向量加法运算及其几何意义(教学设计)(精选、)

合集下载

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的概念回顾1.1 向量的定义向量是从数学和物理学中引入的概念,具有大小和方向。

向量通常用字母表示,如\(\vec{a}\)、\(\vec{b}\) 等,也可以用箭头表示。

1.2 向量的表示方法向量可以用坐标形式表示,如\(\vec{a} = (a_x, a_y)\)。

向量还可以用图形表示,在坐标系中表示向量的起点和终点。

第二章:向量的加法运算2.1 向量加法的定义向量加法是将两个向量相加得到一个新的向量。

如果\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y)\),它们的和\(\vec{c}\) 可以表示为\(\vec{c} = \vec{a} + \vec{b} = (a_x + b_x, a_y + b_y)\)。

2.2 向量加法的几何意义向量加法可以直观地理解为在坐标系中将两个向量的终点相连,得到一个新的向量。

几何上,向量加法表示的是两个向量的位移合成。

第三章:平行向量的加法3.1 平行向量的定义平行向量是指方向相同或相反的向量。

如果两个向量平行,它们的坐标成比例。

3.2 平行向量的加法规则平行向量相加时,可以直接将它们的大小相加,方向不变。

如果\(\vec{a}\) 和\(\vec{b}\) 是平行向量,\(\vec{a} + \vec{b} = (a + b, c)\),其中\(a\) 和\(b\) 是向量的大小,\(c\) 是它们的方向。

第四章:向量的减法运算4.1 向量减法的定义向量减法是将一个向量从另一个向量中减去。

如果\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y)\),它们的差\(\vec{d}\) 可以表示为\(\vec{d} = \vec{a} \vec{b} = (a_x b_x, a_y b_y)\)。

