北师大版高中数学必修一综合测试题(一)

合集下载

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

第一章综合测试一、选择题(本大题共10小题,共50分)1.已知集合{}15A x x =≤<,{}3B x a x a =-+<≤.若()B A B ⊆,则a 的取值范围为( )A .312⎛⎫-- ⎪⎝⎭,B .32⎛⎫-∞- ⎪⎝⎭,C .()1-∞-,D .32⎛⎫-+∞ ⎪⎝⎭, 2.已知集合M ,P 满足MP M =,则下列关系中:①M P =;②M P ;③M P P =;④P M ⊆.一定正确的是( )A .①②B .③④C .③D .④3.有下列四个命题:①{}0是空集;②若a ∈N ,则a -∉N ; ③集合{}2210A x x x =∈-+=R 有两个元素; ④集合6B x x ⎧⎫=∈∈⎨⎬⎩⎭N N 是有限集. 其中正确命题的个数是( )A .0B .1C .2D .34.下列命题中,真命题的个数是( )①若a b >,0c <,则c c a b>②“1a >,1b >”是“1ab >”的充分不必要条件 ③若0a <,则12a a+≤-④命题:“若1xy ≠,则1x ≠或1y ≠” A .1 B .2 C .3 D .45.“关于x 的不等式220x ax a -+>对x ∈R 恒成立”的一个必要不充分条件是( )A .01a <<B .01a ≤≤C .102a << D .1a ≥或a ≤06.已知集合65M a a a +⎧⎫=∈∈⎨⎬-⎩⎭N Z ,且,则M 等于( ) A .{}23, B .{}1234,,, C .{}1236,,, D .{}1234-,,, 7.已知集合{}220A x x x =--<,B 是函数()2lg 1y x =-的定义域,则( )A .AB = B .A B ⊂C .B A ⊂D .A B =∅8.已知集合401x A x x ⎧⎫-=⎨⎬+⎩⎭≤,()(){}2210B x x a x a =---<,若A B =∅,则实数a 的取值范围是( ) A .()2+∞, B .{}[)12+∞, C .()1+∞, D .[)2+∞,9.已知集合{}2340A x x x =--<,()(){}20B x x m x m =-⎡-+⎤⎣⎦>,若AB =R ,则实数m 的取值范围是( ) A .()1-+∞, B .()2-∞, C .()12-, D .[]12-,10.不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是( ) A .()30-, B .(]30-, C .[]30-, D .()[)30-∞-+∞,,二、填空题(本大题共4小题,共20分)11.已知集合{}2021A a a =-,,,{}519B a a =--,,,且()9A B ∈,则a =________. 12.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q =,则实数a 的取值范围是________.13.命题:p x ∀∈R ,20x ax a ++≥,若命题p 为真命题,则实数a 的取值范围是________.14.若全集U =R ,集合{}24M x x =>,103x N x x ⎧⎫+=⎨⎬-⎩⎭<,则M N =________.三、解答题(本大题共7小题,共80分)15.设集合{}2320A x x x =-+=,集合()(){}()222150B x x a x a a =+++-=∈R .(1)若{}1AB =,求实数a 的值;(2)若AB A =,求实数a 的取值范围.16.设集合{}2230A x x x =+-<,集合{}10B x x a a =+<,>,命题:p x ∈A ,命题:p x ∈B .(1)若p 是q 的充要条件,求正实数a 的值;(2)若q ⌝是p ⌝的必要不充分条件,求正实数a 的取值范围.17.已知集合{}30A x x a =->,{}260B x x x =-->.(1)当3a =时,求A B ,A B ;(2)若()AC B ≠∅R ,求实数a 的取值范围.18.设集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=,且A B A =,A C C =,求实数a ,m 的取值范围.19.已知二次函数()()20f x ax ax c a =-+≠,且不等式()2f x x >的解集为()12,. (1)求函数()f x 的解析式(2)若()f x x d +≥在x ∈R 时恒成立,求实数d 的取值范围.20.(1)已知()22f x x bx c =-++,不等式()0f x >的解集是()13-,,求b 的值.(2)若对于任意[]10x ∈-,,不等式()4f x t +≤恒成立,则实数t 的取值范围是多少?21.已知函数()()223f x x a x =+--.(1)若函数()f x 在[]24-,上是单调函数,求实数a 的取值范围;(2)当5a =,[]11x ∈-,时,不等式()24f x m x +->恒成立,求实数m 的范围.第一章综合测试答案解析一、1.【答案】C【解析】解:由条件得()B AB ⊆,又因为()A B B ⊆, 所以A B B =,即有B A ⊆.①当B =∅,有3a a -+≥,解得:32a -≤; ②当B ≠∅,有3135a a a a -+⎧⎪-⎨⎪+⎩<≥<,解得:312a --<≤. 综上,实数a 的取值范围为:312⎛⎤-- ⎥⎝⎦,. 2.【答案】B【解析】解:已知集合M ,P 满足M P M =,则P M ⊆,故④正确,①错误,②错误;由P M ⊆可得MP P =,故③正确. 3.【答案】B【解析】解:①{}0不是空集,故①不正确;②若a ∈N ,当0a =时,a -∈N ,故②不正确; ③集合{}{}22101A x x x =∈-+==R ,只有1个元素,故③不正确; ④集合{}61236B x x ⎧⎫=∈∈=⎨⎬⎩⎭N N ,,,,是有限集,故④正确. 故选B.4.【答案】C【解析】解:若a b >,0c <,则()c b a c c a b ab -=-可知,当0ab >时,有c c a b >;当0ab <时,有c c a b<.故①是假命题;②若1a >,1b >时,有1ab >;反之不一定,比如取2a =-,3b =-,有61ab =>成立,但不满足1a >,1b >,所以“1a >,1b >”是“1ab >”的充分不必要条件.故②是真命题;③若0a <,则()12a a ⎛⎫-+- ⎪⎝⎭≥,当且仅当1a =-时等号成立,所以有12a a +≤-.故③是真命题;④命题:“若1xy ≠,则1x ≠或1y ≠”的逆否命题为“若1x =且1y =,则1xy =”,是真命题,所以原命题亦为真命题.故④是真命题.5.【答案】B【解析】:若关于x 的不等式220x ax a -+>,x ∈R 恒成立可得2440a a -<,解得01a <<,所以“关于x 的不等式220x ax a -+>,x ∈R 恒成立”的一个必要不充分条件是01a ≤≤.6.【答案】D 【解析】解:因为集合65M a a a +⎧⎫⎧=∈∈⎨⎨⎬-⎩⎩⎭N Z ,且, 所以5a -可能值为1,2,3,6,所以对应a 的值为4,3,2,1-,所以集合{}1234M =-,,,. 7.【答案】C 【解析】解:{}{}22012A x x x x x =--=-<<<,要使函数()2lg 1y x =-有意义,则210x ->,解得11x -<<,即集合{}11B x x =-<<, 所以B A ⊂.8.【答案】B 【解析】解:集合{}40141x A x x x x ⎧⎫-==-⎨⎬+⎩⎭≤<≤, ()221210a a a -=-+∵≥,212a a +∴≥, 当212a a +=即1a =时,()(){}2210B x x a x a =---=∅<此时,满足已知A B =∅,当212a a +>即1a ≠时,()(){}{}2221021B x x a x a x a x a =---=+<<<若A B =∅,则24a ≥或211a +-≤,解得2a ≥.∴实数a 的取值范围是{}[)12+∞,9.【答案】C 【解析】解:集合{}()234014A x x x =--=-<,,集合()(){}()()2082B x x m x m m m =-⎡-+⎤=-++∞⎣⎦>,,, 若A B =R ,则124m m -⎧⎨+⎩>< 解得:()12m ∈-,. 10.【答案】A【解析】解:当0k =时不等式308-<符合题意;当0k ≠时,由一元二次不等式23208kx kx +-<对一切实数x 都成立, 则2034208k k k ⎧⎪⎨⎛⎫-⨯⨯- ⎪⎪⎝⎭⎩<<, 解得30k -<<. 综上,满足一元二次不等式23208kx kx +-<对一切实数x 都成立的k 的取值范围是(]30-,二、11.【答案】5或3-【解析】解:()9A B ∈;9A ∈∴;219a -=∴,或29a =;5a =∴,或3a =±;①5a =时,{}0925A =,,,{}049B =-,,,满足条件;②3a =时,{}229B =--,,,不满足集合元素的互异性; ③3a =-时,{}079A =-,,,{}849B =-,,,满足条件; 故答案为5或3-.12.【答案】()4+∞,【解析】解:由集合{}2280P x x x =-->解得{}24P x x x =-<或>,由P Q Q =,得Q P ⊆,{}Q x x a =∵≥,4a ∴>,故实数a 的取值范围是()4+∞,. 13.【答案】{}04a a ≤≤【解析】解:∵命题p 为真命题,即20x ax a ++≥在R 上恒成立,则240a a ∆=-≤,解得04a ≤≤,故实数a 的取值范围是{}04a a ≤≤.14.【答案】()23, 【解析】解:{}()(){}{}2422022M x x x x x x x x ==-+=->>>或<,()(){}{}10130133x N x x x x x x x ⎧⎫+==+-=-⎨⎬-⎩⎭<<<<,{}{}{}221323M N x x x x x x x =--=∴>或<<<<<三、15.【答案】解:(1)由题意知:{}{}232012A x x x =-+==,,{}1A B =∵,1B ∈∴,将1带入集合B 中得:()()212150a a +++-=,解得:3a =-或1a =,当时3a =-,集合{}14B =,符合题意;当1a =时,集合{}14B =,-,符合题意,综上所述:3a =-或1a =;(2)若A B A =,则B A ⊆,{}12A =∵,,B =∅∴或{}1B =或{}2或{}12,,①若B =∅,则()()2221450a a ∆=+--<,解得214a -<;②若{}1B =,则()21121115a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解;③若{}2B =,则()22221225a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解;④若{}12B =,,则()21221125a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解. 综上214a -<. 16.【答案】解:{}()223031A x x x =+-=-<,,()11B a a =---,, (1)p ∵是q 的充要条件,A B =∴,即13110a a a --=-⎧⎪-=⎨⎪⎩>,解得2a =.(2)q ⌝∵是p ⌝的必要不充分条件,p ∴是q 的必要不充分条件,∴集合B 是集合A 的真子集, 13110.a a a ---⎧⎪-⎨⎪⎩≥,∴<,>或13110.a a a ---⎧⎪-⎨⎪⎩>,≤,>解得02a <<,即正实数a 的取值范围是()02,. 17.【答案】解:由30x a ->得3a x >,所以3a A x x ⎧⎫=⎨⎬⎩⎭>, 由260x x -->,得()()23x x +->0,解得2x -<或3x >,所以{}23B x x x =-<或>(1)当3a =时,{}1A x x =>, 所以{}3A B x x =>,{}21A B x x x =-<或>. (2)因为{}23B x x =-<或>,所以{}23C B x x =-R ≤≤.又因为()A C B ≠∅R ,所以33a <,解得9a <. 所以实数a 的取值范围是()9-∞,. 18.【答案】解:{}{}232012A x x x =-+==,. 因为A B A =,所以B A ⊆,所以B 可能为∅,{}1,{}2,{}12,,因为()()()224120a a a ∆=---=-≥,所以B ≠∅,又因为()()2111x ax a x x a -+-=-⎡--⎤⎣⎦,所以B 中一定有1,所以11a -=或12a -=,即2a =或3a =.经验证2a =,3a =均满足题意;又因为A C C =,所以C A ⊆, 所以C 可能为∅,{}1,{}2,{}12,. 当C =∅时,方程220x mx -+=无解,所以28m ∆=-<0,所以m -<当{}1C =时,m 无解;当{}2C =时,m 也无解;当{}12C =,时,3m =.综上所述,2a =或3a =;m -<3m =.19.【答案】解:(1)二次函数()()20f x ax ax c a =-+≠,且不等式()2f x x >的解集为()12,, 则()220ax a x c -++<的解集为()12,, 即方程()220ax a x c -++=的两个根为1和2,且0a >, 由根与系数关系可得:212a a ++=,12c a⨯=, 解得1a =,2c =,故函数()f x 的解析式为()22f x x x =-+;(2)若()f x x d +≥在x ∈R 时恒成立,则222x x d -+≥在x ∈R 时恒成立,由于()2222111x x x -+=-+≥,故1d ≤.高中数学 必修第一册 11 / 11 20.【答案】解:(1)由不等式()0f x >的解集是()13-,,可知1-和3是方程220x bx c -++=的根, 即2232b c ⎧=⎪⎪⎨⎪-=-⎪⎩,,解得46b c =⎧⎨=⎩,, 所以4b =(2)由(1)可知()2246f x x x =-++.所以不等式()4f x t +≤可化为2242t x x --≤,[]10x ∈-,. 令()2242g x x x =--,[]10x ∈-,, 由二次函数的性质可知()g x 在[]10x ∈-,上单调递减, 则()g x 的最小值为()02g =-,则2t -≤.所以实数t 的取值范围为(]2-∞-,. 21.【答案】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]24-,上是单调函数,242a --∴≥或222a ---≤, 解得6a -≤或6a ≥.∴实数a 的取值范围为(][)66-∞-+∞,,; (2)当5a =,[]11x ∈-,时,()24f x m x +->恒成立,即21x x m ++>恒成立,令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]1112x =-∈-,, ()min 1324g x g ⎛⎫=-= ⎪⎝⎭∴,即34m >, m ∴的范围为34⎛⎫-∞ ⎪⎝⎭,.。

