2018-2019学年鲁教版五四制东营市六年级第一学期期末考试数学试题含答案
山东省东营市六年级上学期数学期末考试试卷

□□□□□山东省东营市六年级上学期数学期末考试试卷姓名: ________ 班级: ___________________ 成绩: ___________________来爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、选择题。
(共10题;共10分)1.(1分)(2019六上•河北期末)下而说法错误的是()。
A . 一个比,它的前项乘3,后项除以3,这个比的比值扩大到原来的9倍B •一个数(0除外)的倒数不一定比它本身小C . 一个三角形三个内角度数的比是1: 2: 3,这个三角形是直角三角形D . 一个圆的半径扩大到原来的2倍,那么圆的而积也扩大到原来的2倍2.(1分)A、B两个学校的六年级学生人数相等.A校的六年级学生中有67%参观了环保知识展览,B校的六年级学生中有75%参观了环保知识展览,两个学校参观环保知识展览的六年级学生数相比()A . A校多B . B校多C •无法比较3.(1分)(2019六上•龙华期末)如图所示,楼下有一堵不透明的墙。
现在分别从楼的A, B, C, D不同楼层向下看树,能看到树最多的楼层是()。
B・BC・CD・D4.(1分)甲射击40次,有35次命中;乙射击60次,有55次命中。
他们的命中率相比,()。
A •命中率相同B・甲的命中率髙C・乙的命中率髙D •无法比较5.(1分)把一个茶叶筒放在桌子上,让眼睹和茶叶筒处在同一个水平线上.从正而看,可以看到的图形是:()B・6.(1分)一根2米长的绳子,第一次剪下它的50乩第二次剪下㊁米,哪次剪下的多?(A・第一次B・第二次C・两次一样多D .无法判断7・(1分)(2020六上•石碣镇期末)下图中,正方形的而积是16平方厘米,圆的而积是()cm2oA ・ 50. 24B ・ 47. 1C ・ 43. 98D ・ 37. 688・(1分)(2019 •岳麓)双十一,某件商品降价20%,降价前能买100件该商品的钱,降价后能买该商品(A・80件B・100件C・120件D・125件9. (1 分)(2019五下•泰兴期末)如图中两个涂色正方形的周长的和是20厘米,整个图形的而积是()平方厘术.A ・ IOOB・50C・2πD・2510. (1分)甲圆的直径等于乙圆的半径,乙圆的周长是甲圆周长的()A . 2倍1B . 2C . 4倍D・2π二.填空题。
2019年鲁教版小学六年级上学期数学期末试卷(可打印版)

一.选择题(共12小题)1.如图,将小正方体切去一个角后再展开,其表面展开图正确的是()A.B.C.D.2.下面是几何体中,从正面看得到的平面图形是长方形的()A.B.C.D.3.如图,是由若干个大小相同的小正方体所搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个4.气温由﹣2℃上升3℃后是()℃.A.1 B.3 C.5 D.﹣55.的倒数是()A.6 B.﹣6 C.D.﹣6.用科学记数法表示的数3.61×108.它的原数是()A.36100000000 B.3610000000 C.361000000 D.361000007.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.68.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.59.下列各题去括号错误的是()A.x﹣(3y﹣0.5)=x﹣3y+0.5B.m+(﹣n+a﹣b)=m﹣n+a﹣bC.﹣0.5(4x﹣6y+3)=﹣2x+3y+3D.(a+0.5b)﹣(﹣c+)=a+0.5b+c﹣10.下列方程中,解为x=﹣2的方程是()A.4x=2 B.3x+6=0 C.x=3 D.7x﹣14=011.若(m2﹣1)x2﹣(m﹣1)x﹣8=0是关于x的一元一次方程,则m的值为()A.﹣1 B.1 C.±1 D.不能确定12.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)二.填空题(共6小题)13.如图,一个几何体的三种视图分别是两个长方形、一个扇形,则这个几何体表面积的大小为.14.据《世界统计年鉴2000》记载1996年中国、美国、印度、澳大利亚四个国家的人口分别为122389,26519,94561,1831万人,则以上四国人口之比为(精确到0.01).15.现有一根长为1米的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复截取,则第n(n为正整数)次截取后,此木杆剩下的长度为米.16.若﹣x m+3y与2x4y n+3是同类项,则(m+n)217= .17.已知2x+y=﹣1,则代数式(2y+y2﹣3)﹣(y2﹣4x)的值为.18.方程+x=1的解为.三.解答题(共4小题)19.指出下列平面图形各是什么几何体的展开图.20.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)(2)本周内每股的最高价是多少元?每股的最低价是多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?21.若(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,试求a,b的值.22.已知关于x的方程(m+5)x|m|﹣4+18=0是一元一次方程.试求:(1)m的值;(2)3(4m﹣1)﹣2(3m+2)的值.。
山东省东营市六年级 上学期数学期末试卷

山东省东营市六年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、填空(每空27分) (共12题;共27分)1. (4分) (2018五上·盐田期末) 8.9公顷=________平方米 740000m2=________km22. (3分)填上“>”“<”或“=”.(1) ________(2) ________3. (4分)(2020·阜宁) ________折=0.4= ________=________÷15=20:________=________%4. (2分) ________的倒数是最大的一位数.5. (2分) (2019六下·高要期中) 某服装店一件休闲装原价200元,现在降低40元,相当于打________折.照这样的折扣,原价800元的西装,现价________元.6. (1分)(2020·临朐) 王叔叔将10000元钱存入银行,定期三年,年利率为3.75%,到期后一共可取回________元。
7. (1分)计算。
=________8. (2分)把7米长的绳子平均分成8段,每段长________(分数)米,占全长的________(分数)。
9. (3分) (2019五下·东兴期中) 一根长48cm的铁丝做成一个正方体框架,这个正方体的棱长是________.表面积是________.10. (2分)计算: =________11. (2分) (2017六上·黄埔期末) 0.125:化简成最简整数比是________.比值是________.12. (1分)王大伯在山上种树,一共种树200棵,有10棵没有成活.(1)成活了________(2)这批树的成活率是________二、判断(5分) (共5题;共5分)13. (1分) (2020六上·衡阳期中) 把10g盐溶于100g水中,则盐与盐水的比是1:10。
