微波技术微波电路及天线第3章
微波技术与天线复习知识要点

微波技术与天线复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段;●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~●微波的特点要结合实际应用:似光性,频率高频带宽,穿透性卫星通信,量子特性微波波谱的分析第一章均匀传输线理论●均匀无耗传输线的输入阻抗2个特性定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关;两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in z= Z in z+λ/22、λ/4变换性: Z in z- Z in z+λ/4=Z02证明题:作业题●均匀无耗传输线的三种传输状态要会判断1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态知道概念▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波;▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源;此时,信号源端无反射;▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值;共轭匹配的目的就是使负载得到最大功率;●传输线的阻抗匹配λ/4阻抗变换P15和P17●阻抗圆图的应用与实验结合史密斯圆图是用来分析传输线匹配问题的有效方法;1.反射系数圆图:Γz=|Γ1|e jΦ1-2βz= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角;反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小;2.阻抗原图点、线、面、旋转方向:➢在阻抗圆图的上半圆内的电抗x>0呈感性,下半圆内的电抗x<0呈容性;➢实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度既代表r min又代表行波系数K,右半轴上的点为电压波腹点,其上的刻度既代表r max又代表驻波比ρ;➢|Γ|=1的圆图上的点代表纯电抗点;➢实轴左端点为短路点,右端点为开路点,中心点处是匹配点;➢在传输线上由负载向电源方向移动时,在圆图上应顺时针旋转,;反之,由电源向负载方向移动时,应逆时针旋转;3.史密斯圆图:将上述的反射系数圆图、归一化电阻圆图和归一化电抗圆图画在一起,就构成了完整的阻抗圆图;4.基本思想:➢特征参数归一阻抗归一和电长度归一;➢以系统不变量|Γ|作为史密斯圆图的基底;➢把阻抗或导纳、驻波比关系套覆在|Γ|圆上;●回波损耗、功率分配等问题的分析✓回波损耗问题:1.定义为入射波功率与反射波功率之比通常以分贝来表示,即Lrz=10lgP in/Pr dB对于无耗传输线,ɑ=0,Lr与z无关,即Lrz=-20lg|Γ1| dB2.插入损耗:定义为入射波功率与传输功率之比3.|Γ1|越大,则| Lr |越小;|Γ1|越小,则| L in|越大;P21:有关回波损耗的例题例1-4✓功率分配问题:1.入射波功率、反射波功率和传输功率计算公式反映出了它们之间的分配关系;P192.传输线的传输效率:η=负载吸收功率/始端传输功率3.