北师大版数学必修二作业1高考调研精讲精练

合集下载

高考调研北师大版数学选修2-3-2-1-2高考调研精讲精练

高考调研北师大版数学选修2-3-2-1-2高考调研精讲精练
第42页
高考调研 ·北师大版 ·数学(选修2-3)
解析 以50箱为一批产品,从中随机抽取5箱,用X表示“5 箱中不合格产品的箱数”,则X服从超几何分布.这批产品被接 收的条件是5箱中没有不合格的或只有1箱不合格,所以被接收 的概率为P(X≤1),
即P(X≤1)=CC20C505485+CC21C505484=224435. 答:该批产品被接收的概率是224435(约为0.991 84).
X x1 x2 … xi … xn
P
p1
p2

pi

pn
为离散型随机变量X的概率分布列,简称X的分布列.
第2页
高考调研 ·北师大版 ·数学(选修2-3)
(2)分布列的性质. 由概率的性质可知,任一离散型随机变量的分布列都具有 下面两个性质: ①pi≥0,(i=1,2,3,…,n);
n
② pi=1.
第13页
高考调研 ·北师大版 ·数学(选修2-3)
【解析】 随机变量ξ的可能取值为3,4,5. 当ξ=3时,即取出的三只球中最大号码为3,则其他两球的 编号只能是1,2,故有P(ξ=3)=CC3533=110; 当ξ=4时,即取出的三只球中最大号码为4,则其他两球只 能在编号为1,2,3的3只球中取2只,故有P(ξ=4)=CC3523=130;
i=1
第3页
高考调研 ·北师大版 ·数学(选修2-3)
2.两个特殊分布列
(1)两点分布列.
X
0
1
P
1-p
p
如果随机变量X的分布列为两点分布列,就称X服从两点分
布,而称P(X=1)=p为成功概率.
第4页
高考调研 ·北师大版 ·数学(选修2-3)
(2)超几何分布列.

高考调研北师大版数学必修52-1-1高考调研精讲精练

高考调研北师大版数学必修52-1-1高考调研精讲精练
第27页
高考调研 ·北师大版 ·数学必修五
题型三 判断三角形的形状 例 3 在△ABC 中,已知 a2tanB=b2tanA,试判断△ABC 的 形状.
第28页
高考调研 ·北师大版 ·数学必修五
【思路分析】 观察条件等式的特点,为边角关系,首先应 用正弦定理将边化为角,再利用三角公式求解,亦可应用正弦定 理将角化为边的关系进行整理.
第43页
请做:课时作业(十二)
第36页
高考调研 ·北师大版 ·数学必修五
2.在△ABC 中,若 sinA>sinB,则有( )
A.a<b
B.a≥b
C.a>b
D.a,b 的大小无法判定
答案 C
第37页
高考调研 ·北师大版 ·数学必修五
3.已知锐角△ABC 的面积为 3 3,BC=4,CA=3,则角 C
的大小为( )
A.75°
B.60°
第33页
高考调研 ·北师大版 ·数学必修五
【解析】 (1)△ABC 为等腰直角三角形. (2)由已知,得csoinsAA=csoinsBB. ∴cosA·sinB=cosB·sinA.∴tanA=tanB. ∵A,B,C∈(0,π),∴A=B.同理可证:B=C. ∴三角形为等边三角形. 【答案】 (1)等腰直角三角形 (2)等边三角形
第21页
高考调研 ·北师大版 ·数学必修五
●思考题 2 (1)已知在△ABC 中,a= 2,b= 3,B=
60°,那么角 A 等于( )
A.135°
B.90°
C.45°
D.30°
第22页
高考调研 ·北师大版 ·数学必修五
【解析】


高考调研北师大版数学选修2-3-2-5-1高考调研精讲精练

高考调研北师大版数学选修2-3-2-5-1高考调研精讲精练
第2页
高考调研 ·北师大版 ·数学(选修2-3)
2.离散型随机变量的性质 若 X 为(离散型)随机变量,则 Y=aX+b(其中 a,b 为常数) 也是随机变量,且 P(X=xi)=P(Y=axi+b),i=1,2,3,…,n.E(Y) =E(aX+b)=aE(X)+b.
第3页
高考调研 ·北师大版 ·数学(选修2-3)
第35页
高考调研 ·北师大版 ·数学(选修2-3)
◎思考题 4 某寻呼台共有客户 3 000 人,若寻呼台准备了 100 份小礼品,邀请客户在指定时间内来领取.假设任一客户去 领奖的概率为 4%.问寻呼台能否向每一位客户都发出领奖邀请? 若能使每一位领奖人都得到礼品,寻呼台至少应准备多少份礼 品?
第15页
高考调研 ·北师大版 ·数学(选修2-3)
(2)X 的所有可能值为 0,10,20,50,60,
且 P(X=0)=CC16022=13,P(X=10)=CC311C0261=25, P(X=20)=CC13022=115,P(X=50)=CC111C0261=125, P(X=60)=CC111C0231=115.故 X 的分布列如下.
第34页
高考调研 ·北师大版 ·数学(选修2-3)
探究 4 本例中,利用二项分布的均值公式 E(X)=np 快速 地求出所求的期望值,当 n 的值越大时,这一公式更加显得威力 无比,因此我们要熟练掌握这一公式,并能灵活地运用它,在运 用时,需要注意的是,只有随机变量 X 服从二项分布时,才能运 用该公式来求均值.
3.两点分布与二项分布的均值
X E(X)
X~B(n,p) np
X服从两点分布 p(p为成功概率)
第4页
高考调研 ·北师大版 ·数学(选修2-3)

高考调研北师大版选修4-5数学1.2-1精讲精练

高考调研北师大版选修4-5数学1.2-1精讲精练
第22页
高考调研 ·北师大 ·数学选修4-5
思考题 2 (2015·重庆)若函数 f(x)=|x+1|+2|x-a|的最小 值为 5,则实数 a=________.
第23页
高考调研 ·北师大 ·数学选修4-5
【解析】
当 a≤-1 时,f(x)=- x-32x+ a-21a- (1a<(xx≤≤-a)1),, 3x-2a+1(x>-1),
高考调研 ·北师大 ·数学选修4-5
§2 含有绝对值的不等式 2.1 绝对值不等式
第1页
高考调研 ·北师大 ·数学选修4-5
知识探究
第2页
高考调研 ·北师大 ·数学选修4-5
1.绝对值的几何意义 |x+a|的几何意义是数轴上实数 x 对应的点与实数-a 对应的点 之间的距离. 2.绝对值不等式定理 对任意实数 a 和 b,有|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等 号成立.
第29页
高考调研 ·北师大 ·数学选修4-5
课后巩固
第30页
高考调研 ·北师大 ·数学选修4-5
1.若 a,b∈R,且 ab<0,则( )
A.|a+b|>|a-b|
B.|a+b|<|a-b|
C.|a-b|<||a|-|b||
D.|a-b|<|a|+|b|
第31页
高考调研 ·北师大 ·数学选修4-5
是非负 ≥中间部
成立;中间部分为|a-b|时,ab≤0,