4.2 向量减法的几何意义向量减法可以理解为从起点到终点的位移减去从起点到另一个终点的位移。

《向量加法运算及其几何意义》教案全面版

《向量加法运算及其几何意义》教案全面版

《向量加法运算及其几何意义》教案全面版第一章:向量加法运算1.1 向量加法的定义与性质介绍向量加法的定义探讨向量加法的性质(交换律、结合律、分配律)1.2 向量加法的平行四边形法则介绍平行四边形法则展示平行四边形法则的推导过程举例说明平行四边形法则的应用第二章:向量加法的几何意义2.1 向量加法的图像表示利用图像展示向量加法的几何意义分析图像中各部分的关系2.2 向量加法与向量共线的性质探讨向量共线与向量加法的关系举例说明向量共线在向量加法中的应用第三章:向量加法运算的坐标表示3.1 二维空间中的向量加法运算介绍二维空间中的向量加法运算展示向量加法运算的坐标表示方法3.2 三维空间中的向量加法运算介绍三维空间中的向量加法运算展示向量加法运算的坐标表示方法第四章:向量加法运算的应用4.1 向量加法在几何中的应用探讨向量加法在几何问题中的应用举例说明向量加法在几何问题中的解题过程4.2 向量加法在物理中的应用介绍向量加法在物理学中的应用举例说明向量加法在物理学中的解题过程第五章:向量加法的运算律5.1 向量加法的交换律探讨向量加法的交换律及其证明举例说明交换律在实际问题中的应用5.2 向量加法的结合律探讨向量加法的结合律及其证明举例说明结合律在实际问题中的应用第六章:向量加法与向量减法6.1 向量减法的定义与性质介绍向量减法的定义探讨向量减法的性质(与向量加法的联系)展示向量减法的几何意义6.2 向量加法与向量减法的关系分析向量加法与向量减法之间的关系举例说明向量加法与向量减法的应用第七章:向量加法的逆运算7.1 向量加法的逆运算——向量相反介绍向量相反的概念探讨向量相反的性质展示向量相反的几何意义7.2 向量相反在实际问题中的应用举例说明向量相反在解决实际问题中的应用分析向量相反在问题求解中的重要性第八章:向量加法的运算性质8.1 向量加法的运算性质探讨向量加法的运算性质展示向量加法运算性质的证明过程举例说明向量加法运算性质的应用8.2 向量加法的运算性质在实际问题中的应用分析向量加法运算性质在解决实际问题中的应用展示向量加法运算性质在问题求解中的作用第九章:向量加法的应用案例分析9.1 向量加法在几何问题中的应用案例分析向量加法在几何问题中的应用案例展示向量加法在几何问题求解中的关键作用9.2 向量加法在物理学中的应用案例探讨向量加法在物理学中的应用案例展示向量加法在物理学问题求解中的关键作用第十章:向量加法运算的拓展与提高10.1 向量加法运算的拓展探讨向量加法运算的拓展内容展示向量加法运算的拓展性质与应用10.2 向量加法运算能力的提高分析如何提高向量加法运算能力提出提高向量加法运算能力的建议与方法重点解析第一章:向量加法运算1.1 向量加法的定义与性质重点:向量加法的定义,性质(交换律、结合律、分配律)难点:性质的证明与理解1.2 向量加法的平行四边形法则重点:平行四边形法则的推导过程和应用难点:平行四边形法则在空间向量中的应用第二章:向量加法的几何意义2.1 向量加法的图像表示重点:图像表示法的理解和应用难点:图像分析与几何关系的建立2.2 向量加法与向量共线的性质重点:向量共线与向量加法的关系难点:共线向量在复杂几何问题中的应用第三章:向量加法运算的坐标表示3.1 二维空间中的向量加法运算重点:坐标表示方法和坐标运算规则难点:三维空间坐标运算的复杂性3.2 三维空间中的向量加法运算重点:三维空间坐标表示和运算难点:三维空间向量加法的图像理解第四章:向量加法运算的应用4.1 向量加法在几何中的应用重点:几何问题的向量加法解决方案难点:复杂几何问题的向量分析4.2 向量加法在物理中的应用重点:物理问题的向量加法解决方案难点:物理场景中向量加法的实际应用第五章:向量加法的运算律5.1 向量加法的交换律重点:交换律的理解和证明难点:交换律在复杂问题中的应用5.2 向量加法的结合律重点:结合律的理解和证明难点:结合律在复杂问题中的应用第六章:向量加法与向量减法6.1 向量减法的定义与性质重点:向量减法的定义和性质难点:向量减法与加法的联系和转换6.2 向量加法与向量减法的关系重点:加法与减法之间的关系难点:实际问题中的加减法应用第七章:向量加法的逆运算7.1 向量加法的逆运算——向量相反重点:向量相反的概念和性质难点:向量相反在实际问题中的应用7.2 向量相反在实际问题中的应用重点:相反向量在问题解决中的作用难点:相反向量在不同情境下的应用第八章:向量加法的运算性质8.1 向量加法的运算性质重点:向量加法的运算性质及其证明难点:运算性质在不同维度空间的适用性8.2 向量加法的运算性质在实际问题中的应用重点:运算性质在实际问题中的应用难点:复杂问题中运算性质的灵活运用第九章:向量加法的应用案例分析9.1 向量加法在几何问题中的应用案例重点:几何问题中向量加法的关键作用难点:复杂几何问题中向量加法的分析9.2 向量加法在物理学中的应用案例重点:物理学问题中向量加法的关键作用难点:物理场景中向量加法的实际应用第十章:向量加法运算的拓展与提高10.1 向量加法运算的拓展重点:向量加法运算的拓展性质与应用难点:拓展内容的深度与广度理解10.2 向量加法运算能力的提高重点:提高向量加法运算能力的方法与技巧难点:高级运算能力的培养与实践。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的概念回顾1.1 向量的定义1.2 向量的表示方法1.3 向量的长度和方向第二章:向量的加法运算2.1 向量加法的定义2.2 向量加法的几何意义2.3 向量加法的三角形法则2.4 向量加法的平行四边形法则第三章:向量加法的性质3.1 交换律3.2 结合律3.3 存在零向量3.4 存在相反向量第四章:向量的减法运算4.1 向量减法的定义4.2 向量减法的几何意义4.3 向量减法的三角形法则4.4 向量减法的平行四边形法则第五章:向量减法的性质5.1 减去一个向量等于加上它的相反向量5.2 减去两个向量等于减去它们的和5.3 减法运算与加法运算的关系第六章:向量的数乘运算6.1 向量的数乘定义6.2 向量的数乘几何意义6.3 向量的数乘与向量长度的关系6.4 向量的数乘与向量方向的关系第七章:向量的数乘运算性质7.1 数乘运算的分配律7.2 数乘运算的结合律7.3 数乘运算的单位元7.4 数乘运算的逆元第八章:向量的点积运算8.1 向量点积的定义8.2 向量点积的几何意义8.3 向量点积的计算公式8.4 向量点积的性质第九章:向量的叉积运算9.1 向量叉积的定义9.2 向量叉积的几何意义9.3 向量叉积的计算公式9.4 向量叉积的性质第十章:向量的应用10.1 向量在几何中的应用10.2 向量在物理中的应用10.3 向量在其他领域中的应用10.4 向量的进一步研究第六章:向量的线性组合与基底6.1 向量的线性组合定义6.2 向量的线性组合的几何意义6.3 基底的概念6.4 基底的选取方法第七章:向量空间与线性相关性7.1 向量空间的概念7.2 线性相关的定义7.3 线性无关的定义7.4 线性相关性与线性无关性的判断方法第八章:向量的坐标表示8.1 坐标系的概念8.2 向量的坐标表示方法8.3 坐标变换与向量的关系8.4 坐标表示在几何中的应用第九章:向量组的线性表示9.1 向量组的线性表示概念9.2 矩阵与向量组的关系9.3 矩阵的基本运算9.4 矩阵的逆与向量组的线性表示第十章:向量的进一步研究10.1 向量范数的概念10.2 向量范数的性质10.3 向量内积的概念10.4 向量内积的性质10.5 向量组的内积空间重点和难点解析一、向量的概念回顾:重点关注向量的定义、表示方法、长度和方向,为学生奠定扎实的向量基础。