传输效率取决于传输线的损耗和终端匹配情况第二章规则金属波导●导波系统中的电磁波按纵向场分量的有无,可分为TE波、TM波和TEM波三种类型;知道概念➢TEM波:导行波既无纵向磁场有无纵向电场,只有横向电场和磁场,故称为横电磁波;E z=0而H z=0➢TM波E波:只有纵向电场,又称磁场纯横向波;E z≠0而H z=0➢TE波H波:只有纵向磁场,又称电场纯横向波;E z=0而H z≠0●导行条件:k c<k时,f>f c为导行波;●矩形波导、圆波导主要模式的特点及应用✧矩形波导:将由金属材料制成的、矩形截面的、内充空气的规则金属波导称为矩形波导;1)纵向场分量E z和H z不能同时为零,不存在TEM波;2)TE波:横向的电波,纵向场只有磁场;➢TE波的截止波数k c,➢矩形波导中可以存在无穷多种TE导模,用TE mn表示;➢最低次波形为TE10,截止频率最低;3)TM波➢TM11模是矩形波导TM波的最低次模,其他均为高次模;4)主模TE10的场分布及其工作特性➢主模的定义:在导行波中截止波长最长截止频率最低的导行模➢特点:场结构简单、稳定、频带宽和损耗小等;✧圆波导:若将同轴线的内导体抽走,则在一定条件下,由外导体所包围的圆形空间也能传输电磁能量,这就是圆形波导;➢应用:远距离通信、双极化馈线以及微波圆形谐振器等;➢圆形波导也只能传输TE和TM波形;➢主模TE11,截止波长最长,是圆波导中的最低次模;圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;➢圆对称TM01模:圆波导的第一个高次模,由于它具有圆对称性故不存在极化简并模;因此常作为雷达天线与馈线的旋转关节中的工作模式;➢低损耗的TE01模:是圆波导的高次模式,它与TM11模是简并模;它是圆对称模,故无极化简并;当传输功率一定时,随着频率升高,管壁的热损耗将单调下降;故其损耗相对于其他模式来说是低的,故可将工作在此模式下的圆波导用于毫米波的远距离传输或制作高Q值的谐振腔;●熟悉模式简并概念及其区别1.矩形波导中的E-H简并:对相同的m和n,TE mn和TM mn模具有相同的截止波长或相同的截止频率;虽然它们的场分布不同,但是具有相同的传输特性;2.圆波导中有两种简并模:➢E-H简并:TE0n模和TM1n模的简并➢极化简并模:考虑到圆波导的轴对称性,因此场的极化方向具有不确定性,使导行波的场分布在φ方向存在cosmφ和sinmφ两种可能的分布,它们独立存在,相互正交,截止波长相同,构成同一导行模的极化简并模;●熟悉矩形波导壁电流分布及应用●波导激励的几种类型1.电激励2.磁激励3.电流激励●方圆波导转换器的作用圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;第三章微波集成传输线●带状线、微带线的结构及特点1.带状线:➢是由同轴线演化而来的,即将同轴线的外导体对半分开后,再将两半外导体向左右展平,并将内导体制成扁平带线;➢主要传输的是TEM波;可存在高次模;➢用途:替代同轴线制作高性能的无源元件;➢特点:宽频带、高Q值、高隔离度➢缺点:不宜做有源微波电路;2.微带线:➢是由双导体传输线演化而来的,即将无限薄的导体板垂直插入双导体中间,再将导体圆柱变换成导体带,并在导体带之间加入介质材料,从而构成了微带线;微带线是半开放结构;➢工作模式:准TEM波●带状线、微带线特征参数的计算会查图➢带状线和微带线的传输特性参量主要有:特性阻抗Z0、衰减常数ɑ、相速v p和波导波长λg ●介质波导主模及其特点➢主模HE11模的优点:a)不具有截止波长;b)损耗较小;c)可直接由矩形波导的主模TE10激励;第四章微波网络基础●熟练掌握阻抗参量、导纳参量、转移参量、散射参量结合元件特性和传输参量的定义P84-P93➢阻抗矩阵Z➢导纳矩阵Y➢转移矩阵A➢散射矩阵S➢传输矩阵T●掌握微波网络思想在微波测量中的应用三点法的条件➢前提条件:令终端短路、开路和接匹配负载时,测得的输入端的反射系数分别为Γs,Γo和Γm,从而可以求出S11, S12, S22;第五章微波元器件●匹配负载螺钉调配器原理、失配负载;衰减器、移相器作用➢匹配负载作用:消除反射,提高传输效率,改善系统稳定性;➢螺钉调配器:螺钉是低功率微波装置中普遍采用的调谐和匹配原件,它是在波导宽边中央插入可调螺钉作为调配原件;螺钉深度不同等效为不同的电抗原件,使用时为了避免波导短路击穿,螺钉·都设计成为了容性,即螺钉旋入波导中的深度应小于3b/4b为波导窄边尺寸;➢失配负载:既吸收一部分微波功率又反射一部分微波功率,而且一般制成一定大小驻波的标准失配负载,主要用于微波测量;➢衰减器,移相器作用:改变导行系统中电磁波的幅度和相位;●了解定向耦合器的工作原理P106➢定向耦合器是一种具有定向传输特性的四端口元件,它是由耦合装置联系在一起的两对传输系统构成的;➢利用波程差;●熟练掌握线圆极化转换器的工作原理及作用●了解场移式隔离器的作用P122➢根据铁氧体对两个方向传输的波型产生的场移作用不同而制成的;●了解铁氧体环行器的分析及作用P123➢环行器是一种具有非互易特性的分支传输系统;第六章天线辐射与接收的基本理论第七章电波传播概论●天波通信、地波通信、视距波通信的概念1.