岩体的动力学性质.

合集下载

《岩体力学》沈明荣,陈建峰--课后习题答案完善版

《岩体力学》沈明荣,陈建峰--课后习题答案完善版

《岩体力学》课后习题答案完善版能源学院张 盛2013.11.51目录一、绪 论 (3)二、岩石的基本物理力学性质 (4)三、岩体的动力学性质 (17)四、岩体的基本力学性质 (19)五、工程岩体分类 (27)六、岩体的初始应力状态 (29)七、岩体力学在洞室工程中的应用 (32)八、岩体力学在边坡工程中的应用 (38)九、岩体力学在岩基工程中的应用 (41)2一、绪 论1、叙述岩体力学的定义。

答:岩体力学主要是研究岩石和岩体力学性能的一门学科,是探讨岩石和岩体在其周围物理环境发生变化后,做出响应的一门力学分支。

2、何谓岩石?何谓岩体?岩石与岩体有何不同之处?答:岩石是由矿物或岩屑在地质作用下按一定的规律而形成的自然物体,有其自身的矿物结构和构造。

岩体是一定工程范围内的自然地质体,由岩石块和各种各样的结构面共同组成的综合体。

不同:岩体多是不连续介质,通常与工程联系起来,是较大的地质体,而岩石本身可作为连续介质看待,与工程无关。

3、何谓岩体结构?岩体结构的两大要素是什么?答:岩体结构是指结构面的发育程度及其组合关系或者是指结构体的规模、形态及其排列形式所表现的空间形态。

岩体结构的两大要素是指结构体和结构面。

4、中科院研究所提出的岩体结构可分为哪六大类型?答:块状结构、镶嵌结构、破碎结构、碎裂结构、层状结构、层状破碎结构、散体结构。

5、岩体有哪些特征?答:岩体的特征有不连续性;各向异性;不均匀性;赋存地质因子的特性。

3二、岩石的基本物理力学性质1、岩石有哪些物理力学参数?答:岩石的物理力学参数有:岩石的质量指标、水理性质指标、描述岩石风化能力的指标以及完整岩石的单轴抗压强度、抗拉强度、剪切强度、三向压缩强度和与各种受力状态相对应的变形特性等。

2、影响岩石强度特性的主要因素有哪些?答:影响岩石强度特性的主要因素有岩石的单轴抗压强度、抗拉强度、抗剪强度、三轴压缩强度。

3、何谓岩石的应力应变全过程曲线?答:应力应变全过程曲线为在刚性试验机上进行试验所得到的包括岩石达到峰值应力之后的应力应变曲线。

《岩体力学》第六章岩体的力学性质

《岩体力学》第六章岩体的力学性质

图6.1 岩体的压力--变形曲线第六章 岩体的力学性质岩体的力学性质包括岩体的变形性质、强度性质、动力学性质和水力学性质等方面。

岩体在外力作用下的力学属性表现出非均质性、非连续、各向异性和非弹性。

岩体的力学性质取决于两个方面: 1)受力条件;2)岩体的地质特征及其赋存环境条件。

其中地质特征包括岩石材料性质、结构面的发育情况及性质(影响岩体的力学性质不同于岩块的本质原因);赋存环境条件包括天然应力和地下水。

第一节 岩体的变形性质一、 岩体变形试验及其变形参数确定变形参数包括变形模量和弹性模量。

按静力法得到静E ,动力法得到动E 。

⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧法波地震声波法动力法轴压缩试验法双单水压洞室法钻孔变形法扁千斤顶法狭缝法承压板法静力法按原理和方法分原位岩体变形试验)()()( )(1.承压板法刚性承压板法和柔性承压板法 各级压力P -W (岩体变形值)曲线 按布西涅斯克公式计算岩体的变形模量E m (Mpa )和弹性模量E me (Mpa )。

⎪⎪⎩⎪⎪⎨⎧-=-=e m mem m W W PD E W W PD E )1()1(22μμ式中:P —承压板单位面积上的压力(Mpa ); D —承压板的直径或边长(cm );W,W e—为相应P下的总变形和弹性变形;ω—与承压板形状、刚度有关系数,圆形板ω=0.785,方形板ω=0.886。