高中数学 第一章 预备知识章末综合测评(含解析)北师大版必修第一册-北师大版高一第一册数学试题

高中数学 第一章 预备知识章末综合测评(含解析)北师大版必修第一册-北师大版高一第一册数学试题

章末综合测评(一) 预备知识(满分:150分 时间:120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∀x ∈R ,使得x 2≥0”的否定形式是( ) A .∀x ∈R ,x 2<0 B .∀x ∈R ,x 2≤0 C .∃x ∈R ,x 2≥0D .∃x ∈R ,x 2<0D [命题“∀x ∈R ,x 2≥0”的否定形式是∃x ∈R ,x 2<0,故选D.]2.已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{3,4,5}D .{2,3,4,5}A [图中阴影部分所表示的集合为A ∩(∁UB ),故选A.]3.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x -2x ≤0,B ={0,1,2,3},则A ∩B =( )A .{1,2}B .{0,1,2}C .{1}D .{1,2,3}A [∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -2x ≤0={x |0<x ≤2}, ∴A ∩B ={1,2}.]4.设x ∈R ,则“x 3>8”是“|x |>2” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件A [解不等式x 3>8,得x >2,解不等式|x |>2,得x >2或x <-2, 所以“x 3>8”是“|x |>2” 的充分而不必要条件.故选A.]5.设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( ) A .{1,-3} B .{1,0} C .{1,3}D .{1,5}C [∵A ∩B ={1},∴1∈B . ∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}. 故选C.]6.满足条件M ∪{1,2}={1,2,3}的集合M 的个数是( ) A .4 B .3 C .2D .1 A [∵M ∪{1,2}={1,2,3},∴3∈M ,且可能含有元素1,2, ∴集合M 的个数为集合{1,2},子集的个数4.故选A.]7.已知实数a ,b ,c 满足b +c =3a 2-4a +6,c -b =a 2-4a +4,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >bA [∵c -b =a 2-4a +4=(a -2)2≥0,∴c ≥b ; 又b +c =3a 2-4a +6, ∴2b =2a 2+2, ∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎫a -12+34>0, ∴b >a , ∴c ≥b >a .]8.已知a >0,b >0,若不等式m3a +b ≤a +3b ab 恒成立,则m 的最大值为 ( )A .4B .16C .9D .3B [m3a +b≤a +3b ab ,即m ≤(a +3b )(3a +b )ab ;又(a +3b )(3a +b )ab =3a b +3ba +10≥23a b ·3ba=6+10=16,当且仅当a =b 时,取等号,∴m ≤16,故选B.]二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.不等式mx 2-ax -1>0(m >0)的解集不可能是( ) A .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .R C .⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32D .∅BCD [因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D.]10.对于任意实数a ,b ,c ,d ,下列四个命题中其中假命题的是( ) A .若a >b ,c ≠0,则ac >bc B .若a >b ,则ac 2>bc 2 C .若ac 2>bc 2,则a >b D .若a >b >0,c >d ,则ac >bdABD [若a >b ,c <0时,ac <bc ,A 错;B 中,若c =0,则有ac 2=bc 2,B 错;C 正确;D 中,只有c >d >0时,ac >bd ,D 错,故选ABD.]11.已知集合A ={x |x >2},B ={x |x <2m },且A ⊆∁R B ,那么m 的值可以是( ) A .0 B .1 C .2D .3 AB [根据补集的概念,∁R B ={x |x ≥2m }. 又∵A ⊆∁R B ,∴2m ≤2.解得m ≤1,故m 的值可以是0,1.]12.设集合A ={x |x 2-(a +2)x +2a =0},B ={x |x 2-5x +4=0},集合A ∪B 中所有元素之和为7,则实数a 的值为( )A .0B .1C .2D .4ABCD [x 2-(a +2)x +2a =(x -2)(x -a )=0,解得x =2或x =a ,则A ={2,a }.x 2-5x +4=(x -1)(x -4)=0,解得x =1或x =4,则B ={1,4}.当a =0时,A ={0,2},B ={1,4},A ∪B ={0,1,2,4},其元素之和为0+1+2+4=7;当a =1时,A ={1,2},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7;当a =2时,A ={2},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7;当a =4时,A ={2,4},B ={1,4},A ∪B ={1,2,4},其元素之和为1+2+4=7.则实数a 的取值集合为{0,1,2,4}.]三、填空题:本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上. 13.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是________. ⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a [原不等式可化为(x -a )(x -1a )<0,由0<a <1,得a <1a ,∴a <x <1a.]14.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值X 围________.(-∞,1][用数轴表示集合A ,B ,若A ∪B =R ,则a ≤1,即实数a 的取值X 围是(-∞,1].] 15.“∃x ∈[0,3],x 2-a >0”是假命题,则实数a 的取值X 围是________.[9,+∞)[由题意得“∀x ∈[0,3],x 2-a ≤0”是真命题,即a ≥x 2,所以a ≥(x 2)max =9. ] 16.某商家一月份至五月份累计销售额达3 860万元,六月份的销售额为500万元,七月份的销售额比六月份增加x %,八月份的销售额比七月份增加x %,九、十月份的销售总额与七、八月份的销售总额相等,若一月份至十月份的销售总额至少为7 000万元,则x 的最小值为________.20[由题意得七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,所以一月份至十月份的销售总额为3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-115(舍去)或1+x %≥65,即x %≥20%,所以x 的最小值为20.]四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)若集合A={x|-2<x<4},B={x|x-m<0}.(1)若m=3,全集U=A∪B,试求A∩(∁U B).(2)若A∩B=A,某某数m的取值X围.[解](1)当m=3时,由x-m<0,得x<3,∴B={x|x<3},∴U=A∪B={x|x<4},则∁U B={x|3≤x<4},∴A∩(∁U B)={x|3≤x<4}.(2)∵A={x|-2<x<4},B={x|x-m<0}={x|x<m},由A∩B=A得A⊆B,∴m≥4,即实数m的取值X围是[4,+∞).18.(本小题满分12分)解下列不等式:(1)3+2x-x2≥0;(2)x2-(1+a)x+a<0.[解](1)原不等式化为x2-2x-3≤0,即(x-3)(x+1)≤0,故所求不等式的解集为{x|-1≤x≤3}.(2)原不等式可化为(x-a)(x-1)<0,当a>1时,原不等式的解集为(1,a);当a=1时,原不等式的解集为∅;当a<1时,原不等式的解集为(a,1).19.(本小题满分12分)已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},当A∪B=B时,某某数a的取值组成的集合P.[解]由A∪B=B知A⊆B.又A={-4,0},故此时必有B={-4,0},即-4,0为方程x2+2(a+1)x+a2-1=0的两根,于是⎩⎪⎨⎪⎧-4+0=-2(a +1),(-4)×0=a 2-1,得a =1.即P ={1}.20.(本小题满分12分)已知a >b >0,求证:a +b +3>ab +2a +b . [证明]a +b +3-ab -2a -b =12(2a +2b -2ab -4a -2b )+3 =12(a -4a +b -2b +a +b -2ab )+3 =12(a -4a +4+b -2b +1+a +b -2ab -5)+3 =12[(a -2)2+(b -1)2+(a -b )2-5]+3 =12(a -2)2+12(b -1)2+12(a -b )2+12, ∵(a -2)2≥0,(b -1)2≥0,(a -b )2>0, ∴a +b +3-ab -2a -b >0, ∴a +b +3>ab +2a +b .21.(本小题满分12分)已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }.(1)若A ∩B =[0,3],某某数m 的值; (2)若A ⊆∁U B ,某某数m 的取值X 围.[解] 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}. (1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3,∴m =2.(2)∁U B ={x |x <m -2或x >m +2}, ∵A ⊆∁U B ,∴m -2>3或m +2<-1, 即m >5或m <-3.22.(本小题满分12分)已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x 使不等式恒成立?若存在,求出m 的取值X 围;若不存在,请说明理由.[解] 要使不等式mx 2-2x -m +1<0恒成立,即函数y =mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函数y =mx 2-2x -m +1为二次函数,其图象需满足开口向下且与x 轴没有公共点,即⎩⎪⎨⎪⎧m <0,Δ=4-4m (1-m )<0,不等式组的解集为空集,即m 不存在. 综上可知,不存在这样的实数m 使不等式恒成立.。

