<故实数m 的取值范围是(1,3)-.21. 解:(Ⅰ)()x af x e x'=-, 依题意得(1)0f =,(1)0f '=,则有00e b a ee a b e⎧-==⎧⇒⎨⎨-==⎩⎩. (Ⅱ)由(Ⅰ)得()ln xf x e e x e =--,()x e f x e x'=-, 由于()f x '在区间(0,)+∞上为增函数,且(1)0f '=,则当01x <<时,()(1)0f x f '<'=;当1x >时,()(1)0f x f '>'=, 故函数()f x 的减区间是(0,1),增区间是(1,)+∞.(Ⅲ) 因为2222221ln ln 2ln 1ln ln x x xx x x x exe e e ++++⎛⎫== ⎪⎝⎭, 于是构造函数1ln (),1xxh x x e +=≥, 1x ∀≥,22ln (ln )xx ex x ke e+≤成立,等价于2max ()k h x ⎡⎤≥⎣⎦, 由(Ⅱ)知当1x ≥时,()(1)0f x f ≥=,即(ln 1)xe e x ≥+对1x ≥恒成立. 即ln 11x x e e+≤(当且仅当1x =时取等号) 所以函数max 1()(1)h x h e==,又1x ≥时,()0h x >, 所以222max1()(1)h x h e ⎡⎤==⎣⎦. …(11分)故k 的取值范围是21[,)e +∞. 22. 解:(Ⅰ)当3πα=时,l 的参数方程为11232x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),消去t 得33y x =C 极坐标方程为2ρ=,得224x y +=.故直线l 的普通方程为3(1)y x =+圆C 的直角坐标方程为224x y +=. (Ⅱ)将1cos sinx t y t αα=-+⎧⎨=⎩代入224x y +=得,22cos 30t t α--=.设其两根分别为12,t t ,则123t t =-.由t 的几何意义知||||PA PB ⋅12||||3t t =⋅=.故||||PA PB ⋅为定值3(与α无关) .23. 解:(Ⅰ)3, (1)()4, (12)3, (2)x x f x x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩,由()6f x ≤解得22x -≤≤, 故不等式()6f x ≤的解集为[2,2]-. (Ⅱ) 由(Ⅰ)及一次函数的性质知:()f x 在区间[2,1]--为减函数,在区间[1,1]-上为增函数,而(2)6(1)5f f -=>=,故在区间[2,1]-上,min ()(1)3f x f =-=,max ()(2)6f x f =-=. 由|()|22()2f x m m f x m -≤⇒-≤≤+. 所以max 2()m f x +≥且min 2()m f x -≤, 于是26m +≥且23m -≤,故实数m的取值范围是[4,5].黔东南州2018届高三第一次模拟考试理科数学参考答案一、选择题 题号 123456789101112答案C CB A D BCB B A D A1. 解:由2002x x x -<⇒<<,故()U A I ð{|B x =1}{|02}(0,1]x x x ≤<<=I . 2. 解:由212iz i i-+=+得22z i b =-⇒=-. 3. 解:从图表中看出,选项B 明显错误.4. 解:设{}n a 的公差为d ,由1232318a a a ++=得116818349a d a d +=⇒+=,则1512349a a a d +=+=.5. 解:由正视图知,该正三棱锥的底边长为6,高为4,则侧视图是一个底边长为334的三角形,其面积为36. 解:由于该直角三角形的两直角边长分别是8和15,则得其斜边长为17,设其内切圆半径为r ,则有8151718152222r r r ++=⨯⨯(等积法),解得3r =,故其直径为6(步). 7. 解:通项3121(2)()(1)2rn r r r n r r n rr n n T C x C x x---+=-=-, 依题意得303n r n r -=⇒=.故n 是3的倍数,只有选项C 符合要求. 8. 解:①351=n ,则351=k ,0=m ,20000≤=m 成立,3521351=+=k ,02352704m =+⨯=;②7042000m =≤成立,3531352=+=k ,70423531410m =+⨯=; ③14102000m =≤成立,3541353=+=k ,141023542118m =+⨯=; ④21182000m =≤不成立,所以输出354=k .故选B .9. 解:本题抓住一个主要结论——函数()f x 的最小正周期为π,则C 点到直线AB 距离的最小值为4π,从而得到ABC ∆面积的最小值为58,故选B . 