μm—岩体的泊松比。

★定义:岩体变形模量(E m):岩体在无侧限受压条件下的应力与总应变之比值。

岩体弹性模量(E me):岩体在无侧限受压条件下的应力与弹性应变之比值。

图6.2 钻孔变形试验装置示意图②可以在地下水位以下笔图6.3 狭缝法试验装置如图6.3所示。

二、岩体变形参数估算现场原位试验费用昂贵,周期长,一般只在重要的或大型工程中进行,因此,岩体变形参数的很多情况下必须进行估算。

两种方法:① 现场地质调查→建立适当的岩体地质力学模型→室内小试件试验资料→进行估算; ② 岩体质量评价和大量试验资料→建立岩体分类指标与变形参数间的经验关系→进行估算。

岩体的力学性质

岩体的力学性质

结构面:指地质过程中在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。

又称不连续面.结构面包括物质分异面和不连续面。

软弱结构面:结构面中规模较大,强度低,易变性的结构面。

结构体:被结构面切割成的岩石块体。

裂隙度K:是指沿取样线方向单位长度上的节理数量。

切割度Xe:指岩体被节理割裂分离的程度。

剪胀现象:规则齿状结构面在正应力很小的时将沿着齿面滑动,结构面张开,发生剪胀现象岩体的强度:指岩体抵抗外力破坏的能力,包括抗压强度和抗剪强度。

抗剪断强度:指正应力作用下岩体发生剪断破坏时的最大切应力。

摩擦强度:着正应力下岩体沿着既有破裂面发生剪切破坏时的最大切应力。

抗切强度:指剪切破坏面上的法向应力为零时的最大切应力。

岩体完整性系数:岩体与岩石中纵波传播速度的比值的平方。

岩体的动力学性质:指动荷载下岩体表现出的性质。

张节理:是岩体在张应力作用下形成的一系列裂隙的组合,一般粗糙,宽窄不一且延展性较差剪节理:指岩体在切应力作用下形成的一系列裂隙的组合,一般平直光滑,延展性相对比较好张性断层:由张应力或与张断层平行的压应力形成的断层。

压性断层:主要是指压性逆断层,逆掩断层,断层面上常有与走向大致垂直的逆冲擦痕,大致平行集中出现的一系列压性断层构成挤压断层带。

剪性断层:主要指平移断层以及部分正断层,剪裂面产状稳定,断面平整光滑。

劈理:指在地应力作用下,岩石沿着一定方向产生大致平行的破裂面。

泥化夹层:是由于水的作用时夹层内的松软物质泥化而成,其产状与岩层基本一致。

影响结构面力学性质的因素:答:1.结构面两侧结构体的力学性质2.结构面的几何特征3.结构面的尺寸效应4.填充物的力学性质5.水对泥夹层的软化作用6.后期加载过程7.泥化夹层的时效性8. 前期变形历史●影响岩体中结构体特征的因素:答:1.切割岩体的结构面组数2.岩石的类型3.区域构造运动的强度4.工程岩体的破坏方式●影响岩体变形性质与试验结果的因素:答:1.岩体性质2.岩体中结构面发育特征3.岩体试验加载速率,加载过快,岩石变形不充分,导致变形模量较大4.温度,一般来说,温度增高,岩体延性加大,屈服点随之降低。