等号成立
第16页
高考调研 ·北师大 ·数学选修4-5
思考题 1 (1)设|a|<1,|b|<1,则|a+b|+|a-b|与 2 的大小
关系是( ) A.|a+b|+|a-b|>2 C.|a+b|+|a-b|=2

新课标版数学必修二(新高考新课程)作业15高考调研精讲精练

新课标版数学必修二(新高考新课程)作业15高考调研精讲精练

新课标版数学必修⼆(新⾼考新课程)作业15⾼考调研精讲精练课时作业(⼗五)(第⼀次作业)1.直线a是平⾯α的斜线,过a且和α垂直的平⾯有()A.0个B.1个C.2个D.⽆数个答案 B2.给定下列四个命题①若⼀个平⾯内的两条直线与另⼀个平⾯都平⾏,则这两个平⾯相互平⾏;②若⼀个平⾯经过另⼀个平⾯的垂线,则这两个平⾯相互垂直;③垂直于同⼀直线的两条直线相互平⾏;④若两个平⾯垂直,则⼀个平⾯内与它们的交线不垂直的直线与另⼀个平⾯也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④答案 D3.若m,n是两条不同的直线,α,β,γ是三个不同的平⾯,则下列命题中的真命题是() A.若m?β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊥β,m∥α,则α⊥βD.若α⊥γ,α⊥β,则β⊥γ答案 C解析若m?β,α⊥β,则m与α的关系可能平⾏也可能相交,则A为假命题;选项B中,α与β可以平⾏也可能相交,则B为假命题;选项D中β与γ也可能平⾏或相交(不⼀定垂直),则D为假命题.故选C.4.在如图所⽰的三棱锥中,AD⊥BC,CD⊥AD,则有()A.⾯ABC⊥⾯ADC B.⾯ABC⊥⾯ADBC.⾯ABC⊥⾯DBC D.⾯ADC⊥⾯DBC答案 D5.正⽅体ABCD-A1B1C1D1中,P为CC1的中点,则平⾯PBD垂直于()A.平⾯A1BD B.平⾯D1BDC.平⾯PBC D.平⾯CBD答案 A6.在空间四边形ABCD中,AB=BC,AD=CD,E为对⾓线AC的中点,下列判断正确的是()A.平⾯ABD⊥平⾯ADC B.平⾯ABC⊥平⾯ABDC.平⾯ABC⊥平⾯ADC D.平⾯ABC⊥平⾯BED答案 D7.(2016·浙江)已知互相垂直的平⾯α,β交于直线l,若直线m,n满⾜m∥α,n⊥β,则()A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析因为α∩β=l,所以l?β,所以n⊥l.故选C.8.如图,正⽅体ABCD-A1B1C1D1中,O为底⾯ABCD的中⼼,M为棱BB1的中点,则下列结论中错误的是()A.D1O∥平⾯A1BC1B.MO⊥平⾯A1BC1C.异⾯直线BC1与AC所成的⾓等于60°D.⼆⾯⾓MACB等于90°答案 D解析对于选项A,连接B1D1,BO,交A1C1于E,则四边形D1OBE为平⾏四边形,所以D1O∥BE,因为D1O?平⾯A1BC1,BE?平⾯A1BC1,所以D1O∥平⾯A1BC1,故正确;对于选项B,连接B1D,因为O为底⾯ABCD的中⼼,M为棱BB1的中点,所以MO∥B1D,易证B1D⊥平⾯A1BC1,所以MO⊥平⾯A1BC1,故正确;对于选项C,因为AC∥A1C1,所以∠A1C1B为异⾯直线BC1与AC 所成的⾓,因为△A1C1B为等边三⾓形,所以∠A1C1B=60°,故正确;对于选项D,因为BO⊥AC,MO⊥AC,所以∠MOB为⼆⾯⾓MACB的平⾯⾓,显然不等于90°,故不正确.综上知,选D.9.如图,已知六棱锥P-ABCDEF的底⾯是正六边形,PA⊥平⾯ABC,PA=2AB,则下列结论正确的是________(填序号).①PB⊥AD;②平⾯PAB⊥平⾯PAE;③BC∥平⾯PAE;④直线PD与底⾯ABC所成的⾓为45°.答案②④解析由于AD与AB不垂直,因此得不到PB⊥AD,①不正确;由PA⊥AB,AE⊥AB,PA∩AE=A,得AB⊥平⾯PAE,因为AB?平⾯PAB,所以平⾯PAB⊥平⾯PAE,②正确;延长BC,EA,两者相交,因此BC与平⾯PAE相交,③不正确;由于PA⊥平⾯ABC,所以∠PDA就是直线PD与平⾯ABC所成的⾓,由PA=2AB,AD=2AB,得PA=AD,所以∠PDA=45°,④正确.10.如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平⾯ABC;(2)平⾯A1FD⊥平⾯BB1C1C.证明(1)因为E,F分别是A1B,A1C的中点,所以EF∥BC,⼜EF?⾯ABC,BC?⾯ABC,所以EF∥平⾯ABC.(2)因为直三棱柱ABC-A1B1C1,所以BB1⊥⾯A1B1C1,BB1⊥A1D.⼜A1D⊥B1C,BB1∩B1C=B1,所以A1D⊥⾯BB1C1C.⼜A1D?⾯A1FD,所以平⾯A1FD⊥平⾯BB1C1C.11.如图,四棱锥S-ABCD中,四边形ABCD为菱形,SD=SB.(1)求证:平⾯SAC⊥平⾯SBD;(2)求证:平⾯SAC⊥平⾯ABCD.证明(1)连接AC,BD,使AC∩BD=O.∵底⾯ABCD为菱形,∴BD⊥AC.∵SB=SD,O为BD中点,∴SO⊥BD,⼜SO∩AC=O,∴BD⊥平⾯SAC,⼜∵BD?平⾯SBD,∴平⾯SAC⊥平⾯SBD.(2)由(1)知BD⊥平⾯SAC,BD?平⾯ABCD,∴平⾯SAC⊥平⾯ABCD.12.如图,△ABC为正三⾓形,EC⊥平⾯ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,求证:(1)DE=DA;(2)平⾯BDM⊥平⾯ECA;(3)平⾯DEA⊥平⾯ECA.