鲁教版五四制六年级数学上册期末达标检测卷附答案

鲁教版五四制六年级数学上册期末达标检测卷一、选择题(每题3分,共30分)1.在0,-2,1,5这四个数中,最小的数是()A.0 B.-2 C.1 D.52.为庆祝中华人民共和国成立70周年在北京天安门广场隆重举行阅兵活动.由人民解放军、武警部队和民兵预备役部队约15 000名官兵接受检阅.15 000用科学记数法可表示为()A.0.15×105B.1.5×104C.15×103D.150×102 3.下列运算正确的是()A.6a2-a2=5 B.2a+b=2abC.4ba2-3a2b=a2b D.2a2+3a4=5a64.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1 C.1<-a<a D.-a<a<1 5.已知:(1+x)2+|y-2|=0,则(x+y)2 021的值为()A.-3 B.1 C.3 D.1或3 6.某市获“全国文明城市”提名,为此小王特制了一个正方体玩具,其表面展开图如图所示,正方体中与“全”字相对的字是()A.文B.明C.城D.市7.有一篮苹果平均分给若干人,若每人分2个,则还余下2个苹果,若每人分3个,则少7个苹果,设有x人分苹果,则可列方程为()A.3x+2=2x+7 B.2x-2=3x+7C.3x-2=2x-7 D.2x+2=3x-78.已知x =1是方程k (x -2)2-k +3x 6=43k 的解,则k 的值是( )A .4B .-14C .14 D .-4 9.小王去早市为餐馆选购蔬菜,他指着标价为每千克3元的豆角问摊主:“这豆角能便宜吗?”摊主说:“多买按八折,你要多少千克?”小王报了质量后,摊主同意按八折卖给小王,并说:“之前有一人只比你少买5 kg 就是按标价,还比你多花了3元呢!”小王购买豆角的质量是( ) A .25 kg B .20 kg C .30 kg D .15 kg 10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒,…以此规律,第11个图案需要木棒的根数是( )A .156B .157C .158D .159 二、填空题(每题3分,共24分)11.某网店去年的营业额是a 万元,今年比去年增加10%,今年的营业额是________万元.12.单项式-2π3x 2y 的次数为________.13.若甲班有26人,乙班有34人,现从甲班抽x 人到乙班,使乙班的人数是甲班人数的2倍,则可列方程为________. 14.若a +b =2,则代数式3-2a -2b =________.15.计算:(-1)1+(-1)2+(-1)3+…+(-1)2 030=________.16.一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1 dm的正方体摆放在课桌上,如图所示,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为________.17.a ,b 是自然数,规定a ▽b =3×a -b3,则2▽17的值是________. 18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20 m 3,每立方米收费2元;若用水量超过20 m 3,超过部分每立方米加收1元.小明家5月份缴水费64元,则他家该月用水________.三、解答题(19~21题每题6分,22~23题每题8分,24~25题每题10分,26题12分,共66分) 19.计算:(1)-32-(-17)-|-23|+(-15); (2)⎝ ⎛⎭⎪⎫-911÷9121-⎝ ⎛⎭⎪⎫12+23-34×(-24).20.解方程:(1)3x +7=32-2x ; (2)x -1-x 3=x +56.21.化简求值:已知|2x +1|+3⎝ ⎛⎭⎪⎫y -142=0,求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值.22.如图是由小立方块搭成的几何体,请画出从正面、左面和上面看到的平面图形.23.已知|a|=5,|b|=6,且|a+b|=a+b,求a-b的值.24.请同学们仔细阅读下列步骤,完成问题:①任意写一个三位数,百位数字比个位数字大2;②交换百位数字与个位数字,得到一个三位数;③用上述的较大的三位数减去较小的三位数,所得的差为三位数;④交换这个差的百位数字与个位数字又得到一个三位数;⑤把③④中的两个三位数相加,得到最后结果.问题:(1)③中的三位数是________;④中的三位数是________;⑤中的结果是________.(2)在草稿纸上试一个不同的三位数,看看结果是否都一样?如果一样,请你用含a,b的代数式表示这个三位数,解释其中的原因.25.某商场销售一种西装和领带,西装每套定价1 000元,领带每条定价200元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)①若该客户按方案一购买,需付款________元;(用含x的代数式表示)②若该客户按方案二购买,需付款________元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较合算.(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.26.如图,数轴的原点为O,点A,B,C是数轴上的三点,点B对应的数为1,AB=8,BC=3,动点P,Q同时从A,C出发,分别以每秒2个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t秒(t>0).(1)求点A,C分别对应的数;(2)求点P,Q分别对应的数;(用含t的式子表示)(3)试问当t为何值时,OP=OQ?答案一、1.B 2.B 3.C 4.A 5.B 6.B 7.D8.B 9.C 10.B 二、11.1.1a 12.3 13.34+x =2(26-x ) 14.-1 15.0 16.33 dm 2 17.13 18.28 m 3三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-11-[12×(-24)+23×(-24)-34×(-24)] =-11-(-12-16+18) =-1.20.解:(1)移项,得3x +2x =32-7.合并同类项,得5x =25. 系数化为1,得x =5.(2)去分母,得6x -2(1-x )=x +5, 去括号,得6x -2+2x =x +5, 移项、合并同类项,得7x =7, 系数化为1,得x =1.21.解:由|2x +1|+3⎝ ⎛⎭⎪⎫y -142=0得2x +1=0,y -14=0,即x =-12,y =14.原式=4x 2y -6xy +12xy -6+x 2y +1=5x 2y +6xy -5. 当x =-12,y =14时,原式=5x 2y +6xy -5=516-34-5=-5716. 22.解:如图.23.解:因为|a |=5,|b |=6,所以a=±5,b=±6.①当a=5,b=6时,a+b=11,满足|a+b|=a+b,此时a-b=5-6=-1;②当a=5,b=-6时,a+b=-1,不满足|a+b|=a+b,故舍去;③当a=-5,b=6时,a+b=1,满足|a+b|=a+b,此时a-b=-5-6=-11;④当a=-5,b=-6时,a+b=-11,不满足|a+b|=a+b,故舍去.综上所述:a-b的值为-1或-11.24.