人眼的视觉特性

合集下载

人眼视觉特性(HVS)

人眼视觉特性(HVS)

⼈眼视觉特性(HVS)⼈眼视觉特性(⼀)2248671769qq.⼈眼类似于⼀个光学系统,但它不是普通意义上的光学系统,还受到神经系统的调节。

⼈眼观察图像时可以⽤以下⼏个⽅⾯的反应及特性:(1)从空间频率域来看,⼈眼是⼀个低通型线性系统,分辨景物的能⼒是有限的。

由于瞳孔有⼀定的⼏何尺⼨和⼀定的光学像差,视觉细胞有⼀定的⼤⼩,所以⼈眼的分辨率不可能是⽆穷的,HVS对太⾼的频率不敏感。

(2)⼈眼对亮度的响应具有对数⾮线性性质,以达到其亮度的动态围。

由于⼈眼对亮度响应的这种⾮线性,在平均亮度⼤的区域,⼈眼对灰度误差不敏感。

(3)⼈眼对亮度信号的空间分辨率⼤于对⾊度信号的空间分辨率。

(4)由于⼈眼受神经系统的调节,从空间频率的⾓度来说,⼈眼⼜具有带通性线性系统的特性。

由信号分析的理论可知,⼈眼视觉系统对信号进⾏加权求和运算,相当于使信号通过⼀个带通滤波器,结果会使⼈眼产⽣⼀种边缘增强感觉⼀⼀侧抑制效应。

(5)图像的边缘信息对视觉很重要,特别是边缘的位置信息。

⼈眼容易感觉到边缘的位置变化,⽽对于边缘的灰度误差,⼈眼并不敏感。

(6)⼈眼的视觉掩盖效应是⼀种局部效应,受背景照度、纹理复杂性和信号频率的影响。

具有不同局部特性的区域,在保证不被⼈眼察觉的前提下,允许改变的信号强度不同。

⼈眼的视觉特性是⼀个多信道(Multichannel)模型。

或者说,它具有多频信道分解特性(Mutifrequency channel decompositon )。

例如,对⼈眼给定⼀个较长时间的光刺激后,其刺激灵敏度对同样的刺激就降低,但对其它不同频率段的刺激灵敏变却不受影响(此实验可以让⼈眼去观察不同空间频率的正弦光栅来证实)。

视觉模型有多种,例如神经元模型,⿊⽩模型以及彩⾊视觉模型等等,分别反应了⼈眼视觉的不同特性。

Campbell和Robosn由此假设⼈眼的视⽹膜上存在许多独⽴的线性带通滤波器,使图像分解成不同频率段,⽽且不同频率段的带宽很窄。

第一节_人眼的视觉特性-总结

第一节_人眼的视觉特性-总结

第一节人眼的视觉特性1、在一般情况下,如有两种光谱成分不同的光,只要三种光敏细胞对它们的感觉相同,则主观彩色感觉(包括亮度和色度)就相同。

2、格拉斯曼定律—复合光的亮度等于各光分量的亮度之和。

3、人眼的视觉范围有一定的限度,明暗感觉是相对的。

4、韦伯-费赫涅尔定律—亮度感觉与亮度L的对数成线性关系。

5、一方面,重现景物的亮度无需等于实际景物的亮度,而只需保持二者的最大亮度与最小亮度的比值不变;另一方面,人眼不能察觉的亮度差别,在重现景物时也无需精确复制出来。