证明(1)取AC中点N,连接MN,BN,则MN∥EC,∵EC⊥平⾯ABC,∴平⾯EAC⊥平⾯ABC.∴MN⊥平⾯ABC,⼜BN?平⾯ABC,∴MN⊥BN,且MN=BD,MN∥BD,∴四边形MNBD为矩形,∴DM∥BN,∵CN=AN,BC=AB,∴BN⊥CA,⼜CA ∩MN =N ,∴BN ⊥平⾯AEC ,∴DM ⊥⾯EAC ,∴DM ⊥AE.∴DE =DA. (2)由(1)知,DM ⊥⾯EAC ,DM ?⾯BDM ,∴平⾯BDM ⊥平⾯ECA.(3)由(1)知,DM ⊥⾯EAC ,DM ?⾯ADE ,∴平⾯DEA ⊥平⾯ECA.13.如图所⽰,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起⾄△A ′BE 的位置,使A ′C =A ′D ,求证:平⾯A ′BE ⊥平⾯BCDE.证明如图所⽰,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC.∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E ,⼜BN =NE ,∴A ′N ⊥BE.∵A ′C =A ′D ,∴A ′M ⊥CD. 在四边形BCDE 中,CD ⊥MN ,⼜MN ∩A ′M =M ,∴CD ⊥平⾯A ′MN ,⼜A ′N ?平⾯A ′MN ,∴CD ⊥A ′N. ∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.⼜A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平⾯BCDE. ⼜A ′N ?平⾯A′BE ,∴平⾯A ′BE ⊥平⾯BCDE.课时作业(⼗五)(第⼆次作业)1.(2015·浙江)设α,β是两个不同的平⾯,l ,m 是两条不同的直线,且l ?α,m ?β.( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥βD .若α∥β,则l ∥m答案 A解析⾯⾯垂直的证明主要是找线⾯垂直,此题在选项中直接给出两个条件,便于考⽣根据判定定理进⾏直接选择,相对较为基础.如果采⽤排除法,思维量会增加.2.在正四⾯体P-ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下⾯四个结论不成⽴的是( )A .BC ∥平⾯PDFB .DF ⊥平⾯PAEC .平⾯PDF ⊥平⾯ABCD .平⾯PAE ⊥平⾯ABC答案 C解析∵D ,E ,F 分别为AB ,BC ,AC 的中点,∴DF ∥BC.∴BC ∥平⾯PDF.故A 正确.连接AE ,PE ,则AE ⊥BC.PE ⊥BC ,∴BC ⊥平⾯PAE.∴DF ⊥平⾯PAE.故B 正确.⼜∵BC ?平⾯ABC ,∴平⾯PAE ⊥平⾯ABC.故D 正确.∴选C.3.把正⽅形ABCD 沿对⾓线BD 折成直⼆⾯⾓,则△ABC 是( ) A .正三⾓形 B .直⾓三⾓形 C .锐⾓三⾓形 D .钝⾓三⾓形答案 A4.在正⽅体ABCD-A 1B 1C 1D 1中,截⾯A 1BD 与底⾯ABCD 所成⼆⾯⾓A 1-BD-A 的正切值为( ) A.32B.22C. 2D. 3答案 C解析如图所⽰,连接AC 交BD 于点O ,连接A 1O ,O 为BD 中点,∵A 1D =A 1B ,∴在△A 1BD 中,A 1O ⊥BD.⼜∵在正⽅形ABCD 中,AC ⊥BD ,∴∠A 1OA 为⼆⾯⾓A 1-BD-A 的平⾯⾓.设AA 1=1,则AO =22,∴tan ∠A 1OA =AA 1AO =122= 2.故选C. 5.如图,在四棱锥P-ABCD 中,PA ⊥平⾯ABCD ,底⾯ABCD 是矩形,则图中互相垂直的平⾯有( )A.2对B.3对C.4对D.5对答案 D解析∵PA⊥平⾯ABCD,∴平⾯PAB⊥平⾯ABCD,平⾯PAD⊥平⾯ABCD.∵AB⊥AD,PA⊥AB,∴AB⊥平⾯PAD,∴平⾯PAB⊥平⾯PAD.同理,平⾯PCD⊥平⾯PAD,平⾯PAB⊥平⾯PBC.共有5对平⾯互相垂直.故选D.6.若⼀个⼆⾯⾓的两个半平⾯分别垂直于另⼀个⼆⾯⾓的两个半平⾯,那么这两个⼆⾯⾓()A.相等B.互补C.相等或互补D.关系⽆法确定答案 D解析如图所⽰,平⾯EFDG⊥平⾯ABC,当平⾯HDG绕DG转动时,平⾯HDG始终与平⾯BCD垂直,所以两个⼆⾯⾓的⼤⼩关系不确定,因为⼆⾯⾓H-DG-F的⼤⼩不确定.故选D.7.四边形ABCD是正⽅形,以BD为棱把它折成直⼆⾯⾓A-BD-C,E为CD的中点,则∠AED的⼤⼩为()A.45°B.30°C.60°D.90°答案 D解析设BD中点为F,则AF⊥BD,CF⊥BD,∴∠AFC=90°,∴AF⊥⾯BCD.∵E,F分别为CD,BD的中点,∴EF∥BC,⼜∵BC⊥CD,∴CD⊥EF,⼜AF⊥CD,∴CD⊥平⾯AEF,⼜AE?平⾯AEF,∴CD⊥AE.故选D.8.如图,在三棱锥P-ABC中,PA⊥平⾯ABC,∠BAC=90°,则⼆⾯⾓B-PA-C的⼤⼩为()A.30°B.45°C.60°D.90°答案 D解析∵PA⊥平⾯ABC,∴BA⊥PA,CA⊥PA,∴∠BAC为⼆⾯⾓BPAC的平⾯⾓.∵∠BAC=90°,∴⼆⾯⾓的⼤⼩为90°.9.