函数单调性和凹凸性
函数单调与凹凸教学

单调性是函数的局部性质,即在某 个区间内单调递增或递减,并不代 表在整个定义域上都是单调的。
判断函数单调性的方法
导数法
通过求函数的导数,并判断导 数的符号来判定函数的单调性
。
定义法
通过比较函数在定义域内的任意 两点x1和x2的函数值f(x1)和 f(x2),来判断函数的单调性。
图像法
通过观察函数的图像,可以直 观地判断函数的单调性。
判断函数凹凸性的方法
导数法
通过求函数的导数,然后判断导数的正负来判断函数的凹凸性。如果导数在某 区间内大于0,则函数在该区间内为凹函数;如果导数在某区间内小于0,则函 数在该区间内为凸函数。
二阶导数法
如果一个函数的二阶导数在某区间内大于0,则该函数在该区间内为凹函数;如 果二阶导数在某区间内小于0,则该函数在该区间内为凸函数。
单调性决定了函数值的增减趋势,而 凹凸性则决定了函数图像的弯曲程度。
在单调递减的函数中,如果函数是凹 的,则图像呈现向下凸起的形状;如 果函数是凸的,则图像呈现向上凸起 的形状。
在单调递增的函数中,如果函数是凹 的,则函数图像呈现出向上凸起的形 状;如果函数是凸的,则图像呈现向 下凸起的形状。
单调与凹凸在函数图像上的表现
函数凹凸性的应用
01
02
03
最优化问题
利用函数的凹凸性,可以 确定函数的最大值或最小 值,从而解决最优化问题。
经济模型
在经济学中,凹凸性可以 用来描述某些经济现象, 例如供需关系、成本和收 益等。
物理学
在物理学中,凹凸性可以 用来描述物理量之间的关 系,例如弹性、能量等。
03 单调与凹凸的关系
单调与凹凸的相互影响
函数单调与凹凸教学
3.4 函数的单调性与曲线的凹凸性

从几何上看,曲线的凹凸性反映的是曲线弧上两点,连接这两点间的弦与 这两点间的弧段的位置关系。
第三章 微分中值定理与导 数的应用
9
定理 2
设 f (x ) 在 a ,b 上连续,在 (a ,b ) 内具有一阶和二阶导数,那么
> 0 ,则 f ( x ) 在 a ,b 上的图形是凹的; < 0 ,则 f ( x ) 在 a ,b 上的图形是凸的。 ∈ a ,b ,且 x 1 < x 2 ,记 x 0 =
= 0 处,曲线 y = x 3 有水平切线,即 x 轴。
一般地,如果 f ′ (x ) 在某区间内的有限个点处为零,在其余各点处保持固定 符号时,函数 f (x ) 在该区间上是单调的。 结论在 f ′ (x )
= 0 有无限个解时未必成立。
第三章 微分中值定理与导 数的应用
7
例6 证
证明:当 x 令 f (x )
=0
< a < 1,b = 2k + 1 k ∈ Z + ,ab > 1 +
(
)
3π 2
,
Van Der Waerden 构造并证明: f (x )
=
n =0
∑
∞
ϕ 10n x
10n
(
) ,其中
x − x , ϕ (x ) = x + 1 − x ,
> 1 时, 2 x > 3 −
1
x
。
1 = 2 x − 3 − ,则 x
f ′ (x ) =
1
x
−
1
x
2
=
1
x2
第四节 函数的单调性与曲线的凹凸性

第四节 函数的单调性与曲线的凹凸性一、函数单调性的判定法定理1 设函数()y f x =在[],a b 上连续,在(),a b 内可导.(1)如果在(),a b 内()0f x '≥,且等号仅在有限多个点处成立,那么函数()y f x =在[],a b 上单调增加;(2)如果在(),a b 内()0f x '≤,且等号仅在有限多个点处成立,那么函数()y f x =在[],a b 单调减少.例1 判定函数sin y x x =-在[],ππ-上的单调性. 解 因为函数sin y x x =-在[],ππ-上连续,当x ∈(),ππ-时, 1cos 0y x '=-≥,且等号仅在0x =处成立,所以函数sin y x x =-在[],ππ-上单调增加. 例2 讨论函数1x y e x =--的单调性.解 函数1x y e x =--的定义域为(),-∞+∞, 1.x y e '=- 因为在(),0-∞内0y '<,在()0,+∞内0y '>,所以1x y e x =--在(],0-∞上单调减少,在[)0,+∞上单调增加.例3 讨论函数y解 的定义域为(),-∞+∞.当0x ≠时,y '=而函数在0x =处不可导.在(),0-∞内,0y '<,在()0,+∞内0y '>,因此函数y =在(],0-∞上单调减少,在[)0,+∞上单调增加.该函数的图象如下图所示.例4 确定函数()3229123f x x x x =-+-的单调区间.解 该函数的定义域为(),-∞+∞.