6、人眼分辨景物细节有一极限值,对彩色细节的分辨能力远比对亮度细节分辨力低。

7、视觉的空间频率响应具有低通滤波器性质。

8、人眼存在视觉惰性—电影、电视放映的生理基础。

临界闪烁频率取决于亮度、亮度变化幅度、观看距离等。

一、人眼的亮度感觉1.人眼的光亮感觉光也是一种电磁辐射,人眼对780~380纳米之间电磁波的刺激有光亮的感觉,故波长在这个范围内的电磁波称为可见光。

2.人眼的彩色感觉人眼对780~380纳米之间的光还有彩色感觉,具体如图1-1所示。

3.人眼的视敏特性人眼对380~780纳米内不同波长的光具有不同的敏感程度,称为人眼的视敏特性。

衡量描述人眼视敏特性的物理量为视敏函数和相对视敏函数。

1)视敏函数在相同亮度感觉的条件下,不同波长上光辐射功率的倒数可以用来衡量人眼对各波长光明亮感觉的敏感程度。

称为视敏函数。

2)相对视敏函数实验表明,人眼对波长为555纳米的光最敏感,因此把任意波长的光的视敏函数与最大视敏函数值K(555)相比的比值称为相对视敏函数,记为:如图1-2所示,左边的曲线是暗视觉曲线,右边的是明视觉曲线。

二、人眼亮度感觉的特性(描述人眼对光亮差别的感觉特性)1.亮度:光源或反射面的明亮程度,亮度的单位为(坎德拉/平方米)。

2.亮度视觉的范围:人眼总的感光范围极其宽广,明视觉的亮度感觉范围为到量级,而暗视觉的感觉范围为千分之几到几个。

东西越远越小的物理原理

东西越远越小的物理原理

东西越远越小的物理原理东西越远越小的现象可以通过透视原理来解释。

透视原理是一种人眼视觉的特性,它是人类视觉系统中的一种错觉,也是物体间相对位置的一种视觉提示。

首先,我们需要理解人眼的工作原理。

人眼是通过光线进入眼球并通过视网膜上的感光细胞来感知外界的图像。

眼睛的正常视觉是由视网膜上的感光细胞对光线的接收和处理形成的。

当光线经过透明的角膜和晶状体进入眼球后,它们会被视网膜上的感光细胞接收并转化为神经信号,然后通过视神经传递至大脑的视觉中枢,最终形成我们所看到的图像。

透视原理是指在视觉过程中,当我们观察远处物体时,由于光线的传播和折射,使得远处物体的影像在我们眼中变得较小。

这是因为光在经过透明介质如空气和水等时会发生折射,而折射会使得物体的影像发生一定程度的缩小。

因此,当物体离我们越远,它在我们眼中的影像也会变得越小。

这个现象可以通过以下的几个原理来解析:1. 视角原理:视角是指眼睛看到物体之间的夹角。

当物体距离眼睛较远时,视角就会变小;而当物体距离眼睛较近时,视角就会变大。

换句话说,同样大小的物体,在较远距离看来就越小。

2. 空间感知原理:人类的视觉系统通过比较远近两个物体之间的空间差异来感知深度和距离。

当物体离观察者越远时,相对于其周围环境的空间差异也会变大,使得物体在观察者眼中的大小看起来更小。

3. 投影原理:当物体在远距离时,它的影像在投射到观察者眼睛的视网膜上会变得更小。

这是因为光线会在进入眼睛前经过折射,使得影像的大小发生变化。

总结来说,东西越远越小的现象是由于视角的变化、空间感知和投影等原理共同作用造成的。

这种现象在艺术、摄影和建筑设计等领域中也被广泛应用,通过运用透视原理,可以使画面更加逼真且具有立体感。

人眼视觉特性(HVS)

人眼视觉特性(HVS)