如图,在四棱锥V-ABCD中,底⾯ABCD是这长为2的正⽅形,其他四个侧⾯都是侧棱长为5的等腰三⾓形,则⼆⾯⾓V-AB-C 的度数是________.答案60°解析如图,取AB的中点E,CD的中点F,连接VE,EF,VF,由题意知,AB⊥VE,AB⊥EF,所以∠VEF为⼆⾯⾓V ABC的平⾯⾓.易知△VEF为正三⾓形,所以∠VEF=60°.10.如图所⽰,在长⽅体ABCD-A1B1C1D1中,BC=2,AA1=1,E,F分别在AD和BC上,且EF∥AB,若⼆⾯⾓C1-EF-C等于45°,则BF=________.答案 1解析∵AB⊥平⾯BC1,C1F?平⾯BC1,CF?平⾯BC1,∴AB⊥C1F,AB⊥CF,⼜EF∥AB,∴C1F⊥EF,CF⊥EF,∴∠C1FC是⼆⾯⾓C1EFC的平⾯⾓,∴∠C1FC=45°,∴△FCC1是等腰直⾓三⾓形,∴CF=CC1=AA1=1.⼜BC=2,∴BF=BC-CF=2-1=1.11.如图,四边形ABCD是平⾏四边形,直线SC⊥平⾯ABCD,E是SA的中点,求证:平⾯EDB⊥平⾯ABCD.证明连接AC交BD于点F,连接EF.∴EF是△SAC的中位线,∴EF∥SC.∵SC⊥平⾯ABCD,∴EF⊥平⾯ABCD.⼜EF?平⾯BDE,∴平⾯BDE⊥平⾯ABCD.12.如图,四棱锥P-ABCD的底⾯是边长为a的正⽅形,PB⊥平⾯ABCD.(1)求证:平⾯PAD⊥平⾯PAB;(2)若平⾯PDA与平⾯ABCD成60°的⼆⾯⾓,求该四棱锥的体积.解析(1)证明:∵PB⊥平⾯ABCD,AD?平⾯ABCD,∴PB⊥AD.⼜∵AD⊥AB,且AB∩PB=B,∴AD⊥平⾯PAB.⼜∵AD?平⾯PAD,∴平⾯PAD⊥平⾯PAB.(2)由(1)的证明知,∠PAB为平⾯PDA与平⾯ABCD所成的⼆⾯⾓的平⾯⾓,即∠PAB=60°,∴PB=3a.∴V P-ABCD=13·a2·3a=3a33.13.如图所⽰,四棱锥P-ABCD的底⾯ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底⾯ABCD,PA= 3.(1)求证:平⾯PBE⊥平⾯PAB;(2)求⼆⾯⾓A-BE-P的⼤⼩.解析(1)证明:如图所⽰,连接BD.由ABCD是菱形且∠BCD=60°知,△BCD是等边三⾓形.因为E是CD的中点,所以BE⊥CD,⼜AB∥CD,所以BE⊥AB,⼜因为PA⊥平⾯ABCD,BE?平⾯ABCD,所以PA⊥BE,⽽PA∩AB=A,因此BE⊥平⾯PAB.⼜BE ?平⾯PBE,所以平⾯PBE⊥平⾯PAB.(2)由(1)知,BE⊥平⾯PAB,PB?平⾯PAB,所以PB⊥BE.⼜AB⊥BE,所以∠PBA是⼆⾯⾓A-BE-P的平⾯⾓.在Rt△PAB中,tan∠PBA=PAAB=3,∠PBA=60°.故⼆⾯⾓A-BE-P 的⼤⼩为60°.1.如图,⼆⾯⾓αlβ的⼤⼩是60°,线段AB?α,B∈l,AB与l所成的⾓为30°,则AB与平⾯β所成的⾓的正弦值是________.答案3 4解析如图所⽰,过点A作平⾯β的垂线,垂⾜为C,在β内过C作l的垂线,垂⾜为D,连接AD,由线⾯垂直判定定理可知l⊥平⾯ACD,则l⊥AD,故∠ADC为⼆⾯⾓α-l-β的平⾯⾓,即∠ADC=60°.⼜∠ABD=30°,连接CB,则∠ABC为AB与平⾯β所成的⾓,设AD=2,则AC=3,CD=1,AB=ADsin30°=4,∴sin ∠ABC =AC AB =34.2.(2017·辽宁省育才学校阶段测试)如图,在⼏何体ABDCE 中,AB =AD ,M 是BD 的中点,AE ⊥平⾯ABD ,MC ∥AE,AE =MC.(1)求证:平⾯BCD ⊥平⾯CDE ;(2)若N 为线段DE 的中点,求证:平⾯AMN ∥平⾯BEC. 证明 (1)∵AB =AD ,M 为线段BD 的中点,∴AM ⊥BD.∵AE ⊥平⾯ABD ,MC ∥AE ,∴MC ⊥平⾯ABD. ∴MC ⊥AM.⼜MC ∩BD =M ,∴AM ⊥平⾯CBD.⼜MC ∥AE ,MC =AE ,∴四边形AMCE 为平⾏四边形,∴EC ∥AM ,∴EC ⊥平⾯CBD ,⼜EC ?平⾯CDE ,∴平⾯BCD ⊥平⾯CDE.(2)∵M 为BD 中点,N 为ED 中点,∴MN ∥BE. 由(1)知EC ∥AM 且AM ∩MN =M ,BE ∩EC =E ,∴平⾯AMN ∥平⾯BEC.3.在如图所⽰的⼏何体中,四边形ABCD 是正⽅形,MA ⊥平⾯ABCD ,PD ∥MA ,E ,G ,F 分别为MB ,PB ,PC 的中点,且AD =PD =2MA. (1)求证:平⾯EFG ⊥平⾯PDC ;(2)求三棱锥P-MAB 与四棱锥P-ABCD 的体积之⽐.解析 (1)证明:因为MA ⊥平⾯ABCD ,PD ∥MA. 所以PD ⊥平⾯ABCD.⼜BC ?平⾯ABCD ,所以PD ⊥BC. 因为四边形ABCD 为正⽅形,所以BC ⊥DC.⼜PD∩DC=D,所以BC⊥平⾯PDC.在△PBC中,因为G,F分别为PB,PC的中点,所以GF∥BC,所以GF⊥平⾯PDC.⼜GF?平⾯EFG,所以平⾯EFG⊥平⾯PDC.(2)因为PD⊥平⾯ABCD,四边形ABCD为正⽅形,不妨设MA=1,则PD=AD=2,所以V P-ABCD=13S正⽅形ABCD ·PD=83.由题意易知DA⊥平⾯MAB,且PD∥MA,所以DA即为点P到平⾯MAB的距离,所以V P-MAB=13×12×1×2×2=23.所以V P-MAB∶V P-ABCD=1∶4.。