()()()261812611.f x x x x x '=-+=--方程()0f x '=的全部根为121, 2.x x ==这两个根把区间(),-∞+∞分为三个部分区间:(][][),1,1,2,2,.-∞+∞在区间(),1-∞内()0f x '>,函数()f x 在(],1-∞单调增加.在区间()1,2内,()0f x '<,函数()f x 在区间[]1,2单调减少.在区间()2,+∞内()0f x '>,函数()f x 在区间[)2,+∞单调增加.例5 证明:当1x >时,13.x-证 令()13f x x ⎛⎫=- ⎪⎝⎭,则 ()()22111.f x x x '== ()f x 在[)1,+∞上连续,在()1,+∞内()0f x '>,因此在[)1,+∞上函数()f x 单调增加,于是当1x >时,()()10f x f >=,即130,x ⎛⎫-> ⎪⎝⎭ 13.x- 二、曲线的凹凸性与拐点定义 设函数()f x 在区间I 上连续,如果对I 上任意两点12,x x ,恒有()()1212,22f x f x x x f ++⎛⎫< ⎪⎝⎭那么称()f x 在I 上的图形是凹的;如果恒有()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭, 那么称()f x 在I 上是凸的.定理2 设()f x 在[],a b 上连续,在(),a b 内具有一阶和二阶导数,那么(1)若在(),a b 内()0f x ''>,则()f x 在[],a b 上的图形是凹的;(2)若在(),a b 内()0f x ''<,则()f x 在[],a b 上的图形是凸的. 例6 判定曲线ln y x =的凹凸性.解 因为211,y y x x'''==-,所以函数ln y x =在定义域()0,+∞内,0y ''<,故曲线ln y x =是凸的.例7 判定曲线3y x =的凹凸性.解 因为23,6.y x y x '''==当0x <时,0y ''<,所以曲线在(],0-∞是凸的;当0x >时,0y ''>,曲线在[)0,+∞是凹的.例8 求曲线32231214y x x x =+-+的拐点.解 216612,126122y x x y x x ⎛⎫'''=+-=+=+ ⎪⎝⎭. 解方程0y ''=,得1.2x =-当12x <-时,0y ''<;当12x >-时,0y ''>.因此点11,2022⎛⎫- ⎪⎝⎭是曲线的拐点.例9 求曲线43341y x x =-+的拐点及凸凹区间. 解 函数43341y x x =-+的定义域为(),-∞+∞.321212,y x x '=-22362436.3y x x x x ⎛⎫''=-=- ⎪⎝⎭ 解方程0y ''=,得1220,.3x x == 在(),0-∞内,0y ''>,曲线在区间(),0-∞凹的.在20,3⎛⎫ ⎪⎝⎭内,0y ''<,曲线在区间20,3⎡⎤⎢⎥⎣⎦是凸的.在2,3⎛⎫+∞ ⎪⎝⎭内,0y ''>,曲线在区间2,3⎡⎫+∞⎪⎢⎣⎭是凹的. 当0x =时,1y =.当23x =时,11.27y = 点()0,1和211,327⎛⎫ ⎪⎝⎭是这曲线的两个拐点. 习题3-41.判定函数()arctan f x x x =-的单调性.解 ()22211011x f x x x '=-=-≤++且仅在0x =时成立.因此函数()arctan f x x x =-在(),-∞+∞内单调减少.2.判定函数()cos f x x x =+的单调性.解 ()1sin 0f x x '=-≥,且当()20,1,2,2x n n ππ=+=±± 时,()0f x '=.因此函数()cos f x x x =+在(),-∞+∞内单调增加.3.确定下列函数的单调区间:(1)3226187y x x x =---;解 函数的定义域为(),-∞+∞,在(),-∞+∞内可导,且 ()()261218631.y x x x x '=--=-+令0y '=,得驻点121, 3.x x =-=当时1x <- 时,0y '>,函数在(],1-∞-单调增加; 当13x -<<时,0y '<,函数在[]1,3-单调减少; 当3x >时,0y '>,函数在()3,+∞单调增加.(2)()820y x x x=+>;解 函数的定义域为()0,+∞,在()0,+∞内可导,且()()22222228282.x x x y x x x -+-'=-== 令0y '=,得驻点12x =-(舍去),22x = 当02x <<时,0y '<,函数在(]0,2单调减少;当2x >时,0y '>,函数在[)2,+∞单调增加.。
6.4知识资料函数的单调性与曲线的凹凸性

所以 函数在[0, )单调增加.