高中数学必修一(全部)测试题(北师大版)教学资料

高中数学必修一(全部)测试题(北师大版)教学资料
1 (x
50
x 3000
50 (100
)
50
2
4050) 37050
150
………………… 8 分
当 x 4050 时 , y max 30705
……………………………………… 11 分
y
ax 2
1
bx 的顶点横坐标的取值范围是 ( ,0 ) …………………… 12 分
2
18.(本小题 12 分)每题 6 分
高一第一学期期中试题(数学)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分
. 共 120 分,考试时间 100 分钟 .
第Ⅰ卷(选择题,共 40 分)
一、选择题(本大题共 10 小题,每小题 5 分,共 50 分, 在每小题给出的四个选项中只有一个正确)
1.已知全集 U {1, 2 ,3, 4,5, 6.7}, A { 2,4 ,6}, B { 1,3,5 ,7 }. 则 A ( C U B )等于 (
x
不需证明)
x 为何值? (直接回答结果,
-3-
参考答案
一、选择题:每小题 4 分, 10 个小题共 40 分 .
1.A 2.C 3.B 4.A. 5.C 6.C 7.A 8.C 9.B 10.D
二、填空题:每小题 4 分,共 16 分.
11 . [ 4, 2) ( 2 , ) 12.2x- 1 或- 2x+1 13 .3 14 . 0, 1
4 函数 f ( x ) x ( x 0 ) 在区间( 0, 2)上递减;
x
4 函数 f ( x ) x ( x 0 ) 在区间
x
上递增 .
当x
时, y 最小
.
4 证明:函数 f ( x ) x ( x 0 ) 在区间( 0, 2)递减 .