新课标版数学必修二(新高考 新课程)综合卷1高考调研精讲精练

新课标版数学必修二(新高考 新课程)综合卷1高考调研精讲精练

模块综合测试卷(一)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每题5分,共60分)1.给出下列命题:①在所有的棱柱中,互相平行的面最多有三对;②三个面不能围成几何体;③各侧面是全等的等腰三角形的四棱锥的底面是正方形;④四棱锥中侧面最多有四个直角三角形.其中正确命题的个数是( ) A .1 B .2 C .3 D .4答案 B解析 ①不对,因为有的六棱柱中有四对互相平行的面;③不对,因为底面有可能为菱形,∴②④正确.2.垂直于同一条直线的两条直线的位置关系是( ) A .平行B .相交C .不在同一平面内D .A ,B ,C 均有可能 答案 D解析 可以利用正方体加以验证.3.一个直角梯形的两底长分别为2和5,高为4,绕其较长的底旋转一周,所得的几何体的表面积为( ) A .52π B .34π C .45π D .37π 答案 A解析 环绕一周得到的是一个圆锥与圆柱的组合体,圆锥、圆柱的底面半径为r =4,圆柱高为2,圆柱母线长为l 1=2,圆锥母线长为l 2=5,所以所求表面积S =2πrl 1+πr 2+πrl 2=52π.4.直线y =kx +2与圆x 2+y 2+2x =0只在第二象限有公共点,则实数k 的取值范围为( ) A .[34,1]B .[34,1)C .[34,+∞)D .(-∞,1) 答案 B解析 由题意可知y =kx +2恒过点(0,2),要使直线与圆只在第二象限有公共点,则k ∈[k 1,k 2).由题意得y =k 2x +2过(-2,0),(0,2)两点,∴k 2=1.又圆心为(-1,0),∴圆心到y =k 1x +2的距离d =|-k 1+2|k 12+1=1,∴k 1=34,∴k ∈[34,1).5.过点P(1,1)作直线l 与两坐标轴相交,所得三角形面积为10,则直线l 有( ) A .1条 B .2条 C .3条 D .4条答案 D解析 通过直线的截距式,再作对称即可以发现有4条.6.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n. ②若α∥β,β∥γ,m ⊥α,则m ⊥γ. ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β.④若α⊥γ,β⊥γ,则α∥β.其中真命题的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 ①m ∥n 或m ,n 异面,故①错误.②正确.③m ∥α或m ⊂α,m ∥β或m ⊂β,故③错误.④α,β的关系不确定,故④错误.故选B.7.若方程x 2+y 2+x +y +k =0表示一个圆,则k 的取值范围是( ) A .k>12B .k<12C .0<k<12D .k ≤12答案 B解析 通过圆的一般方程的判断即可解决.8.若圆C 1的方程是x 2+y 2-4x -4y +7=0,圆C 2的方程是x 2+y 2-4x -10y +13=0,则两圆的公切线有( ) A .2条 B .3条 C .4条 D .1条 答案 D解析 通过判断两圆的关系即可解决.9.直线y =x +1与直线y =ax +1的交点的个数为( ) A .0个 B .1个C .2个D .随a 的值变化而变化答案 D解析 若a =1,则有无数个交点;若a ≠1,则有一个交点.10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则实数k 的取值范围是( ) A .[-43,0]B .[0,34]C .[0,43]D .(0,43]答案 C解析 圆C :(x -4)2+y 2=1,圆心C(4,0),半径r =1.∵直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴圆心C(4,0)到直线y =kx -2的距离d =|4k -2|k 2+1≤2,解得0≤k ≤43.11.如图,在多面体ABC-DEFG 中,平面ABC ∥平面DEFG ,EF ∥DG ,且AB =DE ,DG =2EF ,则( )A .BF ∥平面ACGDB .CF ∥平面ABEDC .BC ∥FGD .平面ABED ∥平面CGF答案 A解析 取DG 的中点M ,连接AM ,FM ,如图所示. 则由已知条件易证四边形DEFM 是平行四边形,∴DE 綊FM.∵平面ABC ∥平面DEFG ,平面ABC ∩平面ADEB =AB ,平面DEFG ∩平面ADEB =DE ,∴AB ∥DE ,∴AB ∥FM.又AB =DE ,∴AB =FM ,∴四边形ABFM 是平行四边形,即BF ∥AM.又AM ⊂平面ACGD ,BF ⊄平面ACGD ,∴BF ∥平面ACGD.故选A.12.正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H ,则下列命题正确的是( )①AH ⊥平面CB 1D 1 ②AH =13AC 1③点H 是△A 1BD 的垂心 ④AH ∥平面BDC 1 A .①②③ B .②③④ C .①②④ D .①③④答案 A解析 如图,∵CD 1∥BA 1,CB 1∥DA 1,CD 1∩CB 1=C ,BA 1∩DA 1=A 1,∴平面A 1BD ∥平面CB 1D 1,又AH ⊥面A 1BD. ∴AH ⊥面CB 1D 1,故①正确. ∵V A 1-ABD =V A-A 1BD. ∴13·AH ·S △A 1BD =13·AA 1·S △ABD , ∴AH =33,∴AH =13AC 1,故②正确. ∵AA 1,AB ,AD 两两相互垂直,∴H 为△A 1BD 的垂心,故③正确. 由题知H 点在线段AC 1上,故④不正确.故选A.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.直线x -y +1=0与2x -2y -1=0是圆的两条切线,则该圆的面积是__________. 答案932π 解析 ∵直线x -y +1=0与2x -2y -1=0平行, ∴两平行直线间的距离即为圆的直径,∴2R =⎪⎪⎪⎪1+122=324.∴R =328,S 圆=πR 2=932π.14.过点P(3,6)且被圆x 2+y 2=25截得的弦长为8的直线方程为__________________. 答案 3x -4y +15=0或x =3解析 当斜率不存在时,显然成立.斜率存在时,由距离公式可得斜率为0.75.15.光线由点(-1,4)射出,遇直线2x +3y -6=0被反射,已知反射光线过点(3,6213),则反射光线所在直线方程为__________. 