岩体力学性质

岩体力学性质

强度性质
强度性质
岩体在各种压力状态下所能承受的最大应力,称为岩体的强度。它可分为单轴抗压强度、单轴抗拉强度、三 轴抗压强度以及剪切强度等。单轴抗压强度是岩体在单向压缩时所能承受的最大压应力。岩体的单轴抗压强度总 是低于岩块的单轴抗压强度。二者的比值变化较大,通常为0.05~0.65。单轴抗拉强度是岩体或接近于零。岩体在三向受压状态下所能承 受的最大压应力,称为岩体三轴抗压强度。原位岩体三轴压缩试验的开展,有益于更好地评价岩体的各向异性。 岩体内任一方向切面在任一法向压应力下所能抵抗的最大剪应力,称为岩体该方向切面在该法向应力下的剪切强 度。它可分为剪断强度、重剪强度和抗切强度。剪断强度是岩体中先前没有破坏的面在任一法向应力下能抵抗的 最大剪应力。剪切面上法向应力等于零时的剪断强度,称为抗切强度。岩体中先前存在的破坏面在任一法向压应 力下能抵抗的最大剪应力,称为重剪强度。岩体剪切强度的大小,通常用库仑强度参数,即内聚力和内摩擦角的 大小来说明。岩体的剪切强度远小于岩块的剪切强度。岩体重剪强度的内聚力值一般在0~0.3兆帕,内摩擦角多 为10°~48°。岩体剪断强度的内聚力值一般在0.05~4兆帕,内摩擦角多为20°~55°。岩体剪切强度具有各向 异性。沉积岩体的各向异性最为显著,火成岩体的各向异性表现不明显,变质岩体的各向异性则介于沉积岩体和 火成岩体之间。
岩体力学性质
岩体在受力状态下抵抗变形和破坏的能力
01 变形表征
03 力学性质
目录
02 强度性质
基本信息
岩体力学性质是指岩体在受力状态下抵抗变形和破坏的能力。它包括变形性质和强度性质两个方面。岩体的 力学性质,是设计一切大型岩体工程的重要依据。
变形表征
变形表征
岩体变形性质的物理量主要是变形模量、弹性模量和泊松比等。具有弹性和非弹性性能的岩体在加荷时应力 与应变的比值,称为变形模量。岩体在弹性变形阶段内,应力与应变的比值,称为弹性模量或杨氏模量。轴向加 荷的岩体试件的侧向应变与轴向应变的比的负值,称为泊松比。岩体的变形模量值普遍低于岩块的变形模量值, 两者的比值一般为0.2~0.6。岩体变形模量与其弹性模量的比值,也多为0.2~0.6。岩体的变形性质普遍具有各 向异性,不同方向的模量值不相同,在有些情况下,高达1∶10,通常为1∶2。此外,岩体变形模量与弹性模量的 比值,也常常随着方向不同而变化。

第三章 岩体的动力学性质

第三章 岩体的动力学性质

3.当岩石种类 不同,纵波波 速不同。但基 本规律相同, 即在低应力区 纵波波速增长 很快,随着应 力的增大,增 长减慢,趋于 常值。如图3 -18所示
返回
第三节 岩体的其它动力学特性
一、用弹性波速度求岩体的泊松比
岩石的泊松比可以通过在加压过程中,量 测纵向应变 1 和横向应变 2 而获得。
图3-10表示了纵波波 速与吸水率之间的关 系。
从图中可以看出:
2.随着吸水率的 增加,纵波波速 急剧的下降
四、岩体波速与各向异性性质有关
岩体因成岩条件、结构面和地应力等 原因而具有各向异性,因而弹性波在岩体 中的传播、岩体动弹性模量等也具有各向 异性。表3-6看出:
1.平行层面纵波波速大于垂直层面波速
第二节
影响岩体波速的因素 (5方面因素)
一、岩体弹性波速与岩体种类、岩石密度和 生成年代有关 1.岩石的密度和完整性越高,波速越大 2.岩石密度越大,弹性波的速度也相应增加 表3-1表示了各类岩石的弹性波速与岩石种 类之间的关系。 图3-5从实例统计的角度,表示了各类岩 石的弹性波速及密度之间的关系。
图3-7
2. 裂隙数目越多,则纵波速度愈小
3.岩体的风化程度愈高弹性波的速度亦小
4.夹层厚度愈大弹性波纵波速度愈
三、岩体波速与岩体的有效孔隙率n及吸水 率 W 有关
f
一些岩浆岩,沉积 岩和变质岩的纵 波速度与有效孔 隙率n之间的关系 见图3-9所示。 从图中可以看出:
1.随着有效孔隙率的增 加,纵波波速则急剧下 降
1.在巷道壁钻孔 测试声波速度
在松动区内,由 于岩体破碎且是 低应力区,因而 波速较小;高应 力区,岩体完整, 波速达到最大; 原岩应力区,波 速正常。根据波 速沿测孔深度的 变化曲线,确定 这三个区的范围。