10. 解:由抛物线的性质知,点1O 到C 的准线l 的距离为1||2AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为121(2)52x x r ++== ,则有128x x +=,故12()r x x +=40.11. 解:由于线段AB 的垂直平分线方程为1y x =+,则函数()y f x =是线段AB 的“和谐函数”()y f x ⇔=与直线1y x =+有公共点()1y f x x ⇔=--函数有零点.利用函数的导函数的性质,经检验知,只有函数11x y e-=+的图像上存在点(1,2)P 满足上上述条件,故选D .12. 解:依题意知D 、E 分别是线段AB 上的两个三等分点,则有2133CD CB CA =+u u u r u u u r u u u r , 1233CE CB CA =+u u u r u u u r u u u r,则22225999a b CD CE CB CA=++⋅⋅u u u r u u u r u u u r u u u r,而2222a b c CB CA +-=⋅u u u r u u u r ,则222222225()9918a b CD CE a b c c λ=+++-=⋅u u u r u u u r ,得2221859a b c λ++=,由C 为钝角知2222221a b a b c c++<⇒<,又222211()22a b a b c +≥+>⇒22212a b c +>,则有1185129λ+<<⇒12369λ-<<,故选A . 二、填空题题号 13141516答案11(2,5)31- 21314. 解:因为()f x 在()0,+∞上单调递增,所以(1)(2)025f f m <⇒<<.15. 解:依题意知,该正方体的内切球半径为13,且这两个球同心,则线段PQ 长度的31.16. 解:由已知得2tan 1()b e a c a α==-+,2tan 1()b e ac a β==+-,则22tan()2e e αβ+=- 又5cos()tan()2αβαβ+=⇒+=-,则有22222ee e=-⇒=-或1e =-(舍). 三、解答题17. 解:(Ⅰ)设{}n a 的公比为q ,由13a =,339S =得12111=339a a a q a q ⎧⎨++=⎩, …………………………………………………(2分) 于是2120q q +-=,解得3q =(4q =-不符合题意,舍去) ……………(4分)故111333n n nn a a q --==⨯=. …………………………………………………(6分)(Ⅱ)由(Ⅰ)得3(31)2nn S =- , ……(8分)则331223n n n n S c a ==-⨯,则23311(2233n T n =-++ (1))3n +………(10分) 111(1)3331333122243413n n n n --=-⨯=+-⨯-. …………(12分) 18. 解:(Ⅰ)由已知条件知,当两名高级导游来自甲旅游协会时,有22233C C =种不同选法;当两名高级导游来自乙旅游协会时,有22339C C =种不同选法,则 ……………(2分) 22222333486()35C C C C P A C +==,所以事件A发生的概率为635. ……(6分) (Ⅱ)随机变量ξ的所有可能取值为1,2,3,4. ……………………………(7分)1353481(1)14C C P C ξ===,2253483(2)7C C P C ξ===, 3153483(3)7C C P C ξ===,4053481(4)14C C P C ξ===. ………………(11分) 所以,随机变量ξ的分布列为ξ1 2 3 4p114 37 37 114则随机变量ξ的数学期望512341477142E ξ=⨯+⨯+⨯+⨯=(人).……(12分) 19. (Ⅰ)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,故.PC DE ⊥由2,2CE CD DE ===CDE ∆为等腰直角三角形,故.CD DE ⊥又PC CD C =I ,故DE ⊥平面PCD . ……………(6分) (Ⅱ) 由(Ⅰ)知,CDE ∆为等腰直角三角形,,4DCE π∠=过D 作DF 垂直CE 于F ,易知1,DF FC FE ===又已知1EB =,故 2.FB =(7分) 以C 为坐标原点,如图建立空间直角坐标系,则(0,0,0),(0,0,3),(0,2,0),(1,1,0),C P E D则有(1,1,0)DE =-u u u r ,(1,1,3)DP =--u u u r.