人眼视觉特性(一).com人眼类似于一个光学系统,但它不是普通意义上的光学系统,还受到神经系统的调节。

人眼观察图像时可以用以下几个方面的反应及特性:(1)从空间频率域来看,人眼是一个低通型线性系统,分辨景物的能力是有限的。

由于瞳孔有一定的几何尺寸和一定的光学像差,视觉细胞有一定的大小,所以人眼的分辨率不可能是无穷的,HVS对太高的频率不敏感。

(2)(4)(5)(6)段,一幅当人眼睛的视网膜受到光的刺激时,所引起的色觉经验具有三种心理性向度,即色彩亮度和饱和度。

色彩之不同,取决于光的波长,而亮度的高低则与光的波幅成正比,但也与光的波长有关。

在白天,波长550nm左右的光最亮,而在夜晚,波长510nm左右的光最亮饱和度是指颜色的纯度。

其饱和度越大,其色彩越鲜艳,反之,越灰暗。

1.2人眼对光谱的灵敏度在人眼的视网膜上有两种视觉细胞,即锥状细胞和杆状细胞。

锥状细胞不但可以接受色彩的刺激,还可以感受亮度的刺激。

所以,在白天书画光下,人眼可以同时识别彩色与非彩色的物体,但到了夜间或暗处,锥状细胞即失去感光作用,视觉功能由杆状细胞取代.此时,人眼便无法感觉彩色,仅能辨别白色和灰色。

1.3明视觉暗视觉与中介视觉明视觉在环境亮度大于10cd.m2时,视觉完全由锥状细胞起作用,最的的视觉响应在光谱蓝绿区间的555nm处,在这样亮度的环境中的视觉特性称为明视觉。

暗视觉在环境亮度低于10-2cd.m-2时,锥状细胞失去感光作用,视觉功能由杆状细胞取代,人眼失去感觉彩色的能力,仅能辨别白色和灰色.在这样亮度的环境中的视觉特性称为暗视觉.中介视觉当景物的亮度增加到10-2cd.m-2以上时,除明亮度增加外,还可以发现三个效应。

首先,中心凹的察觉开始变得和边缘部分的察觉一样容易。

其次,可以感觉到颜色,开始时弱,其后增强。

第三,随着亮度的变化,锥状细胞和杆状细胞对视觉的作用也随之发生变化。

1.4明适应暗适应和比视感度480nm较差。

人眼视觉特性

人眼视觉特性
小。然而,当判断两个亮度哪个大时,视觉系统有较好的能力,即人眼具有较好的对比灵敏度。
视觉特性
(4)同时对比效应 刺激的亮度和色度受周围背景的影响而使我们
产生不同的感觉,称为同时对比效应。它是对整个 面积而产生的现象。可用近旁适应性来解释。
Thank you!
携手共进,齐创精品工程
Thank You
人眼的对光的反应 [光谱图]
人眼的对光的反应
由此可见,可见光的波长 都集中在390~770nm范围 内
人眼的对光的适应
人眼能适应周边环境,包括明亮和黑暗的环境。 由于是人眼瞳孔有自适应调节的功能,瞳孔直 径可由2mm扩大8mm,还有视网膜边缘部分的 紫红色的感光物质也发挥作用人眼对亮度的适
应范围非常宽,亮度比可达108:1。
视锥细胞。
人眼构造
人眼构造 视杆细胞
视杆细胞对暗光敏感,故光敏感度较 高,但分辨能力差,在弱光下只能看 到物体粗略的轮廓,并且视物无色觉。
人眼构造
光感受细胞。 视椎的空间分辨率高,视杆则对微弱光线更敏感。
人眼的对光的反应 光
光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以 感知的电磁波的波长在400到700纳米之间,但还有一些人能够感知到波长大约在 380到780纳米之间的电磁波。
世界触手可及
人眼的对光的适应
视觉特性
视觉适应性 (1)暗适应
人眼适应黑暗环境的能力,约需30分钟。 瞳孔放大,杆细胞代替锥细胞工作,恢复了对微弱光刺激的感觉。 (2)亮适应
人眼适应明亮环境的能力,约需几秒钟。 锥细胞恢复工作比杆细胞要快得多。
视觉特性
(3)对比灵敏度 人眼对亮度强弱的感受是非线性的,且具有很强的适应能力,一般很难判断亮度的绝对大