第三章 岩体的动力学性质

第三章    岩体的动力学性质
第一节第一节概述概述岩体的动力学性质是岩体在动荷载作用下所表现出来的性质包括岩体中弹性波的传播规律及岩体动力变形与强岩体的动力学性质在岩体工程动力稳定性评价中具有重要意义还可为岩体各种物理力学参数的动测法提供理论依荷载状态应变率1s试验方法动静态区别105蠕变试验机惯性力可忽静态105101刚性伺服试验机准动态10110气动快速加载机惯性力不可忽略动态10霍布金逊压杆及其变形装置超动态10轻气炮平面波发生器岩体流变力学岩体流变力学岩体静力学岩体静力学岩体动力学岩体动力学第一节第三章第三章岩体的动力学性质岩体的动力学性质第二节力波类型及传播第三节影响岩体弹性波速度的因素2013925第二节第二节岩体中应力波类型及传播岩体中应力波类型及传播波某种扰动或某种运动参数或状态参数例如应力变形震振动温度电磁场强度等的变化在介质中的传播
ρ
∂ 2θ ∂t 2
= (λ + 2Gd )∇2θ
(3-2)
上式即为体积应变的波动方程。为表示弹性体膨胀、收缩状 态的物理量。
在岩体中取一点作为波的振源,则θ随时间t的变化规律 为正弦函数,即
θ = θ0sin ωt
(3-3)
式中 θ0 ——初振幅; ω ——角频率。
第二节 岩体中应力波类型及传播
因为振动是由振源向四周传播,假定岩 体是各向同性, 且只考虑x方向传播,故 距振源为x点的θ为
tp

t0
⎪⎪ ⎬
vs =
L ts − t0
⎪ ⎪⎭
(3-13)
第二节 岩体中应力波类型及传播
式中:L——发射、接收换能器中心间的距离(m);
t p ——纵波在试件中行走的时间(s) t s ——横波在试件中行走的时间(s) t0 ——仪器系统的零延时(s)

岩石动力学讲稿--岩石的动力特性

6.3 岩石的动力特性
6.3.1岩石的声波特性 6.3.1岩石的声波特性
当岩石受到地振动、冲击或爆破作用时,各种不同动力特性 当岩石受到地振动、冲击或爆破作用时, 的应力波在岩石(岩体) 的应力波在岩石(岩体)中传播 当应力值(相对岩石强度言) 当应力值(相对岩石强度言)较高时岩石中可能出现塑性波和 冲击波 当应力值较低时则只产生弹性被 弹性波总是以更快的速度传播,成为先驱波; 弹性波总是以更快的速度传播,成为先驱波;随后则是速度 较慢的塑性波
应力一应变曲线没有出现初始压密段,一开始加载就表现 应力一应变曲线没有出现初始压密段, 出线性上升的趋势, 出线性上升的趋势,存在明显的屈服点 屈服段的长度比静态加载的要长些 在有侧阻压力的条件下,向加载到一定数值时,岩石会出 在有侧阻压力的条件下,向加载到一定数值时, 现剪胀。 现剪胀。
动、静荷载下岩石的应力一应变关系仅仅是大致相似,而 静荷载下岩石的应力一应变关系仅仅是大致相似, 非完全相同 相似的原因是,即使“静力加载”实际上也是“准静态” 相似的原因是,即使“静力加载”实际上也是“准静态” 的,只是应变率较小的加载方式而“动力加裁”则是相对 只是应变率较小的加载方式而“动力加裁” 地高应变率的加载方式 表现出的差异体现了量变导致质变的结果,在高应变率情 表现出的差异体现了量变导致质变的结果, 况下,岩石内部应力状态和受力结构还来不及调轻微裂隙 况下, 发育较差, 发育较差,破坏性质变脆 初始压密段的消失以及屈服段变长,就是明显的例证 初始压密段的消失以及屈服段变长, 在不考虑岩石破坏后性态以及应变率低于1000 在不考虑岩石破坏后性态以及应变率低于1000/s的条件下, 1000/ 的条件下, 动、静态的本构方程可取相同的形式
应力波在岩石介质中的传播是岩石动力学的重要课题 应力被在岩石介质中传播的性质, 应力被在岩石介质中传播的性质,应力波峰值与岩石强度 的关系 在强爆炸应力区,岩石本构模型视为流体动力学模型,关 在强爆炸应力区,岩石本构模型视为流体动力学模型, 键是给出状态方程; 键是给出状态方程; 在中等应力区,本构模型采用弹塑性本构模型; 在中等应力区,本构模型采用弹塑性本构模型; 在低压应力区,采用本构模型 在低压应力区,