天波通信:指自发射天线发出的电波在高空被电离层反射后到达接收点的传播方式,也成为电离层电波传播;主要用于中波和短波波段2.地波通信:无线电波沿地球表面传播的传播方式;主要用于长、中波波段和短波的低频段;3.视距波通信:指发射天线和接收天线处于相互能看见的视距距离内的传播方式;地面通信、卫星通信以及雷达等都可以采用这种传播方式;主要用于超短波和微波波段的电波传播●天线的作用●无线电波传输是产生失真的原因无线电波通过煤质除产生传输损耗外,还会使信号产生失真——振幅失真和相位失真两个原因:1.煤质的色散效应:色散效应是由于不同频率的无线电波在煤质中的传播速度有差别而引起的信号失真;2.随机多径传输效应:会引起信号畸变;因为无线电波在传输时通过两个以上不同长度的路径到达接收点;接收天线收到的信号是几个不同路径传来的电场强度之和;。
微波技术与天线--刘学观-第3.2节

《微波技术与天线》
第三章 微波集成传输线之•介质波导
要使w=0同时满足(3-2a)或(3-2b),必须有J0(u)=0。
可见圆形介质波导的TE0n和TM0n模在截止时是简并的, 它们的截止频率均为:
fc0n
0nc 2a r 1
《微波技术与天线》
第三章 微波集成传输线之•介质波导
2.介质镜像线(dielectric image line)
对主模HE11来说,由于圆形介质波导的OO平面两侧场分布具有对 称性,因此可以在OO平面放置一金属导电板将不致影响其电磁场分 布,从而可以构成介质镜像线。
圆形介质 镜像线
矩形介质 镜像线
《微波技术与天线》
第三章 微波集成传输线之•介质波导
H形波导中传输的模式取决于介质条带的宽度和金属 平板的间距,合理地选择尺寸可使之工作于LSM模,此 时两金属板上无纵向电流,此模与金属波导的TE0n模有 类似的特性,并且可以通过与波传播方向相正交的方向 开槽来抑制其它模式,而不会对该模式有影响。在H形 波导中,其主模为LSE10e,其场结构完全类似于矩形金 属波导的TE10模,但它的截止频率为零,通过选择两金 属平板的间距可使边缘场衰减到最小,从而消除因辐射 而引起的衰减。
《微波技术与天线》
第三章 微波集成传输线之•介质波导
波导 (waveguide)
用来约束或引导电磁波的结构。通常,波导专指各种形状的空心金属 波导管和表面波波导(介质波导),前者将被传输的电磁波完全限制在 金属管内,又称封闭波导;后者将引导的电磁波约束在波导结构的周 围,又称开波导。 当无线电波频率提高到3000兆赫至 300吉赫的厘米波波段和毫米波波 段时,同轴线的使用受到限制而采用金属波导管或其他导波装置。波 导管的优点是导体损耗和介质损耗小;功率容量大;没有辐射损耗; 结构简单,易于制造。波导管内的电磁场可由麦克斯韦方程组结合波 导的边界条件求解,与普通传输线不同,波导管里不能传输 TEM模, 电磁波在传播中存在严重的色散现象,色散现象说明电磁波的传播速 度与频率有关。表面波波导的特征是在边界外有电磁场存在 。其传播 模式为表面波。
(四川理工学院)微波技术与天线-第3章 TEM波传输线

第3章 TEM波传输线理论
电压反射系数与电流反射系数间差一个负号Γ u=-Γ i 。 通常将电压反射系数简称为反射系数, 并记作Γ(z)。
对于无耗传输线 j
Ae jz Zl Z 0 j 2 z ( z ) e jz Be Zl Z0
反射系数与终端位置有关,而且是位置的函数,在终端
d 2 I ( z) 2 I ( z) 0 dz2
第3章 TEM波传输线理论