高中北师大版数学必修1第1章至第四章学业质量标准检测

高中北师大版数学必修1第1章至第四章学业质量标准检测

第一章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=( A )A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}[解析]A∩B={x|-2<x<1}∩{x|x<-1或x>3}={x|-2<x<-1},故选A.2.下列集合中表示同一集合的是( B )A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={1,2},N={(1,2)}[解析]A选项中,元素为点,且不是同一点,C,D选项中的元素,一个为点,一个为数,都不可能为同一集合,故B正确.3.设集合A={a,b},B={x|x∈A},则( D )A.B∈A B.B AC.A∉B D.A=B[解析]由已知可得B={a,b},∴A=B4.设全集U=R,A={x|x>0},B={x|x>1},则A∩∁U B=( B )A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}[解析]易得∁U B={x|x≤1},故A∩∁U B={x|0<x≤1}.5.(2019·全国卷Ⅱ理,1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( A )A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)[解析]∵A={x|x2-5x+6>0}={x|(x-2)(x-3)>0}={x|x<2或x>3},B={x|x-1<0}={x|x<1}.∴A∩B={x|x<2或x>3}∩{x|x<1}={x|x<1},故选A.6.已知集合P={x|x2≤1},M={a},若P∪M=P,则a的范围是( C )A.a≤-1 B.a≥1C.-1≤a≤1 D.a≥1或a≤-1[解析]∵P={x|-1≤x≤1},P∪M=P,∴a∈P.即-1≤a≤1.7.设集合A ={x|x≤13},a =11,那么( D ) A .a A B .a ∉A C .{a}∉AD .{a} A[解析] A 是集合,a 是元素,两者的关系应是属于与不属于的关系.{a}与A 是包含与否的关系,据此,A 、C 显然不对.而11<13,所以a 是A 的一个元素,{a}是A 的一个子集.故选D .8.设全集U ={x ∈N|x≥2},集合A ={x ∈N|x 2≥5},则∁U A =( B ) A .∅ B .{2} C .{5}D .{2,5}[解析] 本题考查集合的运算.A ={x ∈N|x 2≥5}={x ∈N|x≥5},故∁U A ={x ∈N|2≤x<5}={2}.选B .9.已知A ,B 均为集合U ={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A 等于( D ) A .{1,3} B .{3,7,9} C .{3,5,9}D .{3,9}[解析] 因为A∩B={3},所以集合A 中必有元素3.因为(∁U B)∩A={9},所以属于集合A 不属于集合B 的元素只有9.综上可得A ={3,9}.10.已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},且B≠∅,若A ∪B =A ,则m 的取值范围为( D )A .-3≤m≤4B .-2<m<4C .2<m<4D .2<m≤4[解析] 因为A ∪B =A ,所以B ⊆A . 又因为B≠∅,所以⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,所以2<m≤4.11.已知集合A ={x|x<3或x≥7},B ={x|x<a}.若(∁U A)∩B≠∅,则a 的取值范围为( A ) A .a>3 B .a≥3 C .a≥7D .a>7[解析] 因为A ={x|x<3或x≥7},所以∁U A ={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.12.下列四个命题:①{0}是空集;②若a ∈N ,则-a ∉N ;③集合{x ∈R|x 2-2x +1=0}有两个元素;④集合{x ∈Q|6x∈N}是有限集.其中正确命题的个数是( D )A .1B .2C .3D .0[解析] ①{0}是含有一个元素0的集合,不是空集, ∴①不正确.②当a =0时,0∈N ,∴②不正确. ③∵x 2-2x +1=0,x 1=x 2=1, ∴{x ∈R|x 2-2x +1=0}={1}, ∴③不正确.④当x 为正整数的倒数时6x ∈N ,∴{x ∈Q|6x ∈N}是无限集,∴④不正确.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.已知集合A ={x|x -2>0},若a ∈A ,则集合B ={x|x 2-ax +1=0}中元素的个数为2.[解析] ∵A ={x|x -2>0},a ∈A ,∴a -2>0,即a>2,∴a 2-4>0,则方程x 2-ax +1=0有两个不相等的实数根.故集合B 中元素的个数为2.14.设集合A ={x||x|<2},B ={x|x>a},全集U =R ,若A ⊆∁U B ,则a 的取值范围是a≥2. [解析] ∵|x|<2,∴-2<x<2,∴A ={x|-2<x<2}.而∁U B ={x|x≤a},故当A ⊆∁U B 时,a≥2. 15.设全集U =R ,A ={x ∈N|1≤x≤10},B ={x ∈R|x 2+x -6=0},则图中阴影表示的集合为{-3}.[解析] 如图阴影部分为(∁U A)∩B.∵A ={x ∈N|1≤x≤10}={1,2,3,4,…,9,10}, B ={x|x 2+x -6=0}={2,-3}, ∴(∁U A)∩B={-3}.16.集合M ={x|x =3k -2,k ∈Z},P ={y|y =3l +1,l ∈Z},S ={z|z =6m +1,m ∈Z}之间的关系是SP =M.[解析] M 、P 是被3除余1的数构成的集合,则P =M ,S 是被6除余1的数,则S P. 三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设集合A ={x ∈Z|-6≤x≤6},B ={1,2,3},C ={3,4,5,6}.求: (1)A ∪(B∩C); (2)A∩[∁A (B ∪C)].[解析] 由题意知A ={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}. (1)易知B∩C={3},故A ∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)∵B ∪C ={1,2,3,4,5,6},∴∁A (B ∪C)={-6,-5,-4,-3,-2,-1,0}, ∴A∩[∁A (B ∪C)]={-6,-5,-4,-3,-2,-1,0}.18.(本小题满分12分)已知M ={1,2,a 2-3a -1},N ={-1,a,3},M∩N={3},求实数a 的值. [解析] ∵M∩N={3},∴3∈M ; ∴a 2-3a -1=3,即a 2-3a -4=0, 解得a =-1或4.但当a =-1时,与集合中元素的互异性矛盾; 当a =4时,M ={1,2,3},N ={-1,3,4},符合题意. ∴a =4.19.(本小题满分12分)已知A ={x|x 2-3x +2=0},B ={x|mx -2=0}且A ∪B =A ,求实数m 组成的集合C .[解析] 由A ∪B =A 得B ⊆A ,因此B 有可能等于空集. ①当B =∅时,此时方程mx -2=0无解, 即m =0符合题意.②当B≠∅时,即m≠0,此时A ={1,2},B ={2m },∵B ⊆A .∴2m =1或2m =2,∴m =2或m =1.因此,实数m 组成的集合C 为{0,1,2}.20.(本小题满分12分)集合A ={x|-2<x<4},集合B ={x|x -m<0}. (1)若m =3,求A∩B,A ∪B ;(2)若A∩B=∅,求实数m 的取值范围; (3)若A∩B=A ,求实数m 的取值范围. [解析] (1)当m =3时,B ={x|x<3}. 又A ={x|-2<x<4},∴A∩B={x|-2<x<4}∩{x|x<3}={x|-2<x<3}, A ∪B ={x|-2<x<4}∪{x|x<3}={x|x<4}. (2)∵A ={x|-2<x<4},B ={x|x<m},又A∩B=∅, ∴m≤-2,即m 的取值范围是{m|m≤-2}. (3)∵A∩B=A ,∴A ⊆B .又A ={x|-2<x<4},B ={x|x<m}, ∴m≥4,即m 的取值范围是{m|m≥4}.21.(本小题满分12分)已知M ={x|x 2-5x +6=0},N ={x|ax =12},若N ⊆M ,求实数a 所构成的集合A ,并写出A 的所有非空真子集.[解析]∵M={x|x2-5x+6=0},解x2-5x+6=0得x=2或x=3,∴M={2,3}.∵N⊆M,∴N为∅或{2}或{3}.当N=∅时,即ax=12无解,此时a=0;当N={2}时,则2a=12,a=6;当N={3}时,则3a=12,a=4.所以A={0,4,6},从而A的所有非空真子集为{0},{4},{6},{0,4},{0,6},{4,6}.22.(本小题满分12分)设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10-x∈S.(1)请你写出符合条件,且分别含有1个、2个、3个元素的集合S各一个.(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;若不存在,请说明理由.(3)由(1)、(2)的解答过程启发我们,可以得出哪些关于集合S的一般性结论(要求至少写出两个结论)?[解析](1)由题意可知,若集合S中含有一个元素,则应满足10-x=x,即x=5,故S={5}.若集合S中含有两个元素,设S={a,b},则a,b∈N+,且a+b=10,故S可以是下列集合中的一个:{1,9},{2,8},{3,7},{4,6},若集合S中含有3个元素,由集合S满足的性质可知5∈S,故S是{1,5,9}或{2,5,8}或{3,5,7}或{4,5,6}中的一个.(2)存在含有6个元素的非空集合S如下所示:S={1,2,3,7,8,9}或S={1,2,4,6,8,9}或S={1,3,4,6,7,9}或S={2,3,4,6,7,8}共4个.(3)答案不唯一,如:①S⊆{1,2,3,4,5,6,7,8,9};②若5∈S,则S中元素个数为奇数个,若5∉S,则S中元素个数为偶数个.第二章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)=x +1+12-x 的定义域为( A )A .[-1,2)∪(2,+∞)B .(-1,+∞)C .[-1,2)D .[-1,+∞)[解析] 要使x +1有意义,须满足x +1≥0,即x≥-1;要使12-x 有意义,须满足2-x≠0,即x≠2,所以函数f(x)的定义域为{x|x≥-1,且x≠2},用区间可表示为[-1,2)∪(2,+∞).2.已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+1x ,则f(-1)=( D )A .2B .1C .0D .