《向量的加法运算及其几何意义》教学设计方案

《向量的加法运算及其几何意义》教学设计方案

《向量的加法运算及其几何意义》教学设计方案《《向量的加法运算及其几何意义》教学设计方案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!学习主题介绍学习主题名称:向量的加法运算及其几何意义主题内容简介:本学习主题主要学习了平面向量的加法的定义、几何意义和运算法则,通过对平面向量加法的学习,加深对于平面向量的理解。

学习目标分析1、知识与技能:(1)理解认知平面向量的加法的定义(2)掌握平面向量的加法的集合意义及运算法则2、过程与方法:(1)通过对平面向量的加法的学习,在探究过程中,掌握对运算法则的应用(2)在问题的层层递进中,培养学生数形结合的思想方法(3)在对问题的不断深入思考中,提高数学知识的综合运用能力3、情感态度与价值观通过学习,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,形成严谨的科学态度和求简的数学精神,体会学以致用的乐趣。

学情分析前需知识掌握情况:1、学生的基础知识:学生在前面的学习中已经掌握了什么是平面向量,并学习了平面向量的相关概念知识;2、知识的应用层面:学生已经学会了应用平面向量来表达、解决一些实际问题,将平面向量的“有方向、有大小”这个特点应用在题目中。

综合对上述两点的分析,学生已经掌握了一定的平面向量的知识,可以运用微课进行接下来的学习,但是微课的制作需要注意图形变换与讲解相结合,微课的内容以基础知识为主,方便学生理解。

对微课的认识:学生已经在前面的学习过程中经历了我采用的微课形式和使用微课学习的方式,经历过以下几种方式:1、应用微课学习某个特定的知识点,并根据指导在课本中画出重点内容;2、应用微课学习了某个知识点的类型题,在学后测试表现出了学习的效果;3、应用微课加深了对于“数形结合”这一思想的理解。

以上三种方式可以观察到,学生比较乐于接受微课,对于微课的学习有一定的兴趣。

学生特征分析学习态度:学生对于自主学习的态度分为两种:1、学习习惯好、成绩优异的学生:对于此类学生而言,自主学习可以增加他们自主调配的时间,让他们更有针对性地学习,提高学习的效率,此类学生非常乐于接受自主学习的方式;2、学习习惯一般,成绩有待提高的学生:此类学生对于自主学习的态度不是非常积极,学习习惯一般导致他们面对自主学习时,会显得局促不安,此类学生需要老师的指引,帮助他们度过适应期。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量的引入1.1 实数与向量的关系介绍实数的概念和性质。

解释实数可以看作是二维向量空间中的一条直线上的点。

强调实数与向量的相关性。

1.2 向量的定义定义向量的概念,包括大小和方向。

强调向量是自由矢量,可以自由平移。

解释向量与箭头表示法的区别。

第二章:向量的表示法2.1 箭头表示法介绍箭头表示法,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

强调箭头表示法中的大小和方向的表示方法。

2.2 坐标表示法介绍坐标表示法,使用有序数对(x, y) 来表示向量,其中x 表示向量在x 轴上的分量,y 表示向量在y 轴上的分量。

强调坐标表示法中的分量的概念和计算方法。

第三章:向量的加法运算3.1 向量加法的定义定义向量加法的概念,即将两个向量相加得到一个新的向量。

强调向量加法满足交换律和结合律。

3.2 向量加法的几何意义解释向量加法的几何意义,即将两个向量的箭头首尾相接,得到一个新的向量箭头。

强调向量加法是将两个向量的方向和大小相加。

第四章:平行向量与共线向量4.1 平行向量的定义定义平行向量的概念,即方向相同或相反的向量。

强调平行向量具有相同的方向或相反的方向。

4.2 共线向量的定义定义共线向量的概念,即在同一直线上的向量。

强调共线向量可以是同方向的或反方向的。

第五章:向量加法的平行四边形法则5.1 平行四边形法则的定义介绍平行四边形法则,即将两个向量的起点相连,形成一个平行四边形,平行四边形的对角线表示两个向量相加的结果。