电压、电流的通解为
U Aez Bez 1 I ( Aez Bez ) Z0
式中,Z0 (R1 jL1 ) /(G1 jC1 )称为传输线的特性阻抗 。
解中的待定常数由边界条件决定 传输线的边界条件通常有以下三种: ① 已知终端电压Ul和终端电流Il ② 已知始端电压Ui和始端电流Ii ③ 已知信源电动势Eg和内阻Zg以及负载阻抗Zl。 在实际工程中,通常选择1类边界条件,因此
vp与频率ω有关,这就称为色散特性。
在微波工程中,特性阻抗Z0对分析TEM传输线的传输特性 具有重要意义,它是表征传输线与前级匹配和后级匹配的重 要参量。
第3章 TEM波传输线理论
3.2 传输线阻抗与反射
传输线与前级源的匹配主要取决于传输线在入端的输入阻 抗,传输线与后级的匹配不仅取决于传输线终端接收机的输入 阻抗,还与传输线本身的特性阻抗有关。它们的这些关系用特
对于时谐电压和电流, 可用复振幅表示为
u(z, t)=Re[U(z)e jωt] i(z, t)=Re[I(z)e jωt] 可得传输线方程在频域的表示为:
dU R1 jL1 I Z1 I dz dI G1 jC1 U Y1U dz
这里Z1 R1 jL1和Y1 G1 jC1分别是传输线单位长度 的串联阻抗和并联导纳 。
《微波技术与天线》习题答案

《微波技术与天线》习题答案章节 微波传输线理路1.1设一特性阻抗为Ω50的均匀传输线终端接负载Ω=1001R ,求负载反射系数1Γ,在离负载λ2.0,λ25.0及λ5.0处的输入阻抗及反射系数分别为多少?解:31)()(01011=+-=ΓZ Z Z Zπβλ8.02131)2.0(j z j e e --=Γ=Γ31)5.0(=Γλ (二分之一波长重复性)31)25.0(-=ΓλΩ-∠=++= 79.2343.29tan tan )2.0(10010ljZ Z ljZ Z Z Z in ββλΩ==25100/50)25.0(2λin Z (四分之一波长阻抗变换性)Ω=100)5.0(λin Z (二分之一波长重复性)1.2求内外导体直径分别为0.25cm 和0.75cm 的空气同轴线的特性阻抗;若在两导体间填充介电常数25.2=r ε的介质,求其特性阻抗及MHz f 300=时的波长。
解:同轴线的特性阻抗abZ rln600ε= 则空气同轴线Ω==9.65ln 600abZ 当25.2=r ε时,Ω==9.43ln600abZ rε 当MHz f 300=时的波长:m f c rp 67.0==ελ1.3题设特性阻抗为0Z 的无耗传输线的驻波比ρ,第一个电压波节点离负载的距离为1m in l ,试证明此时的终端负载应为1min 1min 01tan tan 1l j l j Z Z βρβρ--⨯=证明:1min 1min 010)(1min 101min 010in tan l tan j 1/tan tan 1min 1min l j Z Z Z Z l j Z Z l j Z Z Z Z l in l βρβρρββ--⨯=∴=++⨯=由两式相等推导出:对于无耗传输线而言:)(1.4传输线上的波长为:m fr2cg ==ελ因而,传输线的实际长度为:m l g5.04==λ终端反射系数为: 961.0514901011≈-=+-=ΓZ R Z R输入反射系数为: 961.0514921==Γ=Γ-lj in eβ 根据传输线的4λ的阻抗变换性,输入端的阻抗为:Ω==2500120R ZZ in1.5试证明无耗传输线上任意相距λ/4的两点处的阻抗的乘积等于传输线特性阻抗的平方。
微波技术与天线--刘学观-第3.1节剖析

数r来求w/h,微带线设计问题。 对于窄导带(也就是当Z0 >44–2r ),则
w hex8A p)(4e1xA p1
其中,
A Z 01 2 .1 r 9 1 9 2 rr 1 1 ln 2 1 rln 4
有效介电常数表达式为
er2 1 12A r r1 1 ln 21 rln 4 2
本节要点
带状线(strip line) 微带线(microstrip line) 耦合微带线(coupling microstrip line)