6.4 函数的单调性与曲线的凹凸性
二、函数单调区间的求法
问题 如上例, 函数在定义区间上不是单调的, 但在各个部分区间上单调.
若函数在其定义域的某个区间内是单调的, 则该区间称为函数的单调区间.
导数等于零的点和不可导点, 可能是单调区间 的分界点.
证 设f ( x) 1 x2 ex sin x 且f (0) 0 2 定不出符号
f ( x) x ex cos x 且f (0) 0
f ( x) 1 ex sin x 0
0 x 1, f ( x) 0, f ( x) C[0,1].
所以f ( x)在[0,1]上单调增加.
6.4 函数的单调性与曲线的凹凸性
f ( x) 1 x2 ex sin x 2
f ( x) x ex cos x
f ( x)在[0,1]上单调增加
当0 x 1时,有f ( x) f (0) 0. 0 x 1, f ( x) 0, f ( x)C[0,1].
所以f ( x)在[0,1]上单调增加.
(上)方, 称为凹(凸) 弧.
从几何直观上, 随着x的增大, 凹弧的曲线段
f (x)的切线斜率是单增的, 即f ( x)是单增的, 而凸 弧的切线斜率是单减的, 即f ( x) 是单减的.
利用二阶导数判断曲线的凹凸性
6.4 函数的单调性与曲线的凹凸性
2. 凹凸性的判别法
y
B y f (x)
A
y
B y f (x)
证 任取x0 (a, b), 泰勒公式
f (x)
f ( x0 )
f ( x0 )(x x0 )
3.3 单调性与凹凸性

例5、 判断曲线 f (x)
1 9
x2
解: f (x) 在定义域 Df (
2 11 f (x) 9 x 3 3 x2
3 x 的凹凸性及拐点。 , ) 内连续,
2 21 f (x) 9 9 3 x5
2 9
(1
1 )
3 x5
0
x
1
(x 0) (x 0)
以 x 1、x 0 划分定义域得:
例4、 确定函数 f (x) 2x3 9x2 12x 3 的单调区间。 解: f (x) 在定义域 Df ( , ) 内连续,
f (x) 6x2 18x 12 6(x 1)(x 2) 0 x1 1 x2 2 以 x1 1、x2 2划分定义域得:
Df ( ,1) 1 ( 1 ,2 ) 2 (2, ) f (x)
单调区间
定义: 若函数在某区间内单调增,称该区间为函数的单调增区间。
减
减
单调增区间、单调减区间统称为单调区间。
问题: 如何确定函数的单调区间
首要任务是确定函数单调性的分界点。
单调性分界点只可能产生于: 驻点 与不可导点处
方法: 用驻点及不可导点划分函数定义域, 在各个开区间内确定
导数的正负,从而确定单调区间。
(1) 当 f (x0 ) 0 时, x0 为 f (x) 的极小值点; (2) 当 f (x0 ) 0 时, x0 为 f (x) 的极大值点。
例3、 求函数 f (x) 3x x3 的极值。
解: 函数 f (x) 在其定义域 ( , ) 内连续,
f (x) 3 3x2 3(1 x)(1 x) 0 x1 f (x) 6x f ( 1) 6 0 f (1) 6 0
函数的单调性与凹凸性

单调性与导数的关系
单调性是导数的一个应用,如果函数在某区间内单调递增或递减,则该函数的导 数在此区间内非负或非正。