答案 13x -26y +85=0解析 先求P(-1,4)点关于直线2x +3y -6=0的对称点Q ,然后利用点Q 与点(3,6213)在反射光线所在直线上就可以解决.16.已知m ,l 是直线,α,β是平面,给出下列命题: ①若l 垂直于α内的两条相交直线,则l ⊥α; ②若l 平行于α,则l 平行α内所有直线; ③若m ⊂α,l ⊂β,且l ⊥m ,则α⊥β; ④若l ⊂β,且l ⊥α,则α⊥β; ⑤若m ⊂α,l ⊂β,且α∥β,则m ∥l.其中正确命题的序号是__________(把你认为正确的命题的序号都填上). 答案 ①④解析 通过正方体验证.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知两条直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,问:当m 为何值时,l 1与l 2①相交;②平行;③重合.解析 若m =0,l 1:x =-6,l 2:2x -3y =0,此时l 1与l 2相交; 若m ≠0,由m -21=3m ,有m =-1或m =3,由3m =2m6,有m =±3.故①当m ≠1且m ≠3时,m -21≠3m ,l 1与l 2相交;②当m =-1时,m -21=3m ≠2m6,l 1与l 2平行;③当m =3时,m -21=3m =2m6,l 1与l 2重合.18.(本小题满分12分)如图,多面体ABCDEFG 中,AB ,AC ,AD 两两垂直,四边形ABED 是边长为2的正方形,AC ∥DG ∥EF ,BC ∥FG ,且AC =EF =1,DG =2.(1)求证:CF ⊥平面BDG ; (2)求多面体ABCDEFG 的表面积. 解析 (1)证明:如图,连接AE ,EG , ∵BC ∥FG ,∴B ,C ,G ,F 四点共面. 在Rt △BAC 中,BC =AB 2+AC 2=5,GF =DE 2+(DG -EF )2=5,即BC =GF =5,同理可证BF =CG = 5. ∴四边形BCGF 是菱形,∴CF ⊥BG ,∵AC ∥EF ,AC =EF =1,∴四边形AEFC 是平行四边形,∴AE ∥CF , 在正方形ABED 中,AE ⊥BD ,故CF ⊥BD. 又BG ∩BD =B ,∴CF ⊥平面BDG. (2)BG =BE 2+EG 2=BE 2+ED 2+DG 2=22+22+22=23,CF =AE =AB 2+BE 2=22,∴S 棱形BFGC =12×BG ×CF =12×22×23=26,∴多面体ABCDEFG 的表面积S =S △ABC +S 梯形DEFG +S 正方形ABED +S 梯形ADGC +S △BEF +S 菱形BFGC =12AB ·AC +12(EF +DG)·DE +DE 2+12(AC +DG)·AD +12BE ·EF +26 =1+3+4+3+1+26 =12+2 619.(本小题满分12分)如图,四棱锥P-ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD =90°,面PAD ⊥面ABCD ,E ,F 分别为PC 和BD 的中点.(1)证明:EF∥面PAD;(2)证明:面PDC⊥面PAD.证明(1)如图,连接AC,∵ABCD为矩形且F是BD的中点,∴AC必经过F.又E是PC的中点,∴EF∥AP.∵EF在面PAD外,PA在面PAD内,∴EF∥面PAD.(2)∵面PAD⊥面ABCD,CD⊥AD,面PAD∩面ABCD=AD,∴CD⊥面PAD.又AP⊂面PAD,∴AP⊥CD.又∵AP⊥PD,PD和CD是相交直线,∴AP⊥面PCD.又AP⊂面PAD,∴面PDC⊥面PAD.20.(本小题满分12分)自点P(-3,3)发出的光线l经过x轴反射,其反射光线所在直线正好与圆x2+y2-4x-4y+7=0相切,求入射光线l所在直线的方程.解析设入射光线l所在的直线方程为y-3=k(x+3),反射光线所在直线的斜率为k1,根据入射角等于反射角,得k=-k1,而点P(-3,3)关于x轴的对称点P1(-3,-3),根据对称性,点P 1在反射光线所在直线上,故反射光线所在直线l 1的方程为y +3=-k(x +3),即kx +y +3+3k =0,又此直线与已知圆相切,所以圆心到直线l 1的距离等于半径r ,因为圆心为(2,2),半径为1,所以|2k +2+3+3k|1+k 2=1,解得k =-34或k =-43.故入射光线l 所在的直线方程为y -3=-34(x +3)或y -3=-43(x +3),即3x +4y -3=0或4x +3y +3=0.21.(本小题满分12分)设M 是圆x 2+y 2-6x -8y =0上一动点,O 是原点,N 是射线OM 上一点,若|OM|·|ON|=120,求N 点的轨迹方程. 解析 设M ,N 的坐标分别为(x 1,y 1),(x ,y), 由题意|OM|·|ON|=120, 得x 12+y 12·x 2+y 2=120.①当M 不在y 轴上时,x 1≠0,x ≠0,于是有y x =y 1x 1.设y x =y 1x 1=k ,代入①,化简得|x 1x|(1+k 2)=120. 因x 1与x 同号,于是x 1=120(1+k 2)x ,y 1=120k(1+k 2)x , 代入x 2+y 2-6x -8y =0并化简,可得3x +4y -60=0(x ≠0). 当x 1=0时,y 1=8,点N(0,15)也在直线3x +4y -60=0上, 所以,点N 的轨迹方程为3x +4y -60=0.22.(本小题满分12分)求半径为4,与圆x 2+y 2-4x -2y -4=0相切,且和直线y =0相切的圆的方程.解析 由题意,设所求圆的方程为圆C :(x -a)2+(y -b)2=r 2.圆C 与直线y =0相切,且半径为4,则圆心C 的坐标为C 1(a ,4),或C 2(a ,-4). 又已知圆x 2+y 2-4x -2y -4=0的圆心A 的坐标为(2,1),半径为3. 若两圆相切,则|CA|=4+3=7,或|CA|=4-3=1. (1)当圆心为C 1(a ,4)时,(a -2)2+(4-1)2=72, 或(a -2)2+(4-1)2=12(无解),故可得a =2±210.∴所求圆的方程为(x-2-210)2+(y-4)2=16,或(x-2+210)2+(y-4)2=16.(2)圆心为当C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),故a=2±2 6.∴所求圆的方程为(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.综上,所求圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16或(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.。