强调平行四边形法则是向量加法的一种直观表示方法。

5.2 平行四边形法则的应用解释如何使用平行四边形法则计算两个向量的和。

强调平行四边形法则适用于任意两个向量的加法运算。

第六章:向量减法与相反向量6.1 向量减法的定义定义向量减法,即将一个向量与它的相反向量相加。

强调向量减法实际上是加上一个相反向量。

6.2 相反向量的概念解释相反向量的定义,即大小相等、方向相反的向量。

向量加法运算及其几何意义教学设计适用

向量加法运算及其几何意义教学设计适用

2.2.1 《向量加法运算及其几何意义》教学设计一、教材分析《向量的加法运算及其几何意义》选自人教版《必修4》第2.2.1节,内容包括向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用。

本节课是学习平面向量基本概念之后的一节比较重要的课,通过类比数的运算,研究向量的运算及运算律,渗透数学建模的思想。

向量的加法更是后续学习的铺垫,因为向量加法运算是平面向量的线性运算(向量加法、向量减法、向量数乘运算以及它们之间的混合运算) 中最基本、最重要的运算,减法运算、数乘向量运算都可以归结为加法运算。

故本节课在空间向量与立体几何中起着举足轻重的地位。

二、教学目标1.掌握向量加法的定义,会用向量加法的三角形法则和平行四边形法则作两个向量的和向量;2.掌握向量的加法的交换律和结合律,并会用它们进行向量计算;3.通过对向量加法的三角形法则和平行四边形法则的学习,增强学生的识图能力,为今后培养用数形结合的方法解题奠定基础.三、重点会用向量加法的三角形法则和平行四边形法则作两个向量的和的向量。

难点理解向量加法的几何意义。

位置关系成一定角度方向相同方向相反图像表示等价于OC=OA+OBa+b a+b归纳位移合成可以看作向量加法平行四边形法则的物理模型(共起点相加)位移合成可以看作向量加法三角形法则的物理模型(首尾相接)老师:将F1变为水平拉力(大小等于F),F2不施加力即为0,此时F1、F2合力为多少?学生:F老师:对于零向量与任一向量我们规定:aaa=+=+0图像可知当向量a与b不共线时,|a+b|<|a|+|b|;从验,学会如何求两个向量的和向量,体会数学源于生活的道理,更有说服力。

AOCBOC(B)Aabab+=+,你能否画图检验向量加法满足结合律?a b b a B ()0a a +-=ab(四)、实际应用,理论迁移例题2. 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图所示,一艘船从长江南岸A 点出发,以5km/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h. (1)试用向量表示江水速度、船速以及船的实际航行的速度; (2)求船实际航行速度的大小与方向.变式训练:一艘船从A 点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.(五)、小结作业,巩固知识 [课堂小结]1. 向量加法的定义2. 向量加法的两种法则:(1)三角形法则:首尾相接(2)平行四边形法则:作平移,共起点,四边形,连对角3. 对任意的向量a 与b ,模之间的关系。

教学设计:《向量加法运算及其几何意义》

教学设计:《向量加法运算及其几何意义》

《向量加法运算及其几何意义》的教学设计教学目标(1) 知识构建目标:理解向量运算的意义;掌握向量加法运算法则、算律,能够运用向量加法三角形法则和平行四边形法则求任意两个向量的和向量;(2) 方法与技能目标:经历概念的形成过程,提高数学知识建模能力;通过自主探究活动,体验数学发现和创造的过程,提高数学探究能力和数学交流能力;训练用向量方法解决几何问题及实际问题的数学实践能力;教学重点与难点教学重点:理解向量加法的意义,掌握向量加法的三角形法则和平行四边形法则; 教学难点:对向量加法法则的理解。