导数的符号决定了函数的单调性,如果导数大于0,则函数单调递增;如果导数小于 0,则函数单调递减。
02 函数的凹凸性
凹函数与凸函数
凹函数
对于函数$f(x)$,如果在区间$I$上, 对于任意$x_1 < x_2$,都有$f(x_1) + f(x_2) > 2f[(x_1 + x_2)/2]$,则称 $f(x)$在区间$I$上为凹函数。
求解方法
通过导数判断函数的单调性,并结合端点值进行比较。
应用
在物理学、化学等领域中,常需要求解函数在开区间 上的最值问题,以解释某些现象或预测结果。
无界区间上的最值问题
定义
在无界区间上,函数可能没有最大值或最小 值。
求解方法
通过导数判断函数的增减性,并考虑无穷远处的情 况。
应用
在数学分析、实变函数等领域中,常需要研 究函数在无界区间上的最值问题,以深入理 解函数的性质和行为。
减函数
对于函数$f(x)$,如果对于任意$x_1 < x_2$,都有$f(x_1) > f(x_2)$,则称 $f(x)$为减函数。
ቤተ መጻሕፍቲ ባይዱ
单调性的判断方法
定义法
通过比较任意两点之间的函数值来确定函数的单调性。
导数法
利用导数来判断函数的单调性,如果导数大于0,则函数单调递增;如果导数小于0,则函数单调递减。
在分析力学系统的运动规律时,利用函数的 单调性和凹凸性,可以判断系统的稳定性和 运动状态。
电路分析
在电子和电路工程中,利用函数的单调性和 凹凸性,可以分析电路的工作状态和性能, 优化电路设计。
函数的单调性与曲线的凹凸性

2) 如果函数在某驻点两边导数同号, 则不改变函数的单调性 . 例如,
例2. 证明 证: 令
时, 成立不等式
且
证
从而
因此
证明
二、曲线的凹凸与拐点
定义 . 设函数 在区间 I 上连续 ,
(1) 若恒有 图形是凹的;
(2) 若恒有
图形是凸的 . 连续曲线上有切线的凹凸分界点 称为拐点 .
则称
则称
的凹凸区间及拐点.
2) 求拐点可疑点坐标
令
得
3) 列表判别
对应
凹
故该曲线在
及
向上凸 , 点 ( 0 , 1 ) 及
凸
凹
上向上凹, 均为拐点.
内容小结
1. 可导函数单调性判别
2.曲线凹凸与拐点的判别
在 I 上单调递增 在 I 上单调递减
+
–
拐点 — 连续曲线上有切线的凹凸分界点
思考与练习
1. 设在 或
拐点
定理2.(凹凸判定法)设函数 在区间I 上有二阶导数
(1) 在 I 内
则 f (x) 在 I 内图形是凹的 ;
(2) 在 I 内 证:
则 f (x) 在 I 内图形是凸的 . 利用一阶泰勒公式可得
两式相加
说明 (1) 成立; (2) 证毕
例3. 判断曲线 解:
的凹凸性.
故曲线
在
上是向上凹的.
说明:
1) 若在某点二阶导数为 0 , 在其两侧二阶导数不变号, 则曲线的凹凸性不变 .
2) 根据拐点的定义及上述定理, 可得拐点的判别法如下:
若曲线
或不存在,
但
在 两侧异号, 则点
是曲线
的一个拐点.
函数的单调性与曲线的凹凸性

则称曲线 y f ( x) 在 I 上是凹的.
类似地,可给出曲线是凸的定义,若上式中不等 号反向,则称曲线 y f ( x) 在 I 上是凸的.