-2[解析] ∵f(x)为奇函数, ∴f(-1)=-f(1)=-(1+11)=-2.3.下列四个图像中,表示的不是函数图像的是( B )[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.4.二次函数y =-2(x +1)2+8的最值情况是( C ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值.5.已知集合A 和集合B 的元素都属于N ,映射f :A→B,若把集合A 中的元素n 映射到集合B 中为元素n 2+n ,则在映射f 下,像20的原像是( A )A .4B .5C.4或-5 D.-4或5[解析]由题意,得n2+n=20,∴n2+n-20=0,∴(n+5)(n-4)=0,∴n=-5或n=4.∵n∈N,∴n=4,故选A.6.(2019·山东烟台高一期中测试)已知函数y=f(x)的部分x与y的对应关系如下表:则f[f(4)]=(A.-1 B.-2C.-3 D.3[解析]由图表可知,f(4)=-3,∴f[f(4)]=f(-3)=3.7.函数f(x)在(-∞,+∞)上单调递减,且为奇函数,若f(1)=-1,则满足-1≤f(x-2)≤1的x 的取值范围是( D )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3][解析]∵f(x)为R上的奇函数,f(1)=-1,∴f(-1)=-f(1)=1,由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1),又∵f(x)在(-∞,+∞)上单调递减,∴-1≤x-2≤1,∴1≤x≤3,故选D.8.若奇函数f(x)在[3,7]上是增函数,且最小值是1,则它在[-7,-3]上是( B )A.增函数且最小值是-1 B.增函数且最大值是-1C.减函数且最大值是-1 D.减函数且最小值是-1[解析]∵奇函数在对称区间上的单调性相同,最值互为相反数.∴y=f(x)在[-7,-3]上有最大值-1且为增函数.9.定义在[1+a,2]上的偶函数f(x)=ax2+bx-2在区间[1,2]上是( B )A.增函数B.减函数C.先增后减函数D.先减后增函数[解析]∵函数f(x)是偶函数,∴b=0.定义域为[1+a,2],则1+a=-2,∴a=-3.又二次函数f(x)=-3x2-2的图像开口向下,对称轴为y轴,则在区间[1,2]上是减函数.10.若函数y=kx+5kx2+4kx+3的定义域为R,则实数k的取值范围为( D )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[解析] ∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立; k≠0时,Δ<0,也成立.∴0≤k<34.11.函数y =ax 2-bx +c(a≠0)的图像过点(-1,0),则a b +c +b a +c -c a +b的值是( A ) A .-1 B .1 C .12D .-12[解析] ∵函数y =ax 2-bx +c(a≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b. ∴a b +c +b a +c -c a +b=-1. 12.已知函数f(x)(x ∈R)满足f(x)=f(2-x),若函数y =|x 2-2x -3|与y =f(x)图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 i =1mx i =( B )A .0B .mC .2mD .4m[解析] 因为y =f(x),y =|x 2-2x -3|都关于x =1对称,所以它们交点也关于x =1对称,当m 为偶数时,其和为2×m 2=m ,当m 为奇数时,其和为2×m -12+1=m ,因此选B .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y =x 2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是y =x 2+4x +2.[解析] y =(x +2)2+1-3=(x +2)2-2 =x 2+4x +2.14.(2019·陕西黄陵中学高一期末测试)函数f(x)=4-2x +1x +1的定义域是{x|x≤2且x≠-1}. [解析] 由题意得⎩⎪⎨⎪⎧4-2x≥0x +1≠0,解得x≤2且x≠-1,∴函数f(x)的定义域为{x|x≤2且x≠-1}.15.已知函数f(x)=x 2-|x|,若f(-m 2-1)<f(2),则实数m 的取值范围是(-1,1).[解析] 因为f(x)=x 2-|x|=|x|2-|x|=(|x|-12)2-14,所以f(x)为偶函数,且在区间(12,+∞)上为增函数.又f(-m 2-1)=f(m 2+1)<f(2), 所以m 2+1<2.所以m 2<1,即-1<m<1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y =2x 2+1,值域为{9}的“孪生函数”有三个:①y =2x 2+1,x ∈{-2};②y =2x 2+1,x ∈{2};③y =2x 2+1,x ∈{-2,2}.那么函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有3个.[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知函数f(x)=⎩⎪⎨⎪⎧x +2(x≤-1)x 2(-1<x<2)2x (x≥2).(1)求f{f[f(3)]}的值; (2)求f(a)=3,求a 的值; (3)画出函数的图像.[解析] (1)∵-1<3<2,∴f(3)=(3)2=3. 又 3≥2,∴f[f(3)]=f(3)=2×3=6. 又6≥2,∴f{f[f(3)]}=f(6)=2×6=12.(2)当a≤-1时,f(a)=a +2.若f(a)=3,则a +2=3, ∴a =1(舍去).当-1<a<2时,f(a)=a 2.若f(a)=3,则a 2=3, ∴a =3,或a =-3(舍去).当a≥2时,f(a)=2a.若f(a)=3,则2a =3, ∴a =32(舍去).综上可知,a = 3.(3)函数f(x)的图像如图所示,18.(本小题满分12分)已知函数f(x)=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f(x)的最大值和最小值;(2)求实数a 的取值范围,使y =f(x)在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f(x)=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5,所以当x =-3时,f(x)min =-19,当x =3时,f(x)max =41.(2)函数f(x)=(x -a)2+2-a 2的图像的对称轴为x =a ,因为f(x)在[-3,3]上是单调函数, 所以a≤-3或a≥3.19.(本小题满分12分)已知函数f(x)=1a -1x (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增加的;(2)若f(x)在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2. 则f(x 1)-f(x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2. ∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f(x 1)<f(x 2). ∴函数f(x)在(0,+∞)上是增加的. (2)∵f(x)在[12,2]上的值域是[12,2],又∵f(x)在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f (12)=12f (2)=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f(x)=x -2m2-m +3,其中m ∈{x|-2<x<2,x ∈Z},满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f(-x)+f(x)=0.求同时满足(1),(2)的幂函数f(x)的解析式,并求x ∈[0,3]时f(x)的值域. [解析] 由{x|-2<x<2,x ∈Z}={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m<1,∴m =-1或0.由(2)知f(x)是奇函数.当m =-1时,f(x)=x 2为偶函数,舍去. 当m =0时,f(x)=x 3为奇函数. ∴f(x)=x 3.当x ∈[0,3]时,f(x)在[0,3]上为增函数, ∴f(x)的值域为[0,27].21.(本小题满分12分)设函数f(x)=x 2-2|x|-1(-3≤x≤3). (1)证明:f(x)是偶函数;(2)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数; (3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称, f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x), 即f(-x)=f(x),∴f(x)是偶函数.(2)当x≥0时,f(x)=x 2-2x -1=(x -1)2-2, 当x<0时,f(x)=x 2+2x -1=(x +1)2-2,即f(x)=⎩⎪⎨⎪⎧(x -1)2-2,x≥0(x +1)2-2,x<0.根据二次函数的作图方法,可得函数图像,如图函数f(x)的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f(x)在区间[-3,-1),[0,1]上为减函数, 在[-1,0),[1,3]上为增函数.(3)当x≥0时,函数f(x)=(x -1)2-2的最小值为-2,最大值为f(3)=2. 当x<0时,函数f(x)=(x +1)2-2的最小值为-2,最大值为f(-3)=2. 故函数f(x)的值域为[-2,2].22.(本小题满分12分)已知函数f(x)=x +x 3,x ∈R. (1)判断函数f(x)的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b>0,试比较f(a)+f(b)与0的大小. [解析] (1)函数f(x)=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1) =(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)=x +x 3,x ∈R 是增函数. (2)由a +b>0,得a>-b ,由(1)知f(a)>f(-b), 因为f(x)的定义域为R ,定义域关于坐标原点对称, 又f(-x)=(-x)+(-x)3=-x -x 3=-(x +x 3)=-f(x), 所以函数f(x)为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.