解:(1)198;891;1 089(2)所得结果都一样.可以设①中的三位数为100a+10b+(a-2),所以②中的三位数为100(a-2)+10b+a,所以100a+10b+(a-2)-[100(a-2)+10b+a]=198,在交换百位数字与个位数字后得到891,198+891=1 089,故相加后一定是1 089.25.解:(1)①(200x+16 000)②(180x+18 000)(2)当x=30时,方案一的费用为200×30+16 000=22 000(元),方案二的费用为180×30+18 000=23 400(元),因为22 000<23 400,所以按方案一购买较合算.(3)能.先按方案一购买20套西装获赠20条领带,再按方案二购买10条领带.26.解:(1)1-8=-7,1+3=4,所以点A对应的数为-7,点C对应的数为4.(2)因为动点P,Q同时从A,C出发,分别以每秒2个单位长度和每秒1个单位长度的速度沿数轴正方向运动,所以当运动时间为t秒时,点P对应的数是-7+2t,点Q对应的数是4+t.(3)①当P在原点左侧时,OP=7-2t,OQ=4+t,所以7-2t=4+t,解得t=1;②当P在原点右侧时,OP=2t-7,OQ=4+t,所以2t-7=4+t,解得t=11.综上所述:当t=1或11时,OP=OQ.六年级数学上册计算专项训练1.直接写得数。
鲁教版五四制六年级上册期末考试数学试题及答案

2018—2019学年度第一学期期中考试六年级数学试题一、选择题(本题有12小题,每小题4分,共48分,每小题只有一个选项是正确的,不选、多选、错选,均不得分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.若一个棱柱有10个顶点,则下列说法正确的是A.这个棱柱有4个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱2.如果向东走6米记为+6米,那么向西走2米记为A.+2米B.±2米C.0米D.-2米3.如图是正方体的展开图,在顶点处标有1~11的整数数字,将它折叠成正方体时,数字6对应的顶点与哪些数字对应的顶点重合A.7,8 B.7,9 C.7,2 D.7,4第3题图第5题图第7题图4.在0.5,-1,0,-2这四个数中,最小的数是A.-2 B.0.5 C.0 D.-15.用一个平面去截图中的几何体,截得的平面图不可能是A.三角形B.四边形C.五边形D.六边形6.检查了4个足球的重量(单位:克),其中超过标准重量的数量记为正数,不足的数量记为负数,结果如下,从轻重的角度看,最接近标准的足球是A.B.C.D.7.一个由完全相同的小正方体组成的几何体三视图如图所示,若在这个几何体的基础上增加几个相同的小正方体,将其补成一个大正方体,则需要增加的小正方体的最少个数为A.4 B.3 C.6 D.58.神州十一号飞船成功飞向浩瀚的宇宙,并在距地面约389500米的轨道上与天宫二号交会对接.将389500用科学记数法表示(要求精确到万位)正确的是 A .3.9×105 B .3.8×105 C .3.9×104 D .3.80×104 9.如图是一个几何体的三种视图,那么这个几何体是A .B .C .D .第9题图 第17题图10.在数轴上与表示数4的点距离5个单位长度的点表示的数是 A .5 B .-1 C .9 D .-1或9 11.式子|x -1|+2取最小值时,x 等于 A .0 B .1 C .2 D .312.对于两个非零有理数a 、b 定义运算*如下:a *b =ab +2a -3b 2b ,则(-3)*(-23 )=A .-3B .3C .3 2D .-32二、填空题(共6小题,每小题4分,满分24分)13. 已知三棱柱有5个面、9条棱,四棱柱有6个面、12条棱,五棱柱有7个面、15条棱,……,由此可以推测n 棱柱有 个面, 条棱. 14.如图,点A ,B 在数轴上,且A 与B 的距离是5,点A 对应的数为3 35,则点B 所对应的数为 .第14题图 第18题图15.若|x +7|+(y -6)2=0,则(x +y )2019的值为 .16.淄博市某天上午的温度是4℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃.17.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,小明、小刚、小红三人从不同的角度去观察此正方体,观察结果如图所示,则数字3对面是数字 . 18.一个用小立方块搭成的几何体的主视图和左视图都是上图,这个小几何体中小立方块最少有 块.三、解答题(共8小题,共78分)19.计算:(1)12-(+15)+(-7)-(-18);(2)(- 1 3 + 5 6 - 7 12 )×(-36); (3)-1+5÷(− 16 )×6;(4)-24×0.125−[(−2)2÷(−23)−(−1)99].20.已知由4个相同的小立方体组成的几何体如图所示,请画出它的三视图.主视图 左视图 俯视图21.(1)请你在数轴上表示下列有理数:-2 12 ,|-5|,0,-2,-(-1);(2)将上面各数用“<”连接起来.22.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)23.已知:有理数m所表示的点到原点距离是4个单位,a、b互为相反数,c,d互为倒数.(1)求m的值;(2)求:2a+2b-3cd+m的值.24.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8、-9、+4、-7、-2、-10、+11、-3、+7、-5(1)收工时,检修工在A地的哪里?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?25.用小立方块搭成的几何体,主视图和俯视图如图,问这样的几何体有多少可能?它最多需要多少小立方块,最少需要多少小立方块,请画出最少和最多时的左视图;26.结合数轴与绝对值的知识回答下列问题:一般地,数轴上表示数m和数n的两点之间的距离公式为|m-n|.(1)例如:数轴上表示4和1的两点之间的距离为|4-1|= .数轴表示5和-2的两点之间的距离为|5-(-2)|=|5+2|= .(2)数轴上表示数a的点与表示-4的点之间的距离表示为. 数轴上表示数a的点与表示2的点之间的距离表示为.若数轴上a位于-4与2之间,求|a+4|+|a-2|的值;(3)当a= 时,|a+5|+|a-1|+|a-4|的值最小,最小值为.2018—2019学年度第一学期期中考试六年级数学参考答案一、选择题(本题有12小题,每小题4分,共48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BD CA DB AA CD B C二、填空题:(每小题4分,共24分)题号 13 14 15 16 17 18 答案n +2,3n-12 5-1-263 三、解答题: 19.(每小题4分,共16分)解:(1)12-(+15)+(-7)-(-18) =12+(-15)+(-7)+18=(12+18)+[(-15)+(-7)] =30+(-22) =8;(2)(- 1 3 + 5 6 - 7 12)×(-36)=- 1 3 ×(-36)+ 5 6 ×(-36)- 712×(-36)=12-30+21 =3;(4)-24×0.125−[(−2)2÷(−23)−(−1)99] =-16× 1 8 -[4×(- 32 )-(-1)]=-2-[-6+1]=-2-(-5) =-2+5 =3. 