岩石的基本物理力学性质

③由正应力和剪应力组合 作用使岩石产生破坏 (受拉破坏、拉剪破 坏,压剪破坏)
三. 格里菲斯强度理论
(1920、1921)
1)基本假设(观点): ①物体内随机分布许多裂隙; ②所有裂隙都张开、贯通、独立; ③裂隙断面呈扁平椭圆状态; ④在任何应力状态下,裂隙尖端产生拉应力集 中,导致裂隙沿某个有利方向进一步扩展。 ⑤最终在本质上都是拉应力引起岩石破坏。
Et d / d
3)割线模量,由应力应变曲线的起始点与曲线上另一点作割线, 割线的斜率就是割线模量, 一般 选强度为50%的应力点
Es /
第四节 岩石的流变理论
流变现象:材料应力-应变关系与时间因素有关的性
质,称为流变性。材料变形过程中具有时间效 应的现象,称为流变现象。
1
即有蠕变现象
应,受力瞬间不变形, 随时间流逝变形趋于 无限的特点
描述流变性质的三个基本元件
(3)粘性元件
牛顿体的性能: b.无瞬变
1
d 本构方程 dt

o
t (b)应变-时间曲线
c.无松弛
t , 应变与时间有关系不能瞬时完成
应变-时间曲线
d 当= 0=const时, 0, 代入本构方程 dt 得=0,应力与时间无关,无松弛现象
第二章
岩石的基本物理力学性质
岩石的基本物理力学性质是岩体最基本、最重 要的性质之一,也是岩石力学学科中研究最早、 最完善的内容之一。
基本要求:
掌握岩石的基本物理性质,理解岩石的变形性质
掌握岩石的强度性质;
理解岩石的流变特性及分类,理解岩石介质模型 理解岩石的破坏机理,了解格里菲斯理论 掌握莫尔强度理论,掌握库仑—莫尔强度理论