《微波技术与天线》
第三章 微波集成传输线之•微带传输线
1.带状线(strip line)
带状线的演化过程及结构
带状线又称三板线,它由 两块相距为b的接地板与 中间的宽度为W、厚度为 t的矩形截面导体构成, 接地板之间填充均匀介质
或空气
带状线是由同轴线演化而来的,即将同轴线的外导体对半分 开后,再将两半外导体向左右展平,并将内导体制成扁平带线。 从其电场分布结构可见其演化特性。显然带状线仍可理解为与同 轴线一样的对称双导体传输线,传输的主模是TEM模。也存在高 次TE和TM模。 传输特性参量主要有:特性阻抗、衰减常数、相速和波导波长。
带状线特性阻抗与w/b及t/b的关系曲线
w/b
w/b
可见:带状线特性阻抗随着w/b的增大而减小,而且 也随着t/b的增大而减小。
《微波技术与天线》
第三章 微波集成传输线之•微带传输线
(2) 衰减常数
带状线的损耗包括由中心导带和接地板导体引起的导体损耗、 两接地板间填充的介质损耗及辐射损耗。由于带状线接地板通常 比中心导带大得多,因此带状线的辐射损耗可忽略不计。所以带 状线的衰减主要由导体损耗和介质损耗引起,即:
第三章微波传输线教材

线单位长度分布电容为C1, 则
空气微带线传播相速: vp0 c
1 LC0
介质微带线传播相速:vp1
c
r
1 LC1
14:00
电子科技大学电子工程学院
微波技术与天线
第三章 微波传输线
引入微带线等效介电常数 c
2
c
vp0 vp1
C1 C0
设空气微带线特性阻抗为
Z
,则实际微带线特性阻抗为
00
Z0
Z00
cr
只要求得空气微带线的特性阻抗
Z
00
及有效介电常数
,
c
就
可求得介质微带线的特性阻抗。
14:00
电子科技大学电子工程学院
微波技术与天线
第三章 微波传输线
工程上常用的一组实用经验公式:
(1) 导带厚度为零时
59.952ln(8h w ) w 4h
( w 1) 4h
微波技术与天线
第三章 微波传输线
第三章 微波传输线
导波系统中的电磁波按纵向场分量的有无,可分为 以下三种波型(或模):
(1) 横磁波(TM波),又称电波(E波):Hz 0, Ez 0
(2) 横电波(TE波),又称磁波(H波):Ez 0, Hz 0
(3) 横电磁波(TEM波):
Ez 0, Hz 0
Z00
119.904
w 2.42 0.44 h (1 12h)2
h
w
w
( w 1) w:导带宽度 h h:基片厚度
e
r 1
2
r 1 (1
2
12
微带匹配电路单枝节匹配电路

3.4.1微带线构成的电感和电容
V z A1ejz A2ejz
I
z 1 Z0
A1ejz A2ejz
A1
VL
Z0IL 2
e j L
A2
VL
Z0IL 2
e j L
微波技术与天线-第三章匹配理论
3.4、微带型匹配电路
VLl VLZ0ILejLlVLZ0ILejLl
中间阻抗
微波技术与天线-第三章匹配理论
3.4、微带型匹配电路
方法一过程: 1、经过起始阻抗作等G圆; 2、径过目标阻抗作等反射系数圆; 3、找到交点为中间点;
目标阻抗
Z in
lL
ls
Z 0L Z L Z 0s
开路线 或短路线
中间阻抗
起始阻抗
微波技术与天线-第三章匹配理论
3.4、微带型匹配电路
4、并接线电纳等于=中间点电纳-起始点电纳 5、并接线电长度=从开路点(或短路点)到并
开路:
Z L ,Z injta Z n 0 l zinjta 1 nl tanl
BS Y0
l02 1 arctan Y B 0 s 2 1arctan Y B 0
短路:
Z L 0 ,Z i n j Z 0 t a n l z i n jt a n l tan1l
BS Y0
ls2 1arctan Y B 0 s 21 arctan Y B 0
微波技术与天线-第三章匹配理论
3.4、微带型匹配电路
两电路等效条件
X L Z 0 sin l
BC 2
Y0tg
l 2
l 1 arcsin XL
Z0
微波技术与天线-第三章匹配理论
微波技术与天线