20.(每图2分,共6分)解:如图所示, 21.解:(1)如图所示:……………………5分(3)-1+5÷(− 16 )×6 =-1+5×(-6)×6=-1+(-180) =-181;(2)由数轴可得,-2 12 <-2<0<-(-1)<|-5|.………………8分22.(每画对一个得2分,满分8分)解:如图所示:23.解:(1)∵有理数m 所表示的点到原点距离是4个单位,∴m =4或m =-4;………………………………………………………………4分 (2)由题意知a +b =0,cd =1,当m =4时,原式=2(a +b )-3cd +m =0-3+4=1;………………………6分 当m =-4时,原式=2(a +b )-3cd +m =0-3-4=-7.…………………8分 24.解:(1)+8-9+4-7-2-10+11-3+7-5=-6千米,故收工时,检修工在A 地西边,距A 地6千米;……………………………………4分 (2)|+8|+|-9|+|+4|+|-7|+|-2|+|-10|+|+11|+|-3|+|+7|+|-5| =8+9+4+7+2+10+11+3+7+5=66,…………………………………………………………………………………………8分 0.3×66=19.8(升).故若每千米耗油0.3升,从A 地出发到收工时,共耗油19.8升.……………………10分 25.(本题满分11分)解:有两种可能;………………………………………2分 有主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块, 第三层只有一块,故:最多为3+4+1=8个小立方块,最少为个2+4+1=7小立方块. 最多时的左视图是: 最少时的左视图为:………………5分 或 ………………11分26.解:(1)数轴上表示4和1的两点之间的距离为|4-1|=3;…………………1分 数轴表示5和-2的两点之间的距离为|5-(-2)|=|5+2|=7;……………………2分 (2)数轴上表示数a 的点与表示-4的点之间的距离表示为|a +4|;………………4分 数轴上表示数a 的点与表示2的点之间的距离表示为|a -2|;………………………6分 |a +4|+|a -2|=a +4-a +2=6;………………………………………………………8分 (3)当a =1时,|a +5|+|a -1|+|a -4|=6+0+3=9.故当a =1时,|a +5|+|a -1|+|a -4|的值最小,最小值为9.………………………11分 故答案为:(1)3;7;(2)|a +4|,|a -2|;(3)9.。
鲁教版(五四制)数学六年级上册期末综合复习测试题

鲁教版数学六年级上册期末综合复习测试题一、选择题1.在0,−(−1),(−3)2,−32,−|−3|,−324,a2中,正数的个数为()A. 1B. 2C. 3D. 42.已知|a|=5,|b|=2,且|a−b|=b−a,则a+b的值为()A. 3或7B. −3或−7C. −3D. −73.下列几何体中,属于棱柱的有()A. 6个B. 3个C. 4个D. 5个4.下列根据等式的性质变形不正确的是()A. 由x+2=y+2,得到x=yB. 由2a−3=b−3,得到2a=bC. 由cx=cy,得到x=yD. 由x=y,得到xc2+1=yc2+15.若单项式a m−2b2与−3ab n的和仍是单项式,则n m的值是()A. 3B. 9C. 6D. 86.已知|x|=3,|y|=7且xy<0,则x+y=()A. 4B. 10C. ±4D. ±107.已知(k−1)x|k|+3=0是关于x的一元一次方程.则此方程的解是()A. −1B. −32C. 32D. ±18.已知数a、b、c在数轴上的位置如图所示,化简|a+b|−|c−b|的结果是()A. a+bB. −a−cC. a+cD. a+2b−c9.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A. x15−1060=x12+560B. x15+1060=x12−560C. x15−1060=x12−560D. x15+10=x12−510.计算(−2)2016+(−2)2017所得结果是()A. 22016B. −24033C. −2D. −2201611.观察等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A. 2a2−2aB. 2a2−2a−2C. 2a2−aD. 2a2+a12.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A. 亏损20元B. 盈利30元C. 亏损50元D. 不盈不亏二、填空题13.若方程kx|k+1|+2=0是关于x的一元一次方程,则k=______.14.已知有理数a,b,c满足|a|a +|b|b+|c|c=1,则|abc|abc的值为________.15.计算:(−2)2018×(−12)2016=______________.16.设a−3b=5,则2(a−3b)2+3b−a−15的值是.17.若多项式3x2−2x+b与多项式3x2−bx−1的和中不含x项,则b的值为______.18.已知a、b互为倒数,c、d互为相反数,m为最大的负整数,则m2+ab−c+d3m=______.三、计算题19.计算:(1)−32÷(−1)2021−(12+23−34−1112)×(−24)(2)先化简再求值:4xy2−12(x3y+4xy2)−2[14x3y−(x2y−xy2)],其中x=12,y=−220.解方程:(1)13(3x−6)=−x−5(2)x−52=1−2x+16四、解答题21.某高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,−9,+7,−15,−3,+11,−6,−8,+5,+6(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?22.阅读下面的文字,完成后面的问题:我们知道:11×2=1−12;12×3=12−13;13×4=13−14.那么:(1)14×5=____;12019×2020=____;(2)用含有n的式子表示你发现的规律____;(3)直接写出计算结果:11×2+12×3+13×4+⋯12019×2020=____;(4)已知|xy−2|与|x−1|互为相反数,试求代数式1xy +1(x+1)(y+1)+1(x+2)(y+2)+⋯1(x+2011)(y+2011)的值.23.阅读材料:“如果代数式5a+3b的值为−4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b=2(5a+3b)=2×(−4)=−8仿照上面的解题方法,完成下面的问题:已知3a−7b=−3,求代数式2(2a+b−1)−5(4b−a)−3b的值.24.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为30元/件.(注:获利=售价−进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?答案和解析1.【答案】B【解析】解:0既不属于正数也不属于负数,故0不是;−(−1)=1,1>0,故−(−1)是正数;(−3)2=9,9>0,故是正数;−32=−9<0,故为负数;−|−3|=−3<0,故为负数;−324<0,故为负数;∵a可以为0,∴a2≥0,可以为正数也可以为0,故不正确.