人眼等效焦段

人眼等效焦段

人眼等效焦段
人眼等效焦段指的是人类眼睛在观察物体时所能够清晰看到的范围。

我们的眼睛在观察事物时,并不是整个视野都是清晰的,而是只有一个小范围内的区域是清晰的,这个区域就是等效焦段。

当我们看一幅画时,我们的眼睛会自动聚焦在画面的某个部分,使得该部分的细节变得清晰可见。

而其他部分则会模糊不清,甚至边缘会有些模糊的过渡效果。

这就是人眼等效焦段的表现。

比如,当我们看一幅风景画时,我们的眼睛可能会自动聚焦在画面中的一朵花上。

这朵花周围的细节会清晰可见,而其他部分,比如背景的山水,可能会变得模糊不清。

这种焦段的变化使得我们能够更加集中地观察和欣赏画面中的重要元素。

人眼等效焦段的存在使得我们在观察事物时,能够更加有针对性地聚焦在重要的细节上。

这样一来,我们能够更好地理解和感受到事物的美妙之处。

对于摄影师来说,了解人眼等效焦段的原理是非常重要的。

他们可以通过调整拍摄角度和焦距,来模拟人眼的观察方式,使得照片更加自然真实。

人眼等效焦段是人类视觉系统的一种特性,它使得我们能够更加集中地观察事物的重要细节。

了解这一原理对于摄影和艺术欣赏都是非常有帮助的。

通过合理运用人眼等效焦段的原理,我们能够更好
地表达自己的观点和情感,使作品更加生动有趣。

人眼的视觉特性

人眼的视觉特性

人眼的视觉特性0序言由于liuhonghui和王绪军先生提醒,评定金属丝像质计灵敏度时,应遮蔽粗丝,采用由细到粗逐根观察评定的方法。

为什么不能采用由粗到细的观察方法呢?大概与人眼的某些视觉特性有关。

为此,笔者根据资料〔1〕和自学笔记,编写了这篇短文,希望从中能找出些理论依据来。

由于我水平所限,加上成文仓促,如有不当,望指正。

人眼的视觉特性,是因人而异的,我们在这里讨论的是正常人的统计平均状况。

1视觉范围1.1人眼的光谱灵敏度(1)人眼可识别的电磁波长大约为400-800nm。

波长由长至短,光色分别为红橙黄绿青蓝紫。

同时含有400-800nm各色电磁波的光,称为白光。

(2)人眼对不同的颜色的可见光灵敏程度不同,对黄绿色最灵敏(在较亮环境中对黄光最灵敏,在较暗环境中对绿光最灵敏),对白光较灵敏。

但无论在任何情况下,人眼对红光和蓝紫光都不灵敏,假如,将人眼对黄绿色的比视感度(灵敏度)设为100%,则蓝色光和红色光的比视感度(灵敏度)就只有10%左右了。

(3)在很暗的环境中(亮度低于10-2cd/m2时),如无灯光照射的夜间,人眼的锥状细胞失去感光作用,视觉功能由杆状细胞取代,人眼失去感觉彩色的能力,仅能辨别白色和灰色.。

1.2人眼能感受的亮度范围人眼能感受的亮度范围约为10-3—106cd/m2。

当平均亮度适中时(亮度范围约为10—104cd/m2),能分辨的最大和最小亮度比为1000:1(当亮度为1000 cd/m2时,识别能力最高,有资料称:最小可识别黑度差ΔDmin≈0.08); 当平均亮度很低时,能分辨的最大和最小亮度比不到10:1。