直接利用定义来判别曲线的凹凸性是比较困难的, 下面利用二阶导数来判别曲线的凹凸性.
x2
的凹凸性.
(详细解答过程可参见课本 P108)
例 3.4.8 判别曲线 y x3 的凹凸性. (详细解答过程可参见课本 P109)
3、拐点的定义
在例 3.4.8 中,点(0,0)是曲线由凸变凹的分界点, 称为曲线的拐点.
一般地,连续曲线 y f ( x) 上凹弧与凸弧的分界点 称为曲线的拐点.
x2 2
,
令 y 0 得拐点可疑点 : x 1 , x 1 (横坐标 )
x
( , 1)
1
0
(1, 1)
1
(1, )
y
y
0
凸的
凹的
拐点
拐点
凹的
曲线 y e
x2 2
: 在 ( , 1) 及 (1, ) 内为凹的 ,
在 (1, 1)内为凸的 .
当 x 0 时, f ( x) 0 , (,0] 上单调减少;
当 0 x 时, f ( x) 0 , [0, ] 上单调增加;
[0, ). 单调区间为( ,0],
注意:学习课本例 3 与例 4 之间的一段话
例 3.4.4 确定函数 f ( x) (2x 5) x
2、曲线凹凸性的判定
定理 3.4.3 设 f ( x) 在区间 I 上具有二阶导数 . (1)若在区间 I 上, f ( x) 0 ,则曲线 y f ( x) 是凹的; (2)若在区间 I 上, f ( x) 0 ,则曲线 y f ( x) 是凸的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《经济数学》第四章
15
2、曲线凹凸的判定
y
y ? f (x) B
y y ? f (x)
B
A
oa
bx
f ?( x ) 递增 y??? 0
A
oa
bx
f ?( x ) 递减 y??? 0
定理1 如果 f (x) 在[a,b]上连续,在(a,b)内具有一阶和二
阶导数,若在(a,b)内
(1)f ??(x) ? 0 ,则 f (x) 在[a,b]上的图形是凹的;
2019年3月8日星期五
《经济数学》第四章
14
y
y
观直何几
0
x
(1)
0
x
(2)
f ?(x) ? 0
f ?(x) ? 0
如上图所示,根据导数的几何意义可以直观地看
出,当 f ?(x) ? 0 时,切线倾斜角为锐角,曲线是上升的;
当 f ?(x) ? 0 时,切线倾斜角为钝角,曲线是下降的。
2019年3月8日星期五
2019年3月8日星期五
《经济数学》第四章
1
§4.3 函数的单调性和 曲线的凹凸性
2019年3月8日星期五
《经济数学》第四章notonicity of function )
现实生活中,常遇到这样的情形:一个量不断增加时,
另一个量也随着不断增加;或者一个量不断增加时,另一个量 反而随着不断减少。其实这就是单调性的概念。另外,如果用 描点法作出函数的图象,我们会发现当我们的视线从左往右看 时,函数图象的一些部分是“上升”的,一些部分是“下降” 的, 好像山峦的起伏一样,为了区别:“上升”和“下降”,我们 引入 了函数通“过单研调究性某”些的特概定念函。数(事实上是那些基本初等函数) 的单调性,我们可以知道任何函数(实际上是一切初等函 数)的单调性,从而能画出它们的图形和研究它们的性质。 下面我们利用导数来研究函数的单调性。
定义:若函数在其定义域的某个区间内是单调的,
则该区间称为函数的单调区间 .
2019年3月8日星期五
《经济数学》第四章
5
例如:函数 y ? x2及 y ? x 在?? ? ,0?内单调减少, 在 ?0,?? ?内单调增加。如下图所示。
y
y ? x2
y y? x
0
2019年3月8日星期五
x
0
《经济数学》第四章
当0 ? x ? ?? 时, f ?( x ) ? 0, ? 在[0,?? )上单调增加; 单调区间为 (?? ,0], [0,?? ).