即有2个为正数.故选B.实数分为正数、负数和0三种情况,大于0的为正数,小于0的为负数,结合运算规则,可以得出答案.本题考查了正数、负数和0的概念,大于0的数为正数,小于0的为负数,属于基本的题型,比较简单.2.【答案】B【解析】【分析】本题主要考查绝对值的性质,以及简单代数式的求解问题,要认真掌握.由|a−b|=b−a,知b>a,又由|a|=5,|b|=2,知a=−5,b=2或−2,当a=−5,b=2时,a+b=−3,当a=−5,b=−2时,a+b=−7,故a+b=−3或−7.【解答】解:∵|a−b|=b−a,∴b>a,∵|a|=5,|b|=2,∴a=−5,b=2或−2,当a=−5,b=2时,a+b=−3,当a=−5,b=−2时,a+b=−7,∴a+b=−3或−7.故选B.3.【答案】B【解析】【分析】本题考查的是平面图形与立体图形有关知识,有两个面平行,其余各面都是边形,且每邻两四边形的公共边都互相平行,由这些面所成的面体叫做棱,由可答案.【解答】解:棱柱的定义可得:符柱定的有第一、三、六个何体都是棱柱,共三个.故选B.4.【答案】C【解析】解:A、由x+2=y+2,得到x=y,正确;B、由2a−3=b−3,得到2a=b,正确;C、当c=0时,由cx=cy,x≠y,错误;D、由x=y,得到xc2+1=yc2+1,正确;故选:C.根据等式的性质:等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立,可得答案.本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立.5.【答案】D【解析】【分析】此题考查了同类项的定义,熟练掌握同类项的定义是解本题的关键.根据题意得到两单项式为同类项,利用同类项定义求出m与n的值,代入原式计算即可得到结果.【解答】解:∵a m−2b2与−3ab n的和是单项式,∴m−2=1,即m=3,n=2,∴n m=23=8.故选D.6.【答案】C【解析】【分析】先根据绝对值的性质可求出x,y的值,再根据xy<0可判断出x,y只能异号,即可求解.解答此题的关键是熟知绝对值具有非负性及分类讨论思想,绝对值是正数的数有两个,且互为相反数.【解答】解:因为|x|=3,|y|=7,所以x=±3,y=±7,又xy<0,所以x,y只能异号,当x=3,y=−7时,x+y=−4;当x=−3,y=7时,x+y=4.故选C.7.【答案】C【解析】【试题解析】【分析】本题考查了一元一次方程的定义、解法和绝对值,正确掌握一元一次方程的定义和绝对值的定义是解题的关键.根据一元一次方程的定义,得到|k|=1和k−1≠0,解之,代入原方程,解之即可得到答案.【解答】解:根据题意得:|k|=1,即k=1或k=−1,k−1≠0,k≠1,综上可知:k=−1,把k=−1代入原方程得:−2x+3=0,解得:x=32,故选C.8.【答案】C【解析】【分析】本题主要考查数轴,解题的关键是根据数轴判断出a、b、c的大小关系及绝对值的性质.根据数轴知c<a< 0<b且|a|<|b|<|c|,得出a+b>0、c−b<0,利用绝对值的性质去绝对值符号后合并即可得.【解答】解:由数轴知c<a<0<b,且|a|<|b|<|c|,则a+b>0、c−b<0,∴原式=a+b+c−b=a+c.故选C.9.【答案】B【解析】解:设他家到学校的路程是x km,由题意得,x15+1060=x12−560.故选:B.设他家到学校的路程是x km,根据每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,列方程即可.本题考查了有实际问题抽象出一元一次方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.10.【答案】D【解析】【分析】本题主要考查了有理数的混合运算.将(−2)2017分解为(−2)×(−2)2016,再进行加减运算,即可解答.【解答】解:原式=(−2)2016+(−2)×(−2)2016=(−2)2016−2(−2)2016=(1−2)×(−2)2016=−(−2)2016 =−22016故选D.11.【答案】C【解析】【分析】本题主要考查了有理数的混合运算、列代数式及数式规律问题.熟练掌握有理数的混合运算、列代数式及数式规律问题的相关知识是解题的关键.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+⋯+2n=2n+1−2.由等式:2+22=23−2;2+22+23=24−2;2+22+23+24=25−2,得出规律:2+22+23+⋯+ 2n=2n+1−2,那么250+251+252+⋯+299+2100=(2+22+23+⋯+2100)−(2+22+23+⋯+ 249),将规律代入计算即可.【解答】解:∵2+22=23−2;2+22+23=24−2;2+22+23+24=25−2;…∴2+22+23+⋯+2n=2n+1−2,∴250+251+252+⋯+299+2100=(2+22+23+⋯+2100)−(2+22+23+⋯+249)=(2101−2)−(250−2)=2101−250,∵250=a,∴2101=(250)2⋅2=2a2,∴原式=2a2−a.故选:C.12.【答案】A【解析】解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150−x=25%x,150−y=−25%y,解得:x=120,y=200,∴150+150−120−200=−20(元).故选:A.设盈利的商品的进价为x元,亏损的商品的进价为y元,根据销售收入−进价=利润,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再由两件商品的销售收入−成本=利润,即可得出商店卖这两件商品总的亏损20元.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.13.【答案】−2【解析】【试题解析】解:根据一元一次方程的特点可得:{k≠0k+1=±1,解得:k=−2.故填:−2.若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于k的方程,继而可求出k的值.解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.14.【答案】−1【解析】【分析】本题考查了有理数的乘法,绝对值,有理数的除法的有关知识,注意从所给条件中获得有用信息,即a,b,c中必有两正一负.根据|a|a+|b|b+|c|c=1可以看出,a,b,c中必有两正一负,从而可得出求|abc|abc的值.【解答】解:∵|a|a+|b|b+|c|c=1,∴a,b,c中必有两正一负,即abc之积为负,∴|abc|abc=−1.故答案为−1.15.【答案】4【解析】【分析】此题考查了有理数的乘法与乘方,根据观察可知−2与−12互为倒数,故可先相乘结合,再计算乘方.【解答】解:(−2)2018×(−12)2016=[(−2)×(−12)]2016×(−2)2=4.故答案为4.16.【答案】30【解析】【分析】此题考查的是代数式的求值,解题关键是运用整体求值的方法.通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.将a−3b=5代入代数式2(a−3b)2+3b−a−15即可求得它的值.【解答】解:∵a−3b=5,∴3b−a=−5,∴2(a−3b)2+3b−a−15=2×52−5−15=30.