1.3人眼视觉的空间特性(1)空间分辨率为≤12LP/mm;(2)灰度分辨能力为64级。

1.4人眼的时间特性(1)活动图像的帧率至少为15fps时,人眼才有图像连续的感觉;(2) 活动图像的帧率在25fps时,人眼才感受不到闪烁。

笔者注:;监控视频15fps,电视25fps,电脑屏幕60fps。

人眼的立体视觉特性

人眼的立体视觉特性

人眼的立体视觉特性立体显示技术是以人眼的立体视觉原理为依据的。

因而,研究人眼的立体视觉机理,掌握立体视觉规律,对研究和设计新的立体显示系统是十分必要的。

人之所以能够产生立体视觉是因为人有两只眼睛,当左右两只眼睛从不同的角度去看某一个物体时,在左右眼视网膜上所成的图像是有差异的,人的大脑可以根据这种图像差异来判断物体的空间位置关系,从而使人产生立体视觉。

这一原理称为双目视差原理。

一、双眼立体信息用双眼观看空间景物时,形成立体视觉的因素称为双眼立体信息。

双眼立体信息是人眼立体视觉的主要因素。

人的两眼相距约58~72mm。

因此,用双眼同时观看同一物体时,左、右两眼视线方位不同,物体在左、右两眼视网膜上所成的像亦稍有差异。

称这种差异为双眼视差。

如图所示:当用双眼观看一个立方体时,如果左眼只看到立方体的前平面和上平面,而右眼除了能看到这两个平面外,还能看到立方体的右侧平面。

此外,即使是左、右两眼都能看到的前平面和上平面,在左、右眼视网膜上所成的像也稍有差异。

双眼视差的大小与空间物体的位置有决定性的关系。

因而,检测双眼视差的大小即可辨别物体的深度。

如上图可以定义双眼视差:图中L、R分别为左、右眼,P为两眼瞳孔间的距离,D为视距,△D为深度距离,F1和F2为两个物体或同一物体上的两个点。

由上式可知,视差与深度距离△D成正比,而与视距的平方成反比。

二、分时显示与立体视觉以上讨论的双眼视差是在左、右两眼同时接受图像刺激的情况即同时立体视觉,如果进入左、右眼的视差图像信息在时间上不是同时显示而存在某种程度的滞后的话,这时立体视觉的规律将不同于同时视觉。

视差图像滞后显示也称为分时显示。

分时显示所形成的立体视觉既与滞后时间有关,也与先行显示的视差图像的显示时间有关.下图给出一分时显示滞后时间对立体视觉的影响的实验曲线。

图中曲线是在先行显示图像的显示时间为18ms条件下,立体规觉与分时显示滞后时间的关系。

曲线表明,滞后时间小于20ms时,分时显示的双眼视差图像所产生的立体视觉与同时视觉产生的立体视觉基本相同;分时显示滞后时间大于20ms时,分时显示的立体视觉减弱;当滞后时间超过100ms时,立体视觉将不能形成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人眼的视觉特性
1、引言人眼的视觉系统是世界上最好的图像处理系统,但它远远不是完美的。

人眼的视觉系统对图像的认知是非均匀的和非线性的,并不是对图像中的任何变化都能感知。

例如图像系数的量化误差引起的图像变化在一定围是不能为人眼所觉察的。

因此,如果编码方案能利用人眼视觉系统的一些特点,是可以得到高压缩比的。

对人眼视觉特性的深入研究及由此而建立的各种数学模型,一直是各种图像数字压缩算法的基础。

2、人眼的视觉特性
人眼对380~780纳米不同波长的光具有不同的敏感程度,称为人眼的视敏特性。

衡量描述人眼视敏特性的物理量为视敏函数和相对视敏函数。

1)视敏函数在相同亮度感觉的条件下,不同波长上光辐射功率的倒数可以用来衡量人眼对各波长光明亮感觉的敏感程度。

称为视敏函数
K(λ)=1/pr(λ) 。

2)相对视敏函数实验表明,人眼对波长为555纳米的光最敏感,因此把任意波长的光的视敏函数与最大视敏函数值K(555)相比的比值称为相对视敏函数。

可见光波长
实验表明:视敏涵数的曲线的最大值位于555nm处当
光线微弱向左偏移最大值为507nm处,两者相差近50nm,人眼就相当于带通滤波器,这就表明人眼对亮度变化比较敏感。