岩石物理力学性质-知识归纳整理

1 岩石的物理力学性质岩石是由固体相、液体相和蔼体相组成的多相体系。

理论以为,岩石中固体相的组分和三相之间的比例关系及其相互作用决定了岩石的性质。

在研究和分析岩石受力后的力学表现时,必然要联系到岩石的某些物理性质指标。

岩石物理性质:岩石由于其固体相的组分和三相之间的比例关系及其相互作用所表现出来的性质。

主要包括基本物理性质和水理性质。

岩石在受到外力作用下所表现出来的性质称为岩石的力学性质。

岩石的力学性质主要有变形性质和强度性质,在静荷载和动荷载作用时,岩石的力学性质是有所不同的,表如今性质指标的差异上。

岩石的物理力学性质通常经过岩石物理力学性质测试才干确定。

1.1 岩石的基本物理性质指标 反映岩石组分及结构特征的物理量称为岩石的物理性质指标,这里主要是指一些基本属性:密度、比重、孔隙性、水理性等。

反映了岩石的组分和三相之间的比例关系。

为了测定这些指标,一股都采用岩样在室内作试验,,必要时也可以在天然露头上或探洞(井)中举行现场试骀。

在选用岩样时应思量到它们对所研究地质单元的代表性并尽可能地保持其天然结构。

最好采用同一岩样逐次地测定岩石的各种物理性质指标。

下面分述各种物理性质指标。

1.1.1 岩石的密度和重度(容重)1、定义密度:单位体积岩石(包括岩石内空隙体积在内)所具有的质量。

重度(容重):单位体积岩石所受的重力。

2、计算式密度:V M =ρ(g/cm 3,t/m 3)容重度:V MgV W ==ρ(kN/m 3)密度与重度的关系:γ=ρg。

上述各式中,M —岩石质量;W —岩石分量;V —岩石体积(包括空隙在内);g 为重力加速度,g=9.8m/s 2,工程上普通取10m/s 2。

密度与容重的种类:天然密度ρ、干密度ρd 、饱和密度ρsat 。

天然密度与干密度的关系:ρ=ρd (1+0.01ω)(ω为含水率,以百分数计)。

3、影响因素 影响岩石密度大小的因素:矿物成分、孔隙及微裂隙发育程度、含水量。

岩体力学


惯性力不可忽略的状态属于岩体动力学研究范畴, 惯性力不可忽略的状态属于岩体动力学研究范畴, 低应变率的静态为岩体静力学研究范畴, 低应变率的静态为岩体静力学研究范畴,而极低应变 率的蠕变状态则是岩体流变力学研究的内容。因此, 率的蠕变状态则是岩体流变力学研究的内容。因此, 区别岩体静力学和动力学只是在于岩体应变率的大小, 区别岩体静力学和动力学只是在于岩体应变率的大小, 静力学的研究对象并非处于静止状态, 静力学的研究对象并非处于静止状态,只是处于低应 变率状态,确切地讲是处于准静态。 变率状态,确切地讲是处于准静态。
拉梅运动方程 (不计体力)
由上方程导出纵波在各向同性岩体中的传播速度:
λ + 2G d 1 C = Vp = ( )2 ρ
横波在各向同性岩体中的传播速度:
Vs = (
Gd
ρ
)
1 2
Ed µd Ed 将 λ = ,G = 代入 (1 + µ d )(1 − 2 µ d ) 1+ µd
上两式,得:
E d (1 − µ d ) ] Vp = [ ρ (1 + µ d )(1 − 2 µ d )
3.1 简谐振动 (谐振动 谐振动) 谐振动
物体振动时,如果离开平衡位置的位移 物体振动时,如果离开平衡位置的位移x (或角位移θ ) 随时间 的变化可表示为余弦 或角位移 随时间t 或者正弦函数,则该振动称简谐振动,简称 或者正弦函数,则该振动称简谐振动, 简谐振动。 简谐振动。
3.1.1 弹簧振子的振动
一、固体中应力波的种类
1. 分类:(4类) • 弹性波: 在应力应变关系服从虎克定律的介 弹性波: 质中传播的波。
• 粘弹性波 在非线性弹性体中传播的波,这种 粘弹性波: 波,除弹性变形产生的弹性应力外,还产生又 摩擦应力或粘滞应力。 • 塑性波 应力超过弹性极限的波。 塑性波:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩体的动力学性质
岩体的动力学性质是岩体在动荷载作用下所表现出来的性质,包括岩体中弹性波的传播规律及岩体动力变形与强度性质。

一、岩体中弹性波的传播规律
1、弹性波在介质中的传播速度仅与介质密度ρ及其动力变形参数E
d ,μ
d
有关。

因此可以通过测定岩
体中的弹性波速来确定岩体的动力变形参数。

2、影响弹性波在岩体中的传播速度的因素:
(1)岩性:不同岩性岩体中弹性波速度不同,岩体愈致密坚硬,波速愈大,反之,则愈小。

(2)结构面:沿结构面传播的速度大于垂直结构面传播的速度。

(3)应力:在压应力作用下,波速随应力增加而增加,波幅衰减少;反之,在拉应力作用下,则波速降低,衰减增大。

(4)含水量:随岩体中含水量的增加导致弹性波速增加。

(5)温度:岩体处于正温时,波速随温度增高而降低,处于负温时则相反。

二、岩体中弹性波速度的测定
可以采用地震法、声波法来测试弹性波速,下面就介绍常用的声波法。

声波法测试步骤:
(1)选择代表性测线,布置测点和安装声波仪,见下图。

(2)发生正弦脉冲,向岩体内发射声波。

声波法测弹性波原理图
1.发射换能器;
2.接收换能器;
3.放大器;
4.声波发射仪;
5.计时装置
(3)记录纵、横波在岩体中传播的时间。

(4)根据下面的公式计算波速。

三、岩体的动力变形与强度参数
1、动力变形参数
动力变形参数有:动弹性模量和动泊松比及动剪切模量。

可通过声波测试确定。

优点:不扰动被测岩体的天然结构和应力状态;测定方法简便,省时省力;能在岩体中各个部位广泛进行。

计算公式:
岩体与岩块的动弹性模量都普遍大于静弹性模量。

坚硬完整岩体E d/E me约为1.2~2.0 ,风化、裂隙发育的岩体和软弱岩体E d/E me约为1.5~10.0左右,大者可超过20.0。

原因如下:
①静力法采用的最大应力大部分在1.0~10.0MPa,少数则更大,变形量常以mm计,而动力法的作用应力约为10-4MPa量级,引起的变形量很微小。

因此静力法会测得较大的不可逆变形,而动力法则测不到这种变形。

②静力法持续的时间较长。

③静力法扰动了岩体的天然结构和应力状态。

2、动力强度参数
若应变率<10-4s-1静态加载、准静态加载应变率>10-4s-1,视为动态加载。

动态加载下岩石的强度比静态加载时的强度高。

试验表明冲击荷载下岩石的动抗压强度约为静抗压强度的1.2~2.0倍。

原因:这实际上是一个时间效应问题,在加载速率缓慢时,岩石中的塑性变形得以充分发展,反映出强度较低;反之,在动态加载下,塑性变形来不及发展,则反映出较高的强度。

特别是在爆破等冲击荷载作用下,岩体强度提高尤为明显。

相关文档
最新文档