第三章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·山东潍坊高一期末测试)函数f(x)=ln (x +1)x -2的定义域是( B )A .(-1,+∞)B .(-1,2)∪(2,+∞)C .(-1,2)D .[-1,2)∪(2,+∞)[解析] 要使函数有意义,应满足⎩⎪⎨⎪⎧x +1>0x -2≠0,∴x>-1且x≠2,故函数f(x)的定义域为(-1,2)∪(2,+∞). 2.下列计算正确的是( B ) A .log 26-log 23=log 23 B .log 26-log 23=1 C .log 39=3D .log 3(-4)2=2log 3(-4)[解析] 在B 选项中,log 26-log 23=log 263=log 22=1,故该选项正确.3.(2019·安徽合肥众兴中学高一期末测试)已知函数f(x)=⎩⎪⎨⎪⎧log 2x (x>0)3x(x≤0),则f[f(14)]的值是( B )A .9B .19 C .-19D .-9[解析] ∵x>0时,f(x)=log 2x , ∴f(14)=log 214=log 22-2=-2,又∵x<0时,f(x)=3x ,∴f(-2)=3-2=19.∴f[f(14)]=f(-2)=19.4.(2019·山东潍坊高一期末测试)已知x =log 512,y =(12)0.1,z =213 ,则( A )A .x<y<zB .x<z<yC .y<x<zD .z<x<y[解析] log 512<log 51=0,∴x<0;(12)0.1<(12)0=1,∴0<y<1;213 >20=1,∴z>1,∴x<y<z.5.函数y =a x与y =-log a x(a>0,且a≠1)在同一坐标系中的图像形状只能是( A )[解析] 排除法:∵函数y =-log a x 中x>0,故排除B ;当a>1时,函数y =a x为增函数,函数y =-log a x 为减函数,故排除C ;当0<a<1时,函数y =a x 为减函数,函数y =-log a x 为增函数,故排除D ,所以选A . 6.(2019·北京文,3)下列函数中,在区间(0,+∞)上单调递增的是( A ) A .y =x 12 B .2-xC .y =log 12xD .y =1x[解析] 函数y =x 12=x ,在(0,+∞)上单调递增,函数y =2-x=(12)x ,y =log 12x ,y =1x 在(0,+∞)上都是单调递减的,故选A .7.已知函数f(x)=5|x|,g(x)=ax 2-x(a ∈R).若f[g(1)]=1,则a =( A ) A .1 B .2 C .3D .-1[解析] 由已知条件可知:f[g(1)]=f(a -1)=5|a -1|=1,∴|a -1|=0,得a =1.故选A .8.给出f(x)=⎩⎪⎨⎪⎧12x (x≥4)f (x +1)(x<4),则f(log 23)的值等于( D )A .-238B .111C .119D .124[解析] 因为log 23∈(1,2), 所以f(log 23)=f(log 23+1)=f(log 26)=f(log 26+1) =f(log 212)=f(log 212+1) =f(log 224)=12log 224=124.9.若a>b>0,0<c<1,则( B ) A .log a c<log b c B .log c a<log c b C .a c<b cD .c a>c b[解析] 对于选项A :log a c =lgc lga ,log b c =lgclgb,∵0<c<1,∴lgc<0,而a>b>0,所以lga>lgb ,但不能确定lga 、lgb 的正负,所以它们的大小不能确定; 对于选项B :log c a =lga lgc ,log c b =lgb lgc ,而lga>lgb ,两边同乘以一个负数1lgc 改变不等号方向所以选项B 正确;对于选项C :利用y =x c在第一象限内是增函数即可得到a c>b c,所以C 错误;对于选项D :利用y =c x在R 上为减函数易得为错误.所以本题选B .10.设函数f(x)=x 2-4x +3,g(x)=3x-2,集合M ={x ∈R|f[g(x)]>0},N ={x ∈R|g(x)<2},则M∩N =( D )A .(1,+∞)B .(0,1)C .(-1,1)D .(-∞,1)[解析] ∵f[g(x)]>0,∴g 2(x)-4g(x)+3>0. ∴g(x)>3或g(x)<1, ∴M∩N={x|g(x)<1}.∴3x-2<1,3x<3,∴x<1.故选D .11.已知函数f(x)=⎩⎪⎨⎪⎧ 2x -1-2,-log 2(x +1),x≤1,x>1,且f(a)=-3,则f(6-a)=( A )A .-74B .-54C .-34D .-14[解析] 由已知条件可得函数图像:故f(a)=-3=-log 2(a +1),可得a =7; f(6-a)=f(-1)=2-1-1-2=-74.故本题正确答案为A .12.已知f(x)=log 12(x 2-ax +3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是( C )A .(-4,4)B .[-4,4)C .(-4,4]D .[-4,4][解析] 要使f(x)在[2,+∞)上是减函数,则需g(x)=x 2-ax +3a 在[2,+∞)上递增且恒大于零. ∴⎩⎪⎨⎪⎧a 2≤2g (2)=22-2a +3a>0,解得-4<a≤4.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.(2019·大连市高一期末测试)已知16a=4,lg x =a ,则x =10. [解析] ∵16a=4,∴a =12,∴lg x =12,∴x =1012=10,∴x =10.14.(2019·安徽安庆二中高一期中测试)计算:(49)12 +(12)log23+lne =2.[解析] 原式=23+12log 23+1=23+13+1=2. 15.(2019·全国卷Ⅱ理,14)已知f(x)是奇函数,且当x<0时,f(x)=-e ax,若f(ln2)=8,则a -3.[解析] 解法一:设x>0,则-x<0, ∴f(-x)=-e-ax,∵f(x)为奇函数,∴f(-x)=-f(x), ∴-f(x)=-e -ax,∴f(x)=e-ax=1eax =1(e x )a , ∵ln2>0,∴f(ln2)=1(e ln2)a =12a =8,∴2a=18=2-3,∴a =-3.解法二:∵ln2>0,∴-ln2<0, 又∵当x<0时,f(x)=-e ax, ∴f(-ln2)=-e -aln2=-1e aln2=-1(e ln2)a=-12a ,又∵f(x)为奇函数,∴f(-ln2)=-f(ln2) =-8, ∴-12a =-8,∴2a=18=2-3,∴a =-3.16.关于函数y =2x2-2x -3有以下4个结论:①定义域为(-∞,-1)∪(3,+∞); ②递增区间为[1,+∞); ③是非奇非偶函数; ④值域是(116,+∞).则正确的结论是②③.(填序号即可)[解析] ①不正确,因为y =2x 2-2x -3的定义域为R ; ④不正确,因为x 2-2x -3=(x -1)2-4≥-4, ∴2x2-2x -3≥2-4=116,即值域为[116,+∞);②正确,因为y =2u为增函数,u =x 2-2x -3在(-∞,1]上为减函数,在[1,+∞)上为增函数,所以y =2x2-2x -3的递增区间为[1,+∞);③正确,因为f(-x)≠f(x)且f(-x)≠-f(x).三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(2019·安徽太和中学高一期中测试)计算下列各式的值: (1)(12)-2+(12)0-2713 +38;(2)log 327-log 33+lg25+2lg2+lne 2. [解析] (1)原式=22+1-(33) 13 +323=4+1-3+2=4.(2)原式=log 3332 -log 3312 +lg25+lg4+2=32-12+lg100+2 =32-12+2+2=5. 18.(本小题满分12分)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x +2). (1)求g(x)的解析式及定义域; (2)求函数g(x)的最大值和最小值. [解析] (1)∵f(x)=2x, ∴g(x)=f(2x)-f(x +2)=22x-2x +2.∵f(x)的定义域是[0,3],∴⎩⎪⎨⎪⎧0≤2x≤30≤x+2≤3,解得0≤x≤1.∴g(x)的定义域是[0,1]. (2)g(x)=(2x )2-4×2x=(2x-2)2-4. ∵x ∈[0,1], ∴2x ∈[1,2].∴当2x =1,即x =0时,g(x)取得最大值-3; 当2x=2,即x =1时,g(x)取得最小值-4.19.(本小题满分12分)已知定义域为R 的偶函数f(x)在[0,+∞)上是增函数,且f(12)=0,求不等式f(log 4x)>0的解集.[解析] 因为f(x)是偶函数, 所以f(-12)=f(12)=0,又f(x)在[0,+∞)上是增函数, 所以f(x)在(-∞,0)上是减函数. 所以f(log 4x)>0⇒log 4x>12或log 4x<-12,解得:x>2或0<x<12,则不等式f(log 4x)>0的解集是 {x|x>2,或0<x<12}.20.(本小题满分12分)已知a>0且a≠1,函数f(x)=log a x ,x ∈[2,4]的值域为[m ,m +1],求a 的值.[解析] 当a>1时,f(x)=log a x ,在[2,4]上是增加的,∴x =2时,f(x)取最小值;x =4时,f(x)取最大值,即⎩⎪⎨⎪⎧log a 2=m log a 4=m +1,∴2log a 2=log a 2+1.∴log a 2=1,得a =2 当0<a<1时,f(x)=log a x 在[2,4]上是减少的,∴当x =2时,f(x)取最大值;x =4时,f(x)取最小值,即⎩⎪⎨⎪⎧log a 2=m +1log a 4=m ,∴log a 2=2log a 2+1,∴log a 2=-1.∴a =12.综上所述,a =2或a =12.21.(本小题满分12分)已知函数f(x)=(12x -1+12)·x 3.(1)求f(x)的定义域; (2)讨论f(x)的奇偶性; (3)证明:f(x)>0.[解析] (1)因为要使题中函数有意义,需2x-1≠0,即x≠0, 所以所求定义域为(-∞,0)∪(0,+∞). (2)因为f(x)=2+(2x-1)2(2x-1)·x 3=2x+12(2x -1)·x 3, 又f(-x)=2-x+12(2-x -1)·(-x)3=1+2x2(1-2x )·(-x 3)=2x+12(2x-1)·x 3, 所以f(-x)=f(x),即f(x)是偶函数. (3)证明:因为x>0时,2x>1,所以2x-1>0. 又因为x 3>0,所以f(x)>0;因为x<0时,0<2x<1,所以-1<2x-1<0. 又因为x 3<0,所以f(x)>0.所以当x ∈(-∞,0)∪(0,+∞)时,f(x)>0.22.(本小题满分12分)某商品的市场日需求量Q 1和日产量Q 2均为价格P 的函数,且Q 1=144·(12)P +12,Q 2=6×2P ,日总成本C 关于日产量Q 2的关系式为:C =10+13Q 2.(1)Q 1=Q 2时的价格为均衡价格,求此均衡价格P 0;(2)当P =P 0时,求日利润L 的大小.