教学过程一、设置情境,引入概念本节课的引入设计了两个情景,一是引言教学的情境设置,二是平面向量加法的背景设置。

本节课的引言首先从数的运算谈起,有了数只能进行计数,只有引入了运算,数的威力才以充分展现。

类比数的运算,向量也能够进行运算。

运算引入后,向量的工具作用才能得到充分发挥。

我们设计了四张图片,说明这个道理,自然地引进了向量的运算。

向量来自生活,来自物理学,我们用海峡两岸的直航和物理学中的力的合成引入了向量的加法,这两个问题正好是(1)位移的合成(2)力的合成;并为三角形法则和平行四边形法则做好铺垫。

二、形成概念,提炼方法1、向量加法的定义向量的加法:求两个向量和的运算,叫做向量的加法2、向量加法运算法则(1)三角形法则;已知非零向量a 、b.在平面内任取一点A ,作AB =a ,=b,则向量叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=位移合成可以看作向量加法三角形法则的物理模型(2)平行四边形法则。

以同一点O 为起点的两个已知向量a 、b,为邻边作平行四边形OACB ,则以O 为起点的对角线就是与的和。

力的合成可以看作向量加法平行四边形法则的物理模型。

对于零向量与任一向量我们规定:=+=+这两个法则的教学是本节课的重点。

我们对这两个法则的教学,一是重视这两个法则的发生、发展的过程的教学,确保双基的落实;其次考虑到学生的思维特点,突出了它们的操作性,强调了作法步骤。

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版

《向量的加法运算及其几何意义》教案完美版第一章:向量概念的复习1.1 向量的定义1.2 向量的基本性质1.3 向量的表示方法1.4 向量的模长与方向第二章:向量的加法运算2.1 向量加法的定义2.2 向量加法的基本性质2.3 向量加法的几何意义2.4 向量加法的运算规则第三章:向量的减法运算3.1 向量减法的定义3.2 向量减法与向量加法的关系3.3 向量减法的几何意义3.4 向量减法的运算规则第四章:向量的数乘运算4.1 向量数乘的定义4.2 向量数乘的基本性质4.3 向量数乘的几何意义4.4 向量数乘的运算规则第五章:向量加法运算的坐标表示5.1 坐标系的建立5.2 向量坐标的定义5.3 向量加法运算的坐标表示方法5.4 向量加法运算的坐标运算规则第六章:向量加法运算的图形验证6.1 向量加法图形的表示方法6.2 向量加法的平行四边形法则6.3 向量加法的三角形法则6.4 向量加法的图形验证练习第七章:向量的减法与数乘的图形意义7.1 向量减法的图形意义7.2 向量减法的三角形法则7.3 向量数乘的图形意义7.4 向量数乘的三角形法则第八章:向量加减法的综合应用8.1 向量加减法的混合运算8.2 向量加减法的坐标应用8.3 向量加减法的几何解释8.4 向量加减法的综合练习第九章:向量数乘的应用9.1 向量数乘与向量长度的关系9.2 向量数乘与向量方向的关系9.3 向量数乘的几何应用9.4 向量数乘的实际问题应用第十章:总结与提高10.1 向量加法、减法、数乘的总结10.2 向量运算在几何中的应用10.3 向量运算在坐标系中的应用10.4 向量运算的综合练习与提高重点和难点解析一、向量概念的复习补充说明:向量是具有大小和方向的量,可用箭头表示。

向量具有平行四边形法则、三角形法则等基本性质。

向量可用字母和箭头表示,例如→a、→b。

向量的模长表示向量的大小,方向表示向量的指向。

二、向量的加法运算补充说明:向量加法是将两个向量首尾相接,形成一个新的向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1向量加法运算及其几何意义(教学设计)
[教学目标]
一、知识与能力:
1.掌握向量的加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量;
2.能准确表述向量加法的交换律和结合律,并能熟练运用它们进行计算;
二、过程与方法:
1.经历向量加法三角形法则和平行四边形法则的归纳过程;
2.体会数形结合的数学思想方法.
三、情感、态度与价值观:
培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.
[教学重点]
向量加法定义的理解;向量加法的运算律.
[教学难点]
向量加法的意义
一、复习回顾,新课导入
1.物理学中,两次位移,
OA AB的结果与位移OB是相同的。

2.物理学中,作用于物体同一点的两个不共线的合力如何求得?
3.引入:两个向量的合成可用“平行四边形法则”和“三角形法则”求出,本节将研究向量的加法。

二、师生互动,新课讲解
1.已知向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b的和,记作a+b,即a+b=AB BC AC
+=
求两个向量和的运算,叫做向量的加法.
这种求作两个向量的方法叫做三角形法则,简记“首尾相连,首是首,尾是尾”。