故答案为30.17.【答案】−2【解析】解:∵多项式3x2−2x+b与多项式3x2−bx−1的和中不含x项,即3x2−2x+b+3x2−bx−1= 6x2−(b+2)x+b−1中不含x项,∴b+2=0,即b=−2.故答案为:−2.先把两多项式相加,再令x的系数等于0即可得出b的值.本题考查的是整式的加减,根据两整式的和中不含x项列出关于x的方程是解答此题的关键.18.【答案】12【解析】解:∵a、b互为倒数,c、d互为相反数,m为最大的负整数,∴ab=1,c+d=0,m=−1,∴m2+ab−c+d3m=−12+1−03×(−1)=−12+1−0=12,故答案为:12.根据a、b互为倒数,c、d互为相反数,m为最大的负整数,可以求得ab、c+d和m的值,从而可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(1)【答案】解:原式=−9÷(−1)+12×24+23×24−34×24−1112×24=9+12+16−18−22 =21+16−18−22=37−18−22=19−22=−3.【解析】本题主要考查的是有理数的乘方,有理数的混合运算的有关知识.先将给出的式子进行变形,然后再进行计算即可.(2).【答案】解:原式=4xy2−12x3y−2xy2−12x3y+2x2y−2xy2=−x3y+2x2y当x=12,y=−2时,原式=−34.【解析】此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键,原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.20.【答案】解:(1)去括号,得:x−2=−x−5,移项,得:x+x=−5+2,合并同类项,得:2x=−3,系数化为1,得:x=−32;(2)去分母,得:3(x−5)=6−(2x+1),去括号,得:3x−15=6−2x−1,移项,得:3x+2x=6−1+15,合并同类项,得:5x=20,系数化为1,得:x=4.【解析】(1)依次去括号、移项、合并同类项、系数化为1可得;(2)依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、并同类项、系数化为1.21.【答案】解:(1)17+(−9)+7+(−15)+(−3)+11+(−6)+(−8)+5+6=5(千米),答:养护小组最后到达的地方在出发点的北方距出发点5千米;(2)第一次17千米,第二次17+(−9)=8,第三次8+7=15,第四次15+(−15)=0,第五次0+(−3)=−3,第六次−3+11=8,第七次8+(−6)=2,第八次2+(−8)=−6,第九次−6+5=−1,第十次−1+6=5,答:最远距出发点17千米;(3)(17+|−9|+7+|−15|+|−3|+11+|−6|+|−8|+5+6)×0.5=87×0.5=43.5(升),答:这次养护共耗油43.5升.【解析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.本题考查了正数和负数,(1)利用了有理数的加法,(2)计算出每次与出发点的距离是解题关键,(3)单位耗油量乘以路程.22.【答案】解:(1)14×5=14−15;12019×2020=12019−12020,故答案为:14−15;12019−12020;(2)发现的规律是:1n(n+1)=1n−1n+1,故答案为:1n(n+1)=1n−1n+1;(3)11×2+12×3+13×4+⋯+12019×2020=1−12+12−13+13−14+⋯+12019−12020=1−12020=20192020;(4)因为|xy−2|与|x−1|互为相反数,所以|xy−2|+|x−1|=0,可得xy=2,x=1,解得x=1,y=2,∴原式=11×2+12×3+13×4+⋯+12012×2013=1−12+12−13+13−14+⋯+12012−12013=1−12013=20122013.【解析】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现式子的变化特点,求出所求式子的值.(1)根据题目中的式子,可以写出所求式子的值;(2)根据题目中的式子,可以用含n的代数式表示这一规律;(3)根据题目中发现的式子的特点,可以求出所求式子的值;(4)依题意,|xy−2|+|x−1|=0,解得x=1,y=2,1xy +1(x+1)(y+1)+1(x+2)(y+2)+⋯1(x+2011)(y+2011)=1 1×2+12×3+13×4+⋯+12012×2013,进而得出结果.23.【答案】解:当3a−7b=−3时,原式=4a+2b−2−20b+5a−3b=9a−21b−2=3(3a−7b)−2=−9−2=−11.【解析】原式去括号合并整理后,把已知等式代入计算即可求出值.此题考查了整式的加减−化简求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.24.【答案】解:(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.由题意得80x+120(x+5)=3600,解得x=15,x+5=15+5=20.答:该超市第一次购进甲种商品每件15元,乙种商品每件20元.(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得的利润=80×(20−15)+120×(30−20)=1600元.答:该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得1600元的利润.(3)由题意80×[20(1+a%)−15]+120×[30(1−a%)−(20−3)]=1600+260,解得a=5.答:a的值是5.【解析】(1)设该超市第一次购进甲种商品每件x元,乙种商品每件(x+5)元.根据总进价3600元列出方程即可解决问题.(2)求出甲、乙两种商品的利润和即可.(3)根据第二次的利润1600+260=1860元,列出方程即可.本题考查一元一次方程的应用,解题的关键是理解题意、搞清楚进价、销售量、利润之间的关系,属于中考常考题型.。
2019年鲁教版六上数学期末试卷(六年级上册)

一.选择题(共12小题)1.如图是正方体的展开图,若约定用字母S表示正方体的侧面,用T表示上面,A 表示底面,则字母A在展开图中的位置是()A.① B.②C.③D.④2.将平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C. D.3.下列几何体中,截面图不可能是三角形的有()①圆锥;②圆柱;③长方体;④球.A.1个B.2个C.3个D.4个4.在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果是()A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+45.在数轴上与表示数4的点距离5个单位长度的点表示的数是()A.﹣9或1 B.﹣1 C.9 D.﹣1或96.如图是一个简单的运算程序如果输入的值为﹣2,则输出的结果为()A.6 B.﹣6 C.14 D.﹣147.下列符合代数式的书写格式的是()A.﹣aab B.2ab2C.a÷b D.(1+20%)a8.下列代数式:,,2﹣y,(1﹣20%),ab,,,其中是整式的个数是()A.2 B.3 C.4 D.59.