[解析] 均衡价格即供需相等时所对应的价格,利润=收益-成本,列出方程即可求解. (1)根据题意有Q 1=Q 2, 144·(12)P +12=6×2P,即(2P )2-2·2P-24=0. 解得2P=6,2P=-4(舍去). ∴P =log 26,故P 0=P =log 26. 即均衡价格为log 26元. (2)由于利润=收益-成本,故L =Q 1P -C =36log 26-(10+13×36)=36log 26-22,故P =P 0时,利润为(36log 26-22)元.第四章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f(x)的图像与x轴有3个交点,则方程f(x)=0的实数解的个数是( D )A.0 B.1C.2 D.3[解析]因为函数f(x)的图像与x轴有3个交点,所以函数f(x)有3个零点,即方程f(x)=0有3个实数解.2.函数y=x的零点是( A )A.0 B.(0,0)C.(1,0) D.1[解析]函数y=x的零点是其图像与横轴交点的横坐标0,它是一个实数,而不是点,故选A.3.方程lgx+x=0的根所在区间是( B )A.(-∞,0) B.(0,1)C.(1,2) D.(2,4)[解析]若lgx有意义,∴x>0,故A不正确,又当x>1时,lgx>0,lgx+x>0,C、D不正确,故选B.4.函数f(x)的图像如图所示,则函数f(x)的零点个数为( D )A.1 B.2C.3 D.4[解析]因为f(x)与x轴有4个交点,所以共有4个零点.5.若f(x)是一个二次函数,且满足f(2+x)=f(2-x),该函数有两个零点x1,x2,则x1+x2=( C ) A.0 B.2C.4 D.无法判断[解析]由f(2+x)=f(2-x)知f(x)的图像关于x=2对称.∴x1+x2=4.6.下图是函数f(x)的图像,它与x轴有4个不同的公共点.在下列四个区间中,存在不能用二分法求出的零点,则该零点所在的区间是( B )A .[-2,-1]B .[1,2]C .[4,5]D .[5,6][解析] 在区间[1,2]上的零点为不变号零点,故不能用二分法求.7.夏季高山温度从山脚起每升高100m ,降低0.7摄氏度,已知山顶的温度是14.1摄氏度,山脚的温度是26摄氏度,则山的相对高度为( C )A .1 750mB .1 730mC .1 700mD .1 680m[解析] 设从山脚起每升高x 百米时,温度为y 摄氏度,根据题意得y =26-0.7x ,山顶温度是14.1摄氏度,代入得14.1=26-0.7x.∴x =17(百米),∴山的相对高度是1 700m.8.函数f(x)=2x+3x 的零点所在的一个区间是( B ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)[解析] ∵f(x)=2x+3x ,∴f(-1)=-52<0,f(0)=1>0,故选B .9.若方程lnx +x -4=0在区间(a ,b)(a ,b ∈Z ,且b -a =1)上有一根,则a 的值为( B ) A .1 B .2 C .3D .4[解析] 设f(x)=lnx +x -4,f(2)=ln2-2<0,f(3)=ln3-1>0,f(2)f(3)<0, ∴根在区间(2,3)内,∴a =2.故选B .10.若方程x 2+(m -2)x +(5-m)=0的两根都大于2,则m 的取值范围是( A ) A .(-5,-4] B .(-∞,-4]C .(-∞,-2)D .(-∞,-5)∪(-5,-4][解析] 考查函数f(x)=x 2+(m -2)x +(5-m),由条件知它的两个零点都大于2,其图像如图所示.由图可知,⎩⎪⎨⎪⎧-m -22>2f 2=m +5>0m -22-45-m≥0,即⎩⎪⎨⎪⎧m<-2m>-5m≥4或m≤-4,∴-5<m≤-4.故选A .11.已知函数f(x)在区间[0,a]中有唯一的变号零点(a>0),在用二分法寻找零点的过程中,依次确定了零点所在的区间为[0,a 2],[0,a 4],[0,a8],则下列说法正确的是( D )A .函数f(x)在区间[0,a16]中有零点B .函数f(x)在区间[0,a 16]或[a 16,a8]中有零点C .函数f(x)在区间[a16,a]中无零点D .函数f(x)在区间[0,a 16]或[a 16,a 8]中有零点,或零点是a16[解析] 由二分法的定义可知,只有D 正确.12.已知f(x)是定义在R 上的奇函数,当x≥0时,f(x)=x 2-3x.则函数g(x)=f(x)-x +3的零点的集合为( D )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}[解析] 令x<0,则-x>0,∴f(-x)=(-x)2-3(-x)=x 2+3x , 又∵f(x)为奇函数,∴f(-x)=-f(x), ∴-f(x)=x 2+3x , ∴f(x)=-x 2-3x(x<0),∴f(x)=⎩⎪⎨⎪⎧x 2-3x x≥0-x 2-3x x<0.∴g(x)=⎩⎪⎨⎪⎧x 2-4x +3x≥0-x 2-4x +3x<0.当x≥0时,由x 2-4x +3=0,得x =1或x =3. 当x<0时,由-x 2-4x +3=0,得x =-2-7, ∴函数g(x)的零点的集合为{-2-7,1,3}.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.函数f(x)=(x 2-3)(x 2-2x -3)的零点为±3,3,-1 . [解析] 令f(x)=0,得x =±3,或x =3,或x =-1.14.用一根长为12m 的细铁丝弯折成一个矩形的铁框架,则能弯成的框架的最大面积是9m 2. [解析] 设框架的一边长为xm ,则另一边长为(6-x)m.设框架面积为ym 2,则y =x(6-x)=-x 2+6x =-(x -3)2+9(0<x<6),y max =9(m 2).15.已知f(x)是定义域为R 的奇函数,且在(-∞,0)内的零点有2012个,则f(x)的零点的个数为4_025.[解析] 因为f(x)为奇函数,且在(-∞,0)内有2 012个零点,由奇函数的对称性知,在(0,+∞)内也有2 012个零点,又x ∈R ,所以f(0)=0,因此共4 025个零点.16.函数f(x)=⎩⎪⎨⎪⎧x 2-2x≤02x -6+lnx x>0的零点个数是2.[解析] 当x≤2,令x 2-2=0,得x =-2; 当x>0时,令2x -6+lnx =0, 即lnx =6-2x ,在同一坐标系中,画出函数y =6-2x 与y =lnx 的图像如图所示.由图像可知,当x>0时,函数y =6-2x 与y =lnx 的图像只有一个交点,即函数f(x)有一个零点. 综上可知,函数f(x)有2个零点.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求函数y =x 3-7x +6的零点. [解析] ∵x 3-7x +6=(x 3-x)-(6x -6) =x(x 2-1)-6(x -1) =x(x +1)(x -1)-6(x -1) =(x -1)(x 2+x -6) =(x -1)(x -2)(x +3),∴由x 3-7x +6=0即(x -1)(x -2)(x +3)=0得x 1=-3,x 2=1,x 3=2. ∴函数y =x 3-7x +6的零点为-3,1,2.18.(本小题满分12分)已知函数f(x)=x 2-x +m 的零点都在区间(0,2)内,求实数m 的范围.[解析] 由题意可得⎩⎪⎨⎪⎧Δ≥0f 0>0f 2>0,即⎩⎪⎨⎪⎧1-4m≥0m>04-2+m>0,解得0<m≤14.所以实数m 的取值范围是(0,14].19.(本小题满分12分)(济南一中月考,有改动)判断方程x 3-4x -2=0在区间[-2,0]内实数根的个数.[解析] 设f(x)=x 3-4x -2,则f(x)的图像是连续曲线,而f(-2)=-2<0,f(0)=-2<0,若取区间[-2,0]内一点-1,得f(-1)=1>0,取x =3,得f(3)=13>0,因此函数f(x)满足f(-2)·f(-1)<0,f(-1)·f(0)<0,f(0)·f(3)<0,∴f(x)分别在[-2,-1),(-1,0),(0,3)内至少存在一个零点, 又∵x 3-4x -2=0最多有3个根,∴方程x 3-4x -2=0在区间[-2,0]内有2个实数根.20.(本小题满分12分)某公司从2009年的年产值100万元,增加到10年后2019年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x)≈x,lg2=0.3,ln10=2.30)[解析] 设每年年增长率为x , 则100(1+x)10=500,即(1+x)10=5, 两边取常用对数,得 10·lg(1+x)=lg5,∴lg(1+x)=lg510=110(lg10-lg2)=0.710.又∵lg(1+x)=ln1+xln10,∴ln(1+x)=lg(1+x)·ln10.∴ln(1+x)=0.710×ln10=0.710×2.30=0.161=16.1%.又由已知条件ln(1+x)≈x 得x≈16.1%. 故每年的平均增长率约为16.1%.21.(本小题满分12分)是否存在这样的实数a ,使函数f(x)=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个交点,且只有一个交点?若存在,求出范围;若不存在,请说明理由.[解析] 若实数a 满足条件,则只需f(-1)f(3)≤0即可.f(-1)f(3)=(1-3a +2+a -1)(9+9a -6+a -1)=4(1-a)(5a +1)≤0,所以a≤-15或a≥1.检验:(1)当f(-1)=0时a =1,所以f(x)=x 2+x. 令f(x)=0,即x 2+x =0,得x =0或x =-1. 方程在[-1,3]上有两根,不合题意,故a≠1. (2)当f(3)=0时a =-15,此时f(x)=x 2-135x -65.令f(x)=0,即x 2-135x -65=0.解得,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a≠-15.综上所述,a ∈(-∞,-15)∪(1,+∞).22.(本小题满分12分)某房地产公司要在荒地ABCDE(如图所示)上划出一块长方形地面建造一幢公寓,问:如何设计才能使公寓占地面积最大?求出最大面积(尺寸单位:m).[解析] 如图所示,设计长方形公寓分三种情况:(1)当一顶点在BC 上时,只有在B 点时长方形BCDB 1面积最大, ∴S 1=SBCDB 1=5 600m 2.(2)当一顶点在EA 边上时,只有在A 点时长方形AA 1DE 的面积最大, ∴S 2=SAA 1DE =6 000m 2.(3)当一顶点在AB 边上时,设该点为M ,则可构造长方形MNDP ,并补出长方形OCDE. 设MQ =x(0≤x≤20),∴MP =PQ -MQ =80-x. 又OA =20,OB =30,则OA OB =MQ QB ,∴23=x QB ,∴QB =32x ,∴MN =QC =QB +BC =32x +70,∴S 3=S MNDP =MN·MP=(70+32x)·(80-x)=-32(x -503)2+18 0503,当x =503时,S 3=18 0503.比较S 1,S 2,S 3,得S 3最大,此时MQ =503m ,BM =25 133m ,故当长方形一顶点落在AB 边上离B 点25133m 处时公寓占地面积最大,最大面积为18 0503m 2.。