新课标版数学必修二(新高考 新课程)单元卷1高考调研精讲精练

新课标版数学必修二(新高考 新课程)单元卷1高考调研精讲精练

第一章测试卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每题5分,共60分)1.下列说法不正确的是()A.圆柱的侧面展开图是一个矩形B.圆锥的过轴的截面是一个等腰三角形C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D.圆台平行于底面的截面是圆面答案 C2.如图所示的直观图的原平面图形是()A.任意三角形B.直角梯形C.任意四边形D.平行四边形答案 B3.一个正方体的体对角线长为l,那么这个正方体的全面积为() A.22l2B.2l2C.23l2D.32l2答案 B解析设正方体棱长为a,则l=3a,∴a=3 3l.S=6a2=2l2.故选B.4.下图中的图形经过折叠不能围成棱柱的是()答案 D5.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图所示,是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.1B.6C.快D.乐答案 B解析如图所示,将题图折成正方体,可得2的下面是6.6.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的体积为( ) A.π2 B .π C.32π D.3π答案 C解析 方法一:如图①,AD =62,AO =23AD =63,SO =SA 2-AO 2=233.∴R 2=(23 3-R)2+(63)2,∴R =32.球的体积为43πR 3=43π×(32)3=32π.方法二:构造棱长为1的正方体如图②,则C 1A 1BD 为棱长为2的正四面体,正方体的外接球也为正四面体的外接球.此时球的直径为3,因此球的体积为32π. 7.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a ,则它的底面积为( ) A.a 5 B.a 3 C.a 2 D.a 4答案 A解析 设圆锥的母线长为l ,底面圆半径为r ,则2πr =l·π2,故l =4r ,由题意知πrl +πr 2=a ,所以πr 2=a5.8.如果有底的圆柱底面直径和高都等于球的直径,则圆柱与球的表面积之比为( ) A .3∶2 B .3∶1 C .2∶1 D .1∶1 答案 A解析 设球的半径为r ,则S 柱∶S 球=[2πr 2+2πr ·(2r)]∶4πr 2=3∶2.故选A.9.一个圆台的上、下底面面积分别是1 cm 2和49 cm 2,一个平行底面的截面面积为25 cm 2,则这个截面与上、下底面的距离之比是( ) A .2∶1 B .3∶1 C.2∶1 D.3∶1答案 A解析 将圆台扩展为圆锥,轴截面如图. 由题知,r 1∶r 3=1∶7,r 2∶r 3=5∶7, ∴h 2+h 3=6h 1,h 2=4h 1,∴h 3=2h 1,∴这个截面与上、下底面距离比为2∶1.故选A.10.两个半径为1的铁球,熔化成一个大球,则大球的表面积为( ) A .6π B .8π C .434π D .832π 答案 C解析 大球的体积是2×4π3×13=8π3,设大球的半径为R ,则有4π3R 3=8π3,解得R =32,所以大球的表面积为4π(32)2=434π.故选C.11.若三棱锥的三条侧棱两两垂直,且其长度分别为1,2,3,则此三棱锥的外接球的表面积为( ) A .6π B .12π C .18π D .24π 答案 A解析 将三棱锥补成边长分别为1,2,3的长方体,则长方体的体对角线是外接球的直径,所以2R =6,解得R =62,故S =4πR 2=6π. 12.如图所示,已知△ABC 中,∠C =90°,∠A =30°,BC =1.若在三角形内挖去一个半圆(圆心O 在边AC 上,半圆分别与BC ,AB 相切于点C ,M ,与AC 交于点N),则图中阴影部分绕直线C 旋转一周所得的旋转体的体积为( ) A.33π B.5327π C.4327π D.539π答案 B解析 设半圆的半径OC =OM =r ,AO =OM sin30°=2r ,则AC =AO +OC =3r =3,∴r =33,故旋转体的体积为V =13×3(π×12)-4π3×(33)3=5327π.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.一块正方形薄铁皮的边长为4,以它的一个顶点为圆心,剪下一个最大的扇形,用这块扇形铁皮围成一个圆锥,则这个圆锥的容积等于________.(铁皮厚度忽略不计). 答案15π3解析 如图所示,剪下最大的扇形的半径即圆锥的母线长l 等于正方形的边长4,扇形的弧长=14×(2π×4)=2π,即为圆锥的底面周长,设圆锥的底面半径为r ,高为h ,则2πr =2π,所以r =1,所以h =l 2-r 2=15,所以圆锥的容积为13πr 2h =15π3.14.若一个底面边长为62,侧棱长为6的正六棱柱的所有顶点都在一个球的面上,则此球的体积为________. 答案 43π 解析 2R =(62×2)2+(6)2=23,∴R =3,V 球=43πR 3=43π. 15.将若干毫升水倒入底面半径为2 cm 的圆柱形器皿中,量得水面的高度为6 cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是________ cm. 答案 616.如图是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.相传这个图形表达了阿基米德最引以自豪的发现.我们来重温这个伟大发现:圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为________,________. 答案 32 32解析 设球的半径为R ,则圆柱的底面半径为R ,高为2R ,∴V 圆柱=πR 2×2R =2πR 3,V 球=4π3R 3,∴V 圆柱V 球=2πR 343πR 3=32.∵S 圆柱=2πR ×2R +2×πR 2=6πR 2,S 球=4πR 2,∴S 圆柱S 球=6πR 24πR 2=32.三、解答题(本大题共6小题,共70分)17.(10分)如图,圆锥SAB 的底面半径为R ,母线长SA =3R ,D 为SA 的中点,一个动点自底面圆周上的A 点沿圆锥侧面移动到D.求这点移动的最短距离. 解析 如图,圆锥侧面展开为扇形,对应的弧长为底面周长2πR ,动点移动的最短距离为AD. 设∠ASD =α,则2πR =3R·α ∴α=23π.在△SAD 中由余弦定理得:AD 2=SA 2+SD 2-2SA·SD·cos α=634R 2∴AD =372R.18.(12分)正方体的每条棱长都增加1 cm ,它的体积扩大为原来的8倍,求此正方体的棱长.解析 利用待定系数法求解.设出正方体的棱长,根据体积扩大为原来的8倍列方程,解方程得正方体的棱长.设正方体的棱长为a cm ,由题意,得(a +1)3=8a 3,解得a =1,即此正方体的棱长为1 cm. 19.(12分)如图,A ′B ′C ′D ′是边长为1的正方形,又知它是某个四边形按斜二测画法画出的直观图,请画出该四边形的原图形,并求出原图形的面积.解析 该四边形的原图形,如下图所示.这是一个底边长为2,高为2的平行四边形,故原图面积为2 2. 20.(12分)已知六棱锥P-ABCDEF ,其中底面ABCDEF 是正六边形,点P 在底面的投影是正六边形的中心,底面边长为2 cm ,侧棱长为3 cm ,求六棱锥P-ABCDEF 的表面积和体积. 解析 先求底面正六边形的面积,S 六边形ABCDEF =6S △OBC =6×12×2×2sin60°=63cm 2,S 侧面=6S △PCD =6×12×2×PC 2-(CD2)2=632-12=122cm 2,∴S P-ABCDEF =S 六边形ABCDEF +S 侧面=(63+122) cm 2. 在Rt △POC 中, PO =PC 2-OC 2=PC 2-BC 2=9-4= 5 cm ,∴V 六棱锥P-ABCDEF =13Sh =13×63×5=215 cm 3.21.(12分)如图所示,四边形ABCD 是直角梯形(单位:cm),求图中阴影部分绕AB 所在直线旋转一周所成几何体的表面积和体积.解析 由题意知,所成几何体的表面积等于圆台下底面面积+圆台的侧面积+半球面面积. 因为S 半球面=12×4π×22=8π cm 2,S 圆台侧=π(2+5)(5-2)2+42=35π cm 2,S 圆台下底=π×52=25π cm 2,所以表面积为8π+35π+25π=68π cm 2.又因为V 圆台=π3×(22+2×5+52)×4=52π cm 3,V 半球=12×4π3×23=16π3cm 3,所以该几何体的体积为V 圆台V 半球=140π3cm 3.22.(12分)如图,是从上下底面处在水平状态下的棱长为a 的正方体ABCD-A 1B 1C 1D 1中分离出来的.(1)∠DC 1D 1在图中的度数和它表示的角的真实度数都是45°,对吗? (2)∠A 1C 1D 的真实度数是60°,对吗?(3)设BC =1 cm ,如果用图示中这样一个装置来盛水,那么最多能盛多少体积的水? 解析 (1)对; (2)对;(3)由题意知,以平面B 1CD 1为水平面,可盛最多体积的水,此时V 水=V C 1-B 1D 1C =V C-B 1C 1D 1=13×12×1×1×1=16(cm 3). ∴最多能盛16cm 3的水.1.在正方体的八个顶点中,有四个顶点恰好是正四面体的顶点,则正方体的表面积与此正四面体的表面积之比为( ) A. 3 B. 2 C.62D.33答案 A解析 如图,设正方体的棱长为a ,则正四面体AB 1D 1C 的所有棱长均为2a.正方体的表面积S 1=6a 2,正四面体的表面积S 2=4×34×(2a)2=23a 2. ∴S 1∶S 2=6a 2∶23a 2=3∶1.2.一平面截一球得到直径是6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是( ) A.100π3 cm 3B.208π3 cm 3C.500π3 cm 3D.41613π3cm 3答案 C解析 设球的半径为R ,则32+42=R 2,故R =5 cm. 所以球的体积为V =43πR 3=43π×125=500π3 cm 3.。