人眼对于蓝光的视觉灵敏度要比红光和绿光低的多.三条曲线的峰值比为R:G:B=0.54:0.575:0.053(蓝光放大20倍).三条曲线有相当一部分是重叠的.正常观察条件下,人眼得到的是二者的合成的视觉,不能将他们各自的数值区分开来.大脑根据三者的比例,感知彩色的色调和饱和度,而三者的和决定了光的总亮度。

2.1对比灵敏度人眼对亮度光强变化的响应是非线
性的,通常把人眼主观上刚刚可辨别亮度差别所需的最小光强差值称为亮度的可见度阈值。

也就是说,当光强I增大时,在一定幅度感觉不出,必须变化到一定值I+ΔI时,人眼才能感觉到亮度有变化,ΔI/I一般也称为对比灵敏度。

因此恢复图像的误差如果低于对比灵敏度,即不会被人眼察觉。

此外,高频部分在相同的灵敏度阈值下,色差信号Y-R 空间频率只有亮度Y的一半,色差信号Y-B空间频率只有亮度Y的1/4。

人眼对于运动图像的对比灵敏度与时间轴上信息的变化速度有关,随着时间轴变化频率的增加,人眼所能感受到的图像信息的误差阈值呈上升趋势,视觉上的这种动态对比灵敏度特性表现为图像序列之间相互掩盖效应。

可见
度阈值和掩盖效应对图像编码量化器的设计有重要作用,利用这一视觉特性,在图像的边缘可以容忍较大的量化误差,因而可使量化级减少,从而降低数字码率。

2.2分辨率
当空间平面上两个黑点相互靠拢到一定程度时,离开黑点一定距离的观察者就无法区分它们,这意味着人眼分辨景物细节的能力是有限的,这个极限值就是分辨率。

研究表明人眼的分辨率有如下一些特点:①当照度太强、太弱时或当背景亮度太强时,人眼分辨率降低。

②当视觉目标运动速度加快时,人眼分辨率降低。

③人眼对彩色细节的分辨率比对亮度细节的分辨率要差,如果黑白分辨率为1,则黑红为0.4,绿蓝为0.19。

2.3马赫效应当亮度发生跃变时,会有一种边缘增强的感觉,视觉上会感到亮侧更亮,暗侧更暗。

马赫效应会导致局部阈值效应,即在边缘的亮侧,靠近边缘像素的误差感知阈值比远离边缘阈值高3~4倍,可以认为边缘掩盖了其邻近像素,因此对靠近边缘的像素编码误差可以大一些。

3、图像子采样对色差信号使用的采样频率比对亮度信号使用的采样频率低,这种采样就称为图像子采样(Subsampling)。

最简便的图像压缩技术恐怕就要算图像子采样了。

这种压缩方法的基本根据是人的视觉系统所具有的两个特性,一是人眼对色度信号的敏感程度比对亮度信号的敏感程度低,利用这个特性可以把图像中表达颜色的信号去掉一些而使人不易察觉:二是人眼对图像细节的分辨能力
有一定的限度,利用这个特性可以把图像中的高频信号去掉而使人不易察觉,子采样就是利用这个特性来压缩彩色电视信号。

子采样格式:4∶2∶2子采样格式是指在每条扫描线上每4个连续的采样点取4个亮度Y样本,2个红色差cr样本和2个蓝色差cb样本,平均每个像素用2个样本表示。

4∶1∶1子采样格式是指在每条扫描线上每4个连续的采样点取4个亮度Y样本,1个红色差cr样本和1个蓝色差cb样本,平均每个像素用1.5个样本表示。

这是数字电视磁带DVC(Digital Video Cassette)上使用的格式。

4∶2∶0子采样格式是指在水平和垂直方向上每2个连续的采样点上取2个亮度Y样本,1个红色差Cr样本和1个蓝色差Cb样本,平均每个像素用1.5个样本表示。

4、变换编码在图像数据压缩技术中,变换编码(Transform Coding)与预测编码(Predictive Coding)已成为最基本的两种编码方法。

变换编码的基本思想是,将空间域描写的图像信号变换到一个正交变换域(正交的矢量空间)进行描写。

变换前后的明显差别是,在空间域像素块中的像素存在很强的相关性,能量分布比较均匀,经过正交变换后,变换系数近似统计独立,基本上去除了相关性,能量集中在直流和少数低频系数上。