设平面PDE 的法向量为(,,)x y z =m ,则有00300DE x y x y z DP ⎧⋅=-+=⎧⎪⇒⎨⎨--+=⋅=⎩⎪⎩u u u r u u ur m m ,可取(3,3,2)=m ; 因为AC ⊥平面PCE ,所以平面PCE 的法向量可取(1,0,0)=n .…………(9分) 则322cos ,22⋅<>==m n m n |m ||n |. …………………………………………(11分) 而二面角D PE C --为锐二面角,故其余弦值为32222. ………………(12分) 20. 解:(Ⅰ) 因为直线:10l x my --=经过点2F ,所以1c =,又12AF F ∆是等腰直角三角形,所以()222222a a c a +=⇒=所以2221b a c =-=故椭圆C 的标准方程为2212x y +=. ……………………………………………(5分)(Ⅱ) 设11(1,)M my y +,22(1,)N my y +,将:10l x my --=与2212x y +=联立消x 得 22(2)210m y my ++-=.12122221,22m y y y y m m +=-=-++………(8分) 点A 在以线段MN 为直径的圆外等价于0AM AN >⋅u u u u r u u u r, ()()()21212112AM AN m y y m y y =++-++⋅u u u u r u u u r()()22212112022m m m m m ⎛⎫⎛⎫=+-+--+> ⎪ ⎪++⎝⎭⎝⎭2230m m ⇒--<,解得13m -<<故实数m 的取值范围是(1,3)-.…(12分)21. 解:(Ⅰ)()x af x e x'=-, …………………………………………………(1分) 依题意得(1)0f =,(1)0f '=,则有 ………………………………(2分)00e b a ee a b e⎧-==⎧⇒⎨⎨-==⎩⎩. …………………………………………………(4分) (Ⅱ)由(Ⅰ)得()ln xf x e e x e =--,()x e f x e x'=-, 由于()f x '在区间(0,)+∞上为增函数,且(1)0f '=,则当01x <<时,()(1)0f x f '<'=;当1x >时,()(1)0f x f '>'=,故函数()f x 的减区间是(0,1),增区间是(1,)+∞.……………………………(8分)(Ⅲ) 因为2222221ln ln 2ln 1ln ln x x xx x x x exe e e ++++⎛⎫== ⎪⎝⎭, 于是构造函数1ln (),1xxh x x e+=≥, 1x ∀≥,22ln (ln )xx ex x ke e+≤成立,等价于2max ()k h x ⎡⎤≥⎣⎦………………(9分) 由(Ⅱ)知当1x ≥时,()(1)0f x f ≥=,即(ln 1)xe e x ≥+对1x ≥恒成立. 即ln 11x x e e+≤(当且仅当1x =时取等号) 所以函数max 1()(1)h x h e==,又1x ≥时,()0h x >, 所以222max1()(1)h x h e ⎡⎤==⎣⎦. …(11分)故k 的取值范围是21[,)e +∞. …(12分) 22. 解:(Ⅰ)当3πα=时,l 的参数方程为11232x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)消去t 得33y x =+C 极坐标方程为2ρ=,得224x y +=.故直线l 的普通方程为3(1)y x =+圆C 的直角坐标方程为224x y +=.……(5分) (Ⅱ)将1cos sinx t y t αα=-+⎧⎨=⎩代入224x y +=得,22cos 30t t α--=.设其两根分别为12,t t ,则123t t =-.由t 的几何意义知||||PA PB ⋅12||||3t t =⋅=.故||||PA PB ⋅为定值3(与α无关)(10分)23. 解:(Ⅰ)3, (1)()4, (12)3, (2)x x f x x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩,由()6f x ≤解得22x -≤≤,故不等式()6f x ≤的解集为[2,2]-. ……………………………………………(5分) (Ⅱ) 由(Ⅰ)及一次函数的性质知:()f x 在区间[2,1]--为减函数,在区间[1,1]-上为增函数,而(2)6(1)5f f -=>=,故在区间[2,1]-上,min ()(1)3f x f =-=,max ()(2)6f x f =-=. 由|()|22()2f x m m f x m -≤⇒-≤≤+. 所以max 2()m f x +≥且min 2()m f x -≤, 于是26m +≥且23m -≤,故实数m 的取值范围是[4,5].…………………………………………………(10分)。

相关文档
最新文档