高考调研北师大版数学必修53-2-1高考调研精讲精练

高考调研北师大版数学必修53-2-1高考调研精讲精练
第5页
高考调研 ·北师大版 ·数学必修五
第二步:确定判别式 Δ=b2-4ac 的符号; 第三步:求出方程 ax2+bx+c=0 的根; 第四步:联系二次函数的图像写出不等式的解集.
第6页
高考调研 ·北师大版 ·数学必修五
解集的写法: ①大于取两边——当 Δ>0 时,ax2+bx+c>0(a>0)的解反 映在图像上就是“大于大根,或小于小根”. ②小于取中间——当 Δ>0 时,ax2+bx+c<0(a>0)的解反 映在图像上就是“大于小根,且小于大根”. (2)解不等式的结果一定要写成集合的形式:{x|P(x)},而不 能写成:x1<x<x2.
高考调研 ·北师大版 ·数学必修五
题型一 一元二次不等式的解法 例 1 解不等式-3x2+6x>2. 【思路分析】 解一元二次不等式直接用图解法处理,解题过 程中的二次函数图像可画出草稿纸上.
第13页
高考调研 ·北师大版 ·数学必修五
【解析】 两边都乘以-1,并移项,得 3x2-6x+2<0.
因为Δ>0,方程 3x2-6x+2=0 的解是 x1=1- 33,x2=1
没有实数解
第3页
高考调研 ·北师大版 ·数学必修五
解不等式 f(x)>0 或 f(x)<
0 的步骤
(3)得 不等 式的 解集
f(x)>0 f(x)<0
{x|x<x1 或 x>x2}
{x|x≠-2ba}
R
{x|x1<


x<x2}
第4页
高考调研 ·北师大版 ·数学必修五
要点 3 解一元二次不等式的一般步骤 (1)由三个“二次”关系可得解法如下: 第一步:将不等式化为如下形式 ax2+bx+c>0(a>0); ax2+bx+c<0(a>0).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(一)
1.设有四个命题,其中,真命题的个数是()
①有两个平面互相平行,其余各面都是四边形的多面体一定是棱柱;
②有一个面是多边形,其余各面都是三角形的多面体一定是棱锥;
③用一个面去截棱锥,底面与截面之间的部分叫棱台;
④侧面都是长方形的棱柱叫长方体.
A.0个B.1个
C.2个D.3个
答案 A
2.下列几何体中是棱柱的有()
A.②③⑤B.③⑤⑥
C.②③④D.①③⑤
答案 D
3.棱台不具有的性质是()
A.两底面相似B.侧面都是梯形
C.侧棱都相等D.侧棱延长后都交于一点
答案 C
4.用一个平面去截一个几何体,得到的截面是一个圆面,这个几何体可能是() A.圆锥B.圆柱
C.球体D.以上都可能
答案 D
5.下列命题中错误的是()
A.圆柱的轴截面是过母线的截面中面积最大的一个
B.圆锥的轴截面是所有过顶点的截面中面积最大的一个
C.圆台的所有平行于底面的截面都是圆面
D.圆锥所有的轴截面是全等的等腰三角形
答案 B
6.下列说法中正确的是()
A.棱柱的面中,至少有两个面互相平行
B.棱柱的两个互相平行的平面一定是棱柱的底面
C.棱柱的一条侧棱的长叫做棱柱的高
D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形
答案 A
7.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是()
A.三棱锥B.四棱锥
C.三棱柱D.组合体
答案 B
解析余下部分是四棱锥A′-BCC′B′.
8.一个圆台的母线长为13,上、下底面直径的差为10,则圆台的高为()
A.9 B.10
C.11 D.12
答案 D
解析作圆台的轴截面,易知R-r=5,l=13,则利用勾股定理可求高h=12.
9.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位是()
A.南B.北
C.西D.下
答案 B
解析如图所示的正方体,要展开成要求的平面图,必须剪开棱BC,使正
方形BCC1B1向东的方向展开.剪开棱D1C1,使正方形DCC1D1向北的方向
展开.剪开棱A1B1,使正方形ABB1A1向南的方向展开,然后拉开展开,则标“△”的面的方位向北.故选B.
10.如图所示的平面结构,绕中间轴旋转一周,形成的几何体形状为()
A.一个球体
B.一个球体中间挖去一个圆柱
C.一个圆柱
D.一个球体中间挖去一个棱柱
答案 B
11.若一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 答案12
解析该棱柱为五棱柱,共5条侧棱.
12.有下列说法:
①球的半径是球面上任意一点与球心的连线段;
②球的直径是球面上任意两点间的连线段;
③用一个平面截一个球,得到的是一个圆.
其中正确说法的序号是________.
答案①
解析因为直径一定过球心,故②不对;用平面截球,得到的是一个圆面,而不是一个圆,故③不对.
13.在正方体中任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的序号)
①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.
答案①③④⑤
解析在正方体ABCD-A′B′C′D′中,
①ACC′A′为矩形,②不存在,③四面体A′-ABD,④四面体A′-BC′D,⑤四面体A′-BB′
C.
14.(1)观察长方体,共有多少对平行平面?能作为棱柱底面的有几对?
(2)观察螺杆头部模型,有多少对平行的平面?能作为棱柱底面的有几对?
答案(1)平行平面共有三对,任意一对平行平面都可以作为棱柱的底面.
(2)平行平面共有四对,但能作为棱柱底面的只有一对,即上下两个平行平面.
15.如下图,在透明塑料制成的长方体ABCD-A1B1C1D1容器中灌进一些水,将容器底面一边BC置于桌面上,再将容器倾斜,随着倾斜程度的不同,水的形状是否形成棱柱体.
答案形成棱柱体
16.圆台的一个底面周长是另一个底面周长的3倍,轴截面面积等于392 cm2,母线与轴的夹角为45°,求这个圆台的高、母线长以及两底面的半径.
解析如图所示,将台还原成锥,设上、下底半径分别为x cm,3x cm,则在Rt△SOA中,
∠ASO=45°,从而∠SAO=45°,所以SO=AO=3x,从而OO1=2x.又S轴截面=1
2(6x+2x)·2x =392,所以x=7,从而高OO1=14 cm,母线l=14 2 cm,上、下底半径分别为7 cm,21 cm.。

相关文档
最新文档