【世纪金榜】(教师用书)高中数学 综合质量评估 北师大版必修1

【世纪金榜】(教师用书)高中数学 综合质量评估 北师大版必修1

综合质量评估第一~四章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2012·惠州高一检测)若A={x|1<x≤1},则A∪B=( )(A){x|x>0} (B){x|x(C){x|0≤x(D){x|0<x2.下列函数是幂函数的是( )(A)y=2x2(B)y=x3+x(C)y=3x(D)y=1 2 x3.已知a=log20.3,b=20.1,c=0.21.3,则a,b,c的大小关系是( ) (A)a<b<c (B)c<a<b(C)a<c<b (D)b<c<a4.(2012·莆田高一检测)函数f(x)=1x-x的图像关于( )(A)y轴对称(B)直线y=-x对称(C)坐标原点对称(D)直线y=x对称5.若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程x3+x2-2x-2=0的一个近似根可以为(精度为0.1)( )(A)1.2 (B)1.3 (C)1.43 (D)1.56.(2012·北京高一检测)下列各组函数中,表示同一个函数的是( )(A)y=2x1x1--与y=x+1(B)y=x与y=log a a x(a>0,a≠1)(C )与y=x-1 (D )y=lgx 与y=12lgx 27.已知函数y=e x的图像与函数y=f(x)的图像关于直线y=x 对称,则( ) (A )f(2x)=e 2x(x ∈R) (B )f(2x)=ln2·lnx(x >0) (C )f(2x)=2e x (x ∈R) (D )f(2x)=ln2+lnx(x >0)8.如图,与函数y=a x,y=log a x,y=log (a+1)x,y=(a-1)x 2依次对应的图像是( ) (A)①②③④ (B)①③②④ (C)②③①④ (D)①④③②9.(易错题)已知ab >0,下面四个等式中: ①lg(ab)=lga+lgb ;②lg ab =lga-lgb ; ③12lg(a b )2=lg a b; ④lg(ab)=ab 1log 10()其中正确命题的个数为( ) (A)0(B)1(C)2 (D)310.(2012·曲靖高一检测)设函数f(x)=x 3+bx+c 在[-1,1]上是增加的,且f(-12)·f(12)<0,则方程f(x)在[-1,1]内( ) (A )可能有3个实数根 (B )可能有2个实数根 (C )有唯一实数根(D )没有实数根11.下列函数中,是偶函数且在区间(0,+∞)上单调递减的是( ) (A )y=-3|x|(B )y=13x(C )y=log 3x 2 (D )y=x-x 212.(2012·杭州高一检测)衣柜里的樟脑丸随着时间会挥发而体积缩小,刚放进的新丸体积为a ,经过t天后体积与天数t 的关系式为:V=a ·e -kt.若新丸经过50天后,体积变为49a ,则一个新丸体积变为827a 需经过的天数为( ) (A)125天(B)100天(C)75天(D)50天二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上) 13.计算:(1)log 23·log 32=___________;14.(2012·陕西高考)设函数f(x)=xx 0,1(),x 0,2≥⎨⎪⎩< 则f(f(-4))=_________.14.设g(x)=x e ,x 0lnx,x 0⎧≤⎨⎩,>,则g(g(12))=__________.15.(2012·南安高一检测)已知函数f(x)=log a (2x-1)(a >0,a ≠1)的图像恒过定点P ,则P 点的坐标是________.16.(能力题)若f(a+b)=f(a)·f(b),且f(1)=2,则()()()()()()f 2f 3f 2 012f 1f 2f 2 011++⋯+=___________. 三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)(2012·嘉峪关高一检测)设集合A={x|-5≤x ≤3},B={x|x <-2或x >4},求A ∩B ,(A)∪(B).18.(12分)(2012·福州八县联考)若函数f(x)为定义在R 上的奇函数,且 x ∈(0,+∞)时,f(x)=2x. (1)求f(x)的表达式;(2)在所给的坐标系中直接画出函数f(x)的图像.(不必列表) 19.(12分)已知函数f(x)=log 2(x-3). (1)求f(51)-f(6)的值; (2)求f(x)的定义域;(3)若f(x)≥0,求x 的取值范围.20.(12分)(能力题)已知函数f(x)=2x,g(x)=x 12+2.(1)求函数g(x)的值域;(2)求满足方程f(x)-g(x)=0的x的值.21.(12分)(2011·湖北高考)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/小时)22.(12分)(2012·晋江高一检测)已知函数f(x)=x m-4x,且f(4)=3.(1)求m的值;(2)判断f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并应用单调性的定义给予证明.答案解析1.【解析】选D.由题意A∪B={x|0<x2.【解析】选D.结合幂函数的形式y=xα可知,D选项正确.3.【解析】选C.a=log20.3<0,b=20.1>1,0<c=0.21.3<1,所以a<c<b.4.【解析】选C.因为函数f(x)=1x-x是奇函数,故其图像关于坐标原点对称.5.【解析】选C.∵1.438-1.406 5<0.1,结合选项可知1.43为方程的一个近似根,故选C.6.【解析】选B.∵y=2x 1x 1--与y=x+1的定义域不同,故A 不正确;∵y=x 与y=log a a x(a >0,a ≠1)的定义域及对应法则均相同,故B 正确; ∵与y=x-1的值域不同,故C 不正确; ∵y=lgx 与y=12lgx 2的定义域不同,故D 不正确. 7.【解析】选D.指数函数的反函数是对数函数,显然y=f(x)=lnx ,则f(2x)=ln2x=ln2+lnx . 8.【解析】选B.结合图像知0<a <1,故与函数y=a x,y=log a x,y=log (a+1)x, y=(a-1)x 2依次对应的图像是①③②④,故选B.9.【解析】选B.当a <0,b <0时,lga,lgb 无意义,故①②不正确;由于当ab=1时log (ab )10不存在,故④不正确;结合对数的运算性质可知③正确.故选B. 【误区警示】本题在求解过程中常常忽略lg(ab)=ab 1log 10()中ab ≠1而错选C .10.【解析】选C.∵f(x)在[-1,1]上是单调的, 且f(-12)·f(12)<0, ∴f(x)在[-1,1]上有唯一实数根.11.【解析】选A.是偶函数排除了B ,D ;在区间(0,+∞)上单调递减排除了C , 故选A .12.【解题指南】先利用“V=a ·e -kt”及“新丸经过50天后,体积变为49a ”求出e -k的值,然后借助指数幂的运算求一个新丸体积变为827a 需经过的天数. 【解析】选C.∵新丸经过50天后体积变为49a,∴由V=a ·e -kt得49=e -50k ,∴e -k=1504()9.∴由827=e -kt 得827=t504()9,∴t 3502=,∴t=75. 13.【解析】(1)log 23·log 32=lg3lg2·lg2lg3=1.π|=π-3.答案:(1)1(2)π-314.【解析】∵x=-4<0,∴f (-4)=(12)-4=16,因为x=16>0,所以f (16)答案:414.【解析】g(g(12))=g(ln 12)=1ln 2e =12.答案:1215.【解析】由题意可知,当2x-1=1,即x=1时,f(x)=0, ∴点P(1,0). 答案:(1,0)16.【解题指南】注意到分子分母间的变量相差1,故可先探索f(a+1)与f(a)·f(1)的关系. 【解析】令b=1,则f(a+1)=f(a)·f(1)=2f(a), 即()()f a 1f a +=2.∴()()f 2f 1=2,()()f 3f 2=2,…,()()f 2 012f 2 011 =2, 则()()()()()()f 2f 3f 2 012f 1f 2f 2 011++⋯+=4 022. 答案:4 02217.【解析】∵A={x|-5≤x ≤3},B={x|x <-2或x >4}, ∴A ∩B=[-5,-2),(A)∪(B)=(-∞,-5)∪[-2,+∞).18.【解析】(1)∵f(x)为定义在R 上的奇函数, ∴f(0)=0.当x ∈(-∞,0)时,-x ∈(0,+∞),则f(-x)=2-x. 又f(x)为定义在R 上的奇函数, ∴f(-x)=-f(x),则f(x)=-f(-x)=-2-x.∴f(x)=x x 2x (0,)0x 02x (,0)-⎧∈+∞⎪=⎨⎪-∈-∞⎩, ,, ,,.(2)【举一反三】已知函数f(x)=()22log x,x 1,4x 51,x (4,7∈⎧⎪⎨-+∈⎪⎩[],].(1)在给定的直角坐标系内画出f(x)的图像; (2)写出f(x)的单调递增区间(不需要证明); (3)写出f(x)的最大值和最小值(不需要证明). 【解析】(1)作图.(2)单调递增区间为[1,4]与[5,7]. (3)最大值是5;最小值是0.19.【解析】(1)f(51)-f(6)=log 2(51-3)-log 2(6-3)=log 2483=log 216=4. (2)由x-3>0得x >3. (3)∵f(x)≥0,即log 2(x-3)≥0, ∴x-3>0且x-3≥1,∴x ≥4, 即x 的取值范围是[4,+∞).【变式训练】已知函数f(x)=a x-2(x ≥0)的图像经过点(4,19), 其中a >0且a ≠1. (1)求a 的值;(2)求函数y =f(x)(x ≥0)的值域. 【解析】(1)函数图像过点(4,19), 所以a 4-2=a 2=19,∴a=13. (2)由(1)知f(x)=(13)x-2(x ≥0).由x ≥0,得x -2≥-2,∴0<(13)x-2≤(13)-2=9,∴函数y =f(x)(x ≥0)的值域为(0,9]. 20.【解析】(1)g(x)=x12+2=(12)|x|+2, 因为|x|≥0,所以0<(12)|x|≤1, 即2<g(x)≤3,故g(x)的值域是(2,3]. (2)由f(x)-g(x)=0,得2x-x 12-2=0, 当x ≤0时,显然不满足方程, 即只有x >0满足2x-x12-2=0, 整理得(2x )2-2·2x -1=0,(2x-1)2=2,故2x=1当x >0时,2x>1,故2x∴x=log 221.【解析】(1)由题意知当0≤x ≤20时,v(x)=60; 当20≤x ≤200时,设v(x)=ax +b (a ≠0),再由已知得200a b 020a b 60⎧⎨⎩+=,+=,解得1a .3200b 3⎧⎪⎪⎨⎪⎪⎩=-,=故函数v(x)的表达式为v(x)=600x 20.1(200x)20x 2003≤≤⎧⎪⎨≤⎪⎩, ,-, <(2)依题意并由(1)可得f(x)=60x 0x 201x(200x)20x 200.3≤≤⎧⎪⎨≤⎪⎩, ,-, <当0≤x ≤20时,f(x)为增加的,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时, f(x)=13x(200-x)=-13(x-100)2+10 0003, 所以,当x =100时,f(x)在区间(20,200]上取得最大值10 0003. 综上,当x =100时,f(x)在区间[0,200]上取得最大值10 0003≈3 333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/小时. 22.【解析】(1)∵f(4)=3,∴4m-44=3,∴m=1. (2)因为f(x)=x-4x ,定义域为{x|x ≠0},关于原点成对称区间,又f(-x)=-x-4x - =-(x-4x)=-f(x),所以f(x)是奇函数.(3)f(x)在(0,+∞)上单调递增,证明: 设x 1>x 2>0,则 f(x 1)-f(x 2)=x 1-14x -(x 2-24x )=(x 1-x 2)(1+124x x ). 因为x 1>x 2>0,所以x 1-x 2>0,1+124x x >0, 所以f(x 1)>f(x 2),因此f(x)在(0,+∞)上为单调递增的.。

北师大版高中数学必修一第一单元《集合》检测题(答案解析)(1)

北师大版高中数学必修一第一单元《集合》检测题(答案解析)(1)

一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,22.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃3.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤⎥⎝⎦C .(,1)[0,)-∞-+∞ D .1[,0)(0,1)3-⋃4.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2805.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集6.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( )A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥7.集合{}2|6,y y x x ∈=-+∈N N 的真子集的个数是( ) A .9B .8C .7D .618.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有( )个(1)G 是非负整数集,⊕:实数的加法; (2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法; (4){}|2G x x a b a b Q ==+∈,,,⊕:实数的乘法. A .1B .2C .3D .49.已知集合A ={x |-3≤x -1<1},B ={-3,-2,-1,0,1,2},若C ⊆A ∩B ,则满足条件的集合C的个数是( ). A .7B .8C .15D .1610.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .11.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈12.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦二、填空题13.已知集合{|M m Z =∈关于x 的方程2420x mx +-=有整数解},集合A 满足条件:①A 是非空集合且A M ⊆;②若a A ∈,则a A -∈.则所有这样的集合A 的个数为______.14.设集合{}1,2,4A =,{}2|40B x x x m =-+=.若{}1A B ⋂=,则B =__________.15.在①AB A =,②A B ⋂≠∅,③R BC A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由.问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?16.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________17.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.18.设集合A ,B 是R 中两个子集,对于x ∈R ,定义: 0,,0,1,,1,x A x Bm n x A x B ⎧∉∉⎧==⎨⎨∈∈⎩⎩.①若A B ⊆;则对任意(),10x R m n ∈-=;②若对任意,0x R mn ∈=,则A B φ⋂=;③若对任意,1x R m n ∈+=,则A ,B 的关系为R A C B =.上述命题正确的序号是______. (请填写所有正确命题的序号)19.函数()[]f x x =的函数值表示不超过x 的最大整数,例如:[ 3.5]4-=-,[2.1]2=.若{|[][2][3],01}A y y x x x x ==++≤≤,则A 中所有元素的和为_______.20.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.三、解答题21.已知集合{}13A x x =-<<,集合{}21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若AB B =,求实数m 的取值范围.22.设集合{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,{}122C x a x a =-<<. (1)若C =∅,求实数a 的取值范围;(2)若C ≠∅且()C A B ⊆⋂,求实数a 的取值范围. 23.若集合{}24A x x =<<,{}3B x a x a =<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若A B =∅,求实数a 的取值范围.24.已知全集{}|0U x x =>,集合{}|37A x x =≤<,{}|210B x x =<<,{}|5C x a x a =-<<. (1)求()U AB A B ,;(2)若()C A B ⊆⋃,求实数a 的取值范围.25.已知函数2()lg(231)f x x x =-+的定义域为集合A ,函数()2(],,2x g x x =∈-∞的值域为集合B ,集合22{|430}(0)C x x mx m m =-+≤>. (1)求A ∪B ; (2)若()C AB ⊆,求实数m 的取值范围.26.设集合{}2|320A x x x =++=,{}2|2(1)30B x x a x a =++++=. (1)若{1}A B ⋂=-,求实数a 的值; (2)若A B A ⋃=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题. 【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.2.B解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.3.A解析:A 【分析】先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围. 【详解】因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥,所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足, 当0a >时,因为10ax +≤,所以1x a≤-, 又因为B A ⊆,所以11-<-a,所以01a <<, 当0a <时,因为10ax +≤,所以1x a≥-, 又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭. 故选:A. 【点睛】本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集.4.B解析:B 【分析】求出