知识梳理绪论微波、天线与电波传播是无线电技术的一个重要组成部分,它们三者研究的对象和目的有所不同。
微波主要研究如何引导电磁波在微波传输系统中的有效传输,它的特点是希望电磁波按一定要求沿微波传输系统无辐射的传输,对传输系统而言辐射是一种能量的损耗。
天线的任务则是将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波,因此天线有两个基本作用:一个是有效地辐射或接收电磁波,另一个是把无线电波能量转换为导行波能量。
电波传播则是分析和研究电波在空间的传播方式和特点。
微波、天线与电波传输播三者的共同基础是电磁场理论,三者都是电磁场在不同边值条件下的应用。
第一章均匀传输线理论微波传输线是用以传输微波信息和能量的各种形式的传输系统的总称, 它的作用是引导电磁波沿一定方向传输, 因此又称为导波系统, 其所导引的电磁波被称为导行波。
一般将截面尺寸、形状、媒质分布、材料及边界条件均不变的导波系统称为规则导波系统, 又称为均匀传输线。
把导行波传播的方向称为纵向, 垂直于导波传播的方向称为横向。
无纵向电磁场分量的电磁波称为横电磁波,即TEM波。
另外, 传输线本身的不连续性可以构成各种形式的微波无源元器件, 这些元器件和均匀传输线、有源元器件及天线一起构成微波系统。
1.1均匀无耗传输线的输入阻抗定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗两个特性:(1)λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Zin(z)=Zin(z+λ/2);(2)λ/4变换性:Zin(z)-Zin(z+λ/4)=Z021.2均匀无耗传输线的三种传输状态(1) 行波状态:无反射的传输状态,匹配负载:负载阻抗等于传输线的特性阻抗沿线电压和电流振幅不变电压和电流在任意点上同相;(2) 纯驻波状态:全反射状态,负载阻抗分为短路、开路、纯电抗状态;(3)行驻波状态:传输线上任意点输入阻抗为复数。
1.3传输线的三类匹配状态(1)负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4.4圆波导中三种常用 TE11、TM 01 、TE01 模式
1.主模 TE11模 TE11 模是圆波导中的最低次模,也是主 模。它有五个场分量,场结构分布如图 所示。
2. TM 01模
TM 01 模是圆波导的第一个高次模,它只
有三个场分量 E 、Ez 、H ,均与φ无关,
其横截面场分布如图所示。
波能 量的传播速度 。
波导波长
g:
在波导中,电磁波的等相位面在一个时间周期
移动的距离称为波导波长,用 表g 示。
内
波阻抗:波导中,波阻抗定义为某波型的横向电场与横向磁场之比值。
传输功率:TE、TM波的传输参数都与截止波长g 有关 。
3.2.3微波传输线中TEM波和TE、TM波特性比较
3.3矩形波导
3.3.2矩形金属波导TE波和 TM波
3.3.3矩形波导中电磁波的 传输特性
3.3.4矩形波导中的主模特 TE10 波
3.3.5波导的衰减 3.3.6 TE10波的激励方法
3.4圆形波导
3.4.1圆形波导示意图 3.4.2圆形波导TE波和TM波
3.4.3圆矩形波导中电磁波 的传输特性
3.4.4圆波导中三种常用TE11、 TM11 、TE01 模式
3.3.1矩形波导示意图
横截面为矩形的规则金属波导称为矩形波导,它是微波技术中应 用非常广泛的一种 波导。设矩形波导的宽边尺寸为a,窄边尺寸 为b,建立坐标系如图3-2所示。
图3-2矩形波导
3.3.2矩形金属波导TE波和TM波
TE波场表达式为:
TM波场表达式为M模的场结构分布图
TE10模的表面电流分布
图3-6 TE10 模式的波导壁电流分布
TE10模的纵向传输特性
截止波长 c(TE10)
相移常数 10与波导波长 g
相速 v 与群速 vg
波阻抗
传输功率
3.3.5波导的衰减