然后在变换域进行滤波、量化(与视觉特性匹配)及统计编码,以实现有效的码率压缩。

电视信号的能量主要集中在低频部分,随着频率的升高,能量迅速下降,
考虑到人眼的主观视觉对高频成分不如对低频成分敏感的特点,在编码时对高低频成分分别采用粗细不同的量化,甚至对高频成分舍弃不传,这样既可降低码率又可以保持良好的主观图像质量。

5、预测编码差分脉冲编码调制(DPCM)是一种预测编码技术,其原理是基于图像信号冗余度高的事实,当前的像素值可用与它邻近的像素值预测获得。

在预测编码中,不直接传输像素样值本身,而是对实际样值与它的一个预测值之间的差值进行量化、编码再传送,以达到很高的压缩比,这个差值就是预测误差。

在视频序列编码中,主要用运动补偿著行时间轴冗余度压缩。

通常预测误差值的分布主要集中在0附近的一个小围,其动态围比原图像更为集中,相关性比原图像小得多,只是在图像剧烈变化之处,如图像的边缘和轮廓处出现一些较大的预测误差,而人眼对图像边缘处的较大误差不敏感,因此对预测误差量化所需要的级数比对图像样值本身进行量化所需要的级数少得多,可以大大提高编码的效率。

电视信号的帧编码利用图像信号的空间相关性实现码率压缩,而数据压缩编码中的量化(Quantization)处理是指经正交变换、差分或预测处理后,在熵编码之前对正交变换系数、差值或预测误差的量化处理,量化输入值的动态围很大,量化输出只能取有限个整数,称作量化级。

量化处理总是把一批输入量化到一个输出级上,所以量化处理是一个多对一的处理过程,是
个不可逆的过程,量化处理中有信息丢失,会引起量化误差。

所谓量化误差就是由于量化所引起信号原来的值与量化之
后值的差值。

6、量化量化器的最佳设计可以达到最佳的压缩效果,对于预测误差这样的信号,应采用非均匀量化,对概率密度大的区域细量化,对概率密度小的区域粗量化。

与均匀量化相比,在相同的量化分层条件下,非均匀量化的量化误差要比均匀量化的小,这种非均匀量化特性也与人眼的视觉特性相适应。

人眼对图像量化误差的敏感度与存在量化误差时图像的变化程度有关,图像变化越大,量化误差越不容易察觉(越容易掩盖),也就是说人眼对图像边缘和轮廓的量化误差不敏感,这部分出现的概率小因而可以粗量化,而在图像变化平坦部分的量化误差容易被觉察,而且在图像变化平坦处的预测误差小,出现概率大,应当进行细量化。

近年来被认为效果最佳的量化器设计方案是利用主观实验进行
优化设计,这种方法首先利用主观实验对大量不同的图像测出量化误差与可见度阈值的关系曲线,根据这条曲线选取量化电平,使可能产生的最大量化误差刚刚处于可见度阈值之下,这样既可保证重建图像有很高的主观质量,又把平均量化层降到最少。

7、结束语长期以来,通过对人眼视觉现象的观测和研究,人们已经发现人眼的视觉特性有很多特点,特别是视觉掩盖效应,可以直接或间接地用于改善视频
信息的处理。

如何充分利用人眼的视觉特性,已成为现代编码技术中首先要考虑的一个基本问题。

相关文档
最新文档