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A.3n B.6n C.3n+6 D.3n+310.下列运用等式的性质的式子中,变形不正确的是()A.若=y,则+5=y+5 B.若a=b,则ac=bcC.若=y,则= D.若=(c≠0),则a=b11.关于的方程=1的解为2,则m的值是()A.2.5 B.1 C.﹣1 D.312.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22=16(27﹣)B.16=22(27﹣)C.2×16=22(27﹣) D.2×22=16(27﹣)二.填空题(共6小题)13.如图,一个表面涂满颜色的大正方体,现将每条棱三等分,再把它切开变成若干个小正方体,则两面都涂色的小正方体有个.14.将图所示的Rt△ABC绕AB旋转一周所得的几何体从正面看得到的平面图形是图中的(只填序号).15.温度由3℃下降7℃后是℃.16.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是微克/立方米.17.若多项式3(2+2y)﹣(22﹣2my)中不含y项,则m= .18.派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为岁.三.解答题(共4小题)19.如图是从不同方向看一个几何体得到的平面图形,其中从上面看得到的平面图形是等边三角形请写出这个几何体的名称.20.计算:(1)﹣15+(﹣8)﹣(﹣11)﹣12(2)(3)(4)﹣23+[(﹣4)2﹣(1﹣32)×3].21.如果关于的多项式52﹣(2y n+1﹣m2)﹣3(2+1)的值与的取值无关,且该多项式的次数是三次.求m,n的值.22.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A 工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为吨,请在下面表格中用表示出其他未知量.吨水泥的运费为元.果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成a+b=0的形式,不用解)。
2018-2019学年鲁教版(五四制)六年级数学上册期末测试题及答案

2018-2019学年度第一学期期末考试六年级数学试题(考试时间:120分钟 分值:120分)一、选择题:本题共10小题,共30分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,不选或选出的答案超过一个均记零分。
1. 31-的相反数是( ) A .31 B .31- C .3 D .3-2. 下列计算正确的是( )A.3a +4b =7ab B .x 6+x 6=x 12 C .﹣2(a +b )=﹣2a +2b D .2x 2+3x 2=5x 2 3. 如图所示的几何体,从上面看所得到的图形是( )4.东营市2018年元旦的最高气温为6℃,最低气温为-4℃,那么这天的最高气温比最低气温高 ( )A .2℃B .10℃C .-10℃D .8℃ 5. 下列说法中,正确的是( ) A .负数没有倒数 B .正数的倒数比自身小 C .任何有理数都有倒数D .-1的倒数是-16. 下列各图中,可以是一个正方体的平面展开图的是( )7. 在解方程x-52 +3x+73 =5时,去分母的过程正确的是( )A .3(x -5)+2(3x +7)=30B .3(x -5)+2(3x +7)=5C .x -5+3x +7=5D .x -5+3x +7=30A .B.C.D.ABCD8. 若一个长方形的周长是b a 106+,其中一边长是b a 32+,则这个长方形的另一边的长是( )A .b a 42+B .b a 8+C .b a 2+D .b a 74+ 9. 下列变形中 ①由方程=2去分母,得x -12=10; ②由方程x =两边同除以,得x =1;③由方程6x -4=x +4移项,得7x =0; ④由方程2-两边同乘以6,得12-x -5=3(x +3).错误变形的个数是( )A .4个B .3个C .2个D .1个10. 下列说法:①0是最小的有理数; ②一个有理数不是正数就是负数; ③没有绝对值最大的负数; ④没有最大的负数;⑤6x+8是一元一次方程;⑥12a 与2a 是同类项. 其中,正确的说法有( )个?A .4个B .3个C .2个D .1个二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 11. 据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可表示为 .12. 代数式-852mn 的系数是__________,次数为_______.13. 如果___________ .14. 计算823)32(942-⨯÷-的值为 . 15. 如图是一个正方体展开图,把展开图折叠成正方体后, “我”字一面的相对面上的字是 .的取值是和是同类项,则与n m y x y xm m n 31253--(第15题图)16. 若数轴上的点M 和点N 表示的两个数互为相反数,并且这两点间的距离为7.6,点M 在点N 的左侧,则这两个点表示的数分别是______和______.17. 已知a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于3的负数,则20182)()(cd m b a cd m +⨯+++的值为 .18. 观察下面一列数:根据规律写出横线上的数,-11;21;-31;41;-51;61;71-;….则第2018个数是___ _。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东东营市2018-2019学年度第一学期期末考试六年级数学检测题
(考试时间:120分钟 分值:120分)
一、选择题:本题共10小题,共30分。
在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。
每小题选对得3分,不选或选出的答案超过一个均记零分。
1. 31
-
的相反数是( ) A .31 B .3
1
- C .3 D .3-
2. 下列计算正确的是( )
A.3a +4b =7ab B .x 6+x 6=x 12 C .﹣2(a +b )=﹣2a +2b D .2x 2+3x 2=5x 2 3. 如图所示的几何体,从上面看所得到的图形是( )
4.东营市2018年元旦的最高气温为6℃,最低气温为-4℃,那么这天的最高气温比最低气温高 ( )
A .2℃
B .10℃
C .-10℃
D .8℃ 5. 下列说法中,正确的是( ) A .负数没有倒数 B .正数的倒数比自身小 C .任何有理数都有倒数
D .-1的倒数是-1
6. 下列各图中,可以是一个正方体的平面展开图的是( )
7. 在解方程x-52 +3x+7
3 =5时,去分母的过程正确的是( )
A .3(x -5)+2(3x +7)=30
B .3(x -5)+2(3x +7)=5
C .x -5+3x +7=5
D .x -5+3x +7=30
8. 若一个长方形的周长是b a 106+,其中一边长是b a 32+,则这个长方形的另一边的长是( )
A .b a 42+
B .b a 8+
C .b a 2+
D .b a 74+ 9. 下列变形中 ①由方程
=2去分母,得x -12=10;
A .