以同一点O为起点的两个已知向量a,b为邻边作OABC,则以O为起点的对角线OC就是a与b的和。

我们把这种作两个向量和的方法叫做向量加法的平行四边形法则。

对于零向量与任一向量a,规定a+0=0+a=a
例1(课本P81例1)已知向量a,b,用两种方法(三角形和平行四边形法则)求作向量a+b。

作法一:在平面内任取一点O,作OA=a,AB=b,则OB=a+b.
作法二:在平面内任取一点O,做OA=a,OB=b,以OA、OB为邻边作OBCA,则OC=a+b。

变式训练1:当在数轴上表示两个共线向量时,它们的加法与数的加法有什么关系?
2.归纳:
1.两个向量的和仍是一个向量。

2.当a,b不共线时,a+b的方向与a、b都不同向,且|a+b|<|a|+|b|.
3.当a与b共线时,
(1)若a与b同向,则a+b的方向与a、b同向,且|a+b|=|a|+|b|.
(2)若a与b反向,当|a|>|b|时,a+b的方向与a相同,且|a+b|=|a|-|b|;当|a|<|b|时,a+b的方向与b相同,且|a+b|=|b|-|a|.
3. 向量加法的运算律
探究:数的加法满足交换律与结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c),任意向量a,b的加法是否也满足交换律和结合律?
要求学生画图进行探索.
(1)如图作ABCD,使AB=a,AD=b,则BC=b,DC=a,
因为AC AB BC =+=a+b ,AC AD DC =+=a+b
所以,a+b=b+a
(2) 如图自平面内任一点A ,作AB =a ,BC =b ,CD =c ,
因为()AD AC CD AB BC CD =+=++=(a+b)+c ,
()AD AB BD AB BC CD =+=++=a+(b+c ),
所以(a+b)+c=a+(b+c).
例2: 一艘船以23的速度向垂直于对岸的方向行驶,同时河水的流速为2km/h ,求船实际航行速度的大小与方向(用与流速间的夹角表示)。

解:如图,设AD 表示船向垂直于对岸的方向行驶的速度,AB 表示水流的速度,
以AD 、AB 为邻边作平行四边形ABCD ,则AC 就是船实际航行的速度,
在Rt ∆ABC 中,||AB =2km/h ,||BC =23,所以22||||||4AC AB BC =+=,
因为23tan 3CAB ∠=60CAB ∠=︒, 答:船实际航行速度的大小为4km/h ,方向与流速间的夹角为60︒。

变式训练2:摩托艇是抗洪抢险中的主要交通工具,设它在静水中的航行速度是每小时25千米,如果当时的水流速度是每小时15千米,那么该摩托艇向下游航行时,每小时能行________千米,它向上游航行时,每小时能行___________千米.(40、10)
课堂练习1:(课本P84练习NO :1;2;3;4)
例3:(tb0140403)化简AB +FA BC CD DF +++(答:0)
变式训练3、(tb0140603)已知正方形ABCD 的边长为1,===,,,则|++|为( )。

(A )0 (B )3 (C )2 (D )22
三、课堂小结,巩固反思:
1. 在学习向量加法概念时,要结合物理学理解向量加法的意义;
2. 要熟练地掌握向量加法的平行四边形法则和三角线形法则,并能做出已知两个向量的和向量;
3. 要理解向量加法的交换律和结合律,能说出这两个向量运算律的几何意义;
四、课时必记:
1、向量的几何意义。

2、三角形法则与平行四边形法则。

五、分层作业:
A 组:
1、(课本P91习题2.2 A 组 NO :1)
2、(课本P91习题2.2 A 组 NO :2)
3、(课本P91习题2.2 A 组 NO :6)
B 组:
1、(课本P91习题2.2 B 组 NO :1)
2、(课本P91习题2.2 B 组 NO :2)
3、一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为h km /4,求水流的速度.
(答:2km/h )
4、一艘船距对岸,以h km /32的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km ,求河水的流速.
(答:1km/h)
5、一艘船从A 点出发以1v 的速度向垂直于对岸的方向行驶,同时河水的流速为2v ,船的实际航行的速度的大小为h km /4,方向与水流间的夹角是60 ,求1v 和2v .
(答:v 1;v 2=2km/h )
6、一艘船以5km/h 的速度在行驶,同时河水的流速为2km/h ,则船的实际航行速度大小最大是
km/h ,最小是
km/h
(答:7;3)
最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改。

相关文档
最新文档