2019年3月8日星期五
《经济数学》第四章
11
4.3.2 曲线的凹凸性
观察抛物线 y ? x2与
y
y ? x,它们在区间 ?0,1?内都
是单调增加的,但弯曲的方
(2)求f ?(x),求出f ?(x) ? 0的根及 f ?(x)不存在的点;
(3)用(2)中的点划分函数 f (x)的定义区间, 然后判断
区间内导数的符号. (4)根据定理写出结论。
2019年3月8日星期五
《经济数学》第四章
8
例1、确定函数
的单调区间 .
解: ? x ? (?? ,?? ).
f ?(x) ? 6x2 ? 18x ? 12 ? 6(x ? 1)(x ? 2)
令 f ?(x) ? 0 , 得 x ? 1, x ? 2.
列表讨论:
x (?? ,1) 1 (1, 2) 2 (2, ? ? )
f ?(x) ?
0?
0?
f (x)
2
1
故 的单调增区间为 (?? , 1) , (2, ? ? );
的单调减区间为 (1 , 2).
2019年3月8日星期五
《经济数学》第四章
图象的上升与
下降可用一阶导数 的符号来判定。
从P点改变 弯曲方向
同是上升(或下 降)曲线还有凹凸 之分.
凹弧的切线总是 在曲线的下方
2019年3月8日星期五
《经济数学》第四章
13
1、曲线凹凸性的定义 问题:如何研究曲线的弯曲方向 ?
定义
内各点都有切线,在切 点附近如果
凹弧,也称 ?a, b?为曲线y ? f ?x?的
1
向不一样。
这说明在研究函数的图形 时,只知道它们的单调性是不 够的,曲线的弯曲方向和弯曲 方向的转变点对我们研究函数 0 的性态也是十分重要的 . 这就 是下面讨论的凹凸性与拐点。
2019年3月8日星期五
《经济数学》第四章
y ? x2
y? x
1x
12
函数图象的凹凸分析:
凸弧的切线总 是在曲线的上方
《经济数学》第四章
4
定理(单调性的充分条件)
设函数 y ? f (x)在[a, b]内连续,在 (a,b)内可导.
(1)如果在(a,b)内f ?(x) ? 0,那么函数 y ? f (x)
在(a,b) 上单调增加; (2) 如果在(a,b)内 f ?(x) ? 0,那么函数 y ? f (x)
在 (a,b) 上单调减少.
2019年3月8日星期五
《经济数学》第四章
3
y
y
观直何几
0
x
(1)
0
x
(2)
f ?(x) ? 0
f ?(x) ? 0
如上图所示,根据导数的几何意义可以直观地看
出,当 f ?(x) ? 0 时,切线倾斜角为锐角,曲线是上升的;
当 f ?(x) ? 0 时,切线倾斜角为钝角,曲线是下降的。
2019年3月8日星期五
9
y
2 1
0
1
2
x
2019年3月8日星期五
《经济数学》第四章
10
例2 确定函数 f ( x ) ? 3 x 2 的单调区间 .
解 ? D : (?? ,?? ).
f ?( x ) ?
2 ,
33 x
(x ? 0)
y ? 3 x2
当x ? 0时,导数不存在.
当 ? ? ? x ? 0时,f ?( x ) ? 0, ? 在(?? ,0]上单调减少;
《经济数学》第四章
17
3、曲线的拐点及其求法
(2)f ??(x) ? 0 ,则 f (x) 在[a,b]上的图形是凸的;
2019年3月8日星期五
《经济数学》第四章
16
例3、判断曲线 y ? x3的凹凸性。
解
当 时,
∴曲线在
为凸的;
当 时, ∴曲线在
为凹的。
y
y ? x3
1
?1 0 1 x
?1
2019年3月8日星期五
注意:点(0,0)是曲线 由凸变凹的分界点。
x
6
问题 :如上例,函数在定义区间上不是单调 的,但在各个部分区间上单调.
导数等于零的点和不可导点,可能是单调区 间的分界点.
定义: 使导数为零的点(即方程 f ?(x) ? 0 的实根)叫 做函数 f (x) 的驻点.
2019年3月8日星期五
《经济数学》第四章
7
求单调区间的步骤 :
(1)求出函数f (x)的定义域;