B.
C.
D.
A
B
C
D
②由方程x =两边同除以,得x =1;
③由方程6x -4=x +4移项,得7x =0; ④由方程2-两边同乘以6,得12-x -5=3(x +3).
错误变形的个数是( )
A .4个
B .3个
C .2个
D .1个
10. 下列说法:①0是最小的有理数; ②一个有理数不是正数就是负数; ③没有绝对值最大的负数; ④没有最大的负数;⑤6x+8是一元一次方程;⑥
1
2
a 与2a 是同类项. 其中,正确的说法有( )个?
A .4个
B .3个
C .2个
D .1个
二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 11. 据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可表示为 .
12. 代数式-8
52
mn 的系数是__________,次数为_______.
13. 如果的取值是和是同类项,则与n m y x y x
m m n 31
253--___________ .
14. 计算823)3
2
(942-⨯÷
-的值为 . 15. 如图是一个正方体展开图,把展开图折叠成正方体后, “我”字一面的相对面上的字是 .
16. 若数轴上的点M 和点N 表示的两个数互为相反数,并且这两点间的距离为7.6,点M 在点N 的左侧,则这两个点表示的数分别是______和______.
17. 已知a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于3的负数,则
20182)()(cd m b a cd m +⨯+++的值为 .
18. 观察下面一列数:根据规律写出横线上的数,-11;21
;-31;41;-51;61;7
1-;….则第2018个数是___ _。
三、解答题:本大题共7小题,共58分。
解答要写出必要的文字说明,证明过程或演算步骤) 19.计算(本题满分7分,第⑴题3分,第⑵题4分):
(第15题图)
(1)[
]
2)31()4()2(2
23
⨯---+-
(2)22
221140.2541614327⎛⎫⎛⎫
-+----+÷ ⎪ ⎪⎝⎭⎝⎭
20.计算或化简(本题满分9分,第⑴题4分,第⑵题5分): (1)[
]
2
2
2)34(73x x x x ----
(2)先化简,再求值:)3()3(52
2
2
2
b a ab ab b a +--,其中3
1
,21-==b a . 21. 解方程(本题满分8分, 每小题4分): (1)43(5x)6x --= (2)
513x +-21
6
x -=1.
22. (本题满分8分)我区为打造金湖银河风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道.
23. (本题满分6分)一个几何体由几个大小相同的小正方形塔成,从上面观察这个几何体,看到的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数。
请画出从正面、左面看到的这个几何体的形状图.
(第23题图)
从左面看
从正面看
25. (本题满分10分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:
(1)如何进货,进货款恰好为46000元?
(2)如何进货,才能使商场销售完节能灯时获利为13500元?
2018-2019学年第一学期期末考试
六年级数学答案与评分标准
一.1. A 2. D 3. C 4. B 5. D 6. C 7. A 8. C 9. B 10. B 二.11. 3.386×108 12. 85
-,3 13. 3和2 14. 0 15. 梦 16. 8.38.3和-
17. 7 18.
20181
三.19. (1)原式=[]243282)8(168=+-=⨯--+-…………………………………3分
(2)原式=-0.252+0.252-32+
169
×27
4
=0-32+12………………………2分
=-20………………………4分
20. (1)原式[
]22
2
2
233323473x x x
x
x x x +--=-+--=………………3分
3352--=x x …………………………………………………………4分 (2)原式2222226123515ab b a b a ab ab b a -=---= ……………………3分
当31
,21-==
b a 时, 原式=3
4
311)31(216)31()21(1222-=--=-⨯⨯--⨯⨯ ……………………5分
21. (1)解:41536x x -+=……………………………………………1分
7156x -= …………………………………………………2分 721x = …………………………………………………3分 3x = ………………………………………………… 4分
(2)解:6)12()15(2=--+x x . ………………………………………1分
612210=+-+x x . ……………………………………………2分
8x =3. ………………………………………………3分
8
3
=
x . …………………………………………………4分 22. 解:设甲队整治了x 天,则乙队整治了(20﹣x )天,由题意,得
24x+16(20﹣x )=360, …………………………………………3分 解得:x=5, ………………………………………4分 ∴乙队整治了20﹣5=15天, ………………………………………5分 ∴甲队整治的河道长为:24×5=120m ;………………………………………6分 乙队整治的河道长为:16×15=240m .…………………………………………7分 答:甲、乙两个工程队分别整治了120m ,240m .………………………………8分
23. 解:答案如图所示。
每画对一图得3分,共6分。
24. 解:∵(2x 2+ax -5y +b )-(2bx 2-3x +5y -1)
25. 解:(1)设商场购进甲型节能灯x 只,则购进乙型节能灯(1200﹣x )只,……1分 由题意,得:
25x +45(1200﹣x )=46000,…………………………………………………………3分 解得:x =400.
∴购进乙型节能灯1200﹣400=800只.………………………………………………4分 答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;……5分 (2)设商场购进甲型节能灯y 只,则购进乙型节能灯(1200﹣y )只,…………6分 由题意,得:
(30﹣25)y +(60﹣45)(1200﹣y )=13500,………………………………………8分 整理,得:﹣10y +18000=13500. 解得:y =450,
∴1200﹣y =1200﹣450=750.……………………………………………………………9分 ∴商场购进甲型节能灯450只,购进乙型节能灯750只时的获利为13500元.……10分
从左面看 从正面看。