到目前为止,讨论的是理想的规则波导,实际上当电磁波传 播时,由于波导金属壁的热损耗和波导内填充介质的损耗必 然会引起能量或功率的下降。通常波导中填充空气介质,其 损耗极小,可以忽略不计,而导体损耗是不能忽略的,因而 这里主要计算波导壁上的损耗。
3.4.5三种模式的衰减
3.5 同轴线的高次模及单模 传输条件
3.5.1同轴线示意图 3.5.2同轴线TE波和TM波 3.5.3同轴线的单模传输条件
3.1分析规则金属波导的纵向场方法
3.1.1规则金属波导示意图
研究波导中的电磁场问题,实质上就是求解满足波导内壁边界条件的麦 克斯韦方程。这里试图寻找一种方法,就是先如何求出电磁场中的纵向 分量,然后利用纵向分量直接求出其他的横向分量,从而得到电磁场的 全部解。 建立坐标系,由于规则金属波导是直的,所以不管它的横截面形状如何, 总可以将 轴与波导的轴线重合,如图3-1所示。
3 TE01 模
模模TE式是01有简模并T是E模圆11 、。波T它M导有0的1 和高ET次E、模0H1 模式 ,,、H它比z与它三低T个E的场11
分量,均与ρ无关,具有轴对称性,无极 化简并现象,!横截面场分布如图所示。
3.4.5三种模式的衰减
图3-20给出了α=2.54cm圆波导的三种模式导体衰减曲线。可见 TE01模的衰减随着频率升高而单调下降,其损耗相对其他模 式也是低的。这一特点使得工作在 模TE的01圆波导用于毫米 波的远距离传输或制作高Q值的谐振腔。
图3-8矩形波导 TE10 模的衰减常数
图3-9矩形波导中几种波型的衰减
3.3.6 TE10 波的激励方法
激励波导的方法主要有电激励和磁激励两种: (1)电激励—在波导内建立起电力线,使电力线与所需波型的电力线一致。 (2)磁激励—在波导内建立起磁力线,使磁力线与所需波型的磁力线一致。
图3-10用探针在矩形波导中激励 TE10 模式
的分界线,这种状态叫做临界状态。临界状态下的工作频率和工作波长,
分别叫做截止频率 和截f止c 波长 ,截止c 波长是波导中最重要的特性
参数,因为它决定着电磁波的传输条件。
3.2.2TE和TM波的相速、群速、波导波长
相速v :相速是指电磁波的等相位面沿波导轴向移动的速度。
群速vg :群速是指由许多频率组成的波群的速度,它表征了电磁
图3-1任意形状横截面的规则金属波导
3.1.2纵向场方法
横向场和纵向场的亥姆霍兹方程
TE模的纵横关系式
TM模的纵横关系式
3.2 波导中电磁波的传输特性
3.2.1截止现象和截止波长
TE和TM波有截止现象,而TEM波没有截止现象,这是两类波的根本
区别之一。在某一频率下, k ,k此c 时传播常数γ=0,这是传输和截止
第3章 规则金属波导
3.1分析规则金属波导的纵 向场方法
3.1.1规则金属波导示意图 3.1.2纵向场方法
3.2 波导中电磁波的传输特性
3.2.1截止现象和截止波长 波
3.2.2TE和TM波的相速、群 速、波导波长
3.2.3微波传输线中TEM波和 TE、TM波特性比较
3.3矩形波导
3.3.1矩形波导示意图
图3-11小环激励 TE10 模
图3-12小孔耦合 TE10 模
3.4圆形波导
3.4.1圆形波导示意图
3.4.2圆形波导TE波和TM波
TE波场表达式
TM波场表达式
圆波导中 TE11、TM 01 、TM11 模的场结构及参数
3.4.3圆矩形波导中电磁波的传输特性
截止波长 式
c
计算公
圆波导中截止波长的分布图
3.3.3矩形波导中电磁波的传输特性
1.截止波长 c 计算公式及电磁波的传输条件 截止波长 c计算公式 电磁波的传输条件为 0 c
2.标准BJ-100矩形波导的截止波长分布图
3.单模传输的一般条件 和
3.3.4矩形波导中的主模特 TE10 波
TE10 模的场结构
图3-5 TE10 模的场结构图
图3-20 α=2.54cm圆波导中三种模式的衰减常数
3.5 同轴线的高次模及单模传输条件
3.5.1同轴线示意图
3.5.2同轴线TE波和TM波
TE模的截止波长 TM模的截止波长
3.5.3同轴线的单模传输条件
为了保证同轴线TEM模的单模传输,必须使 TE模11 截止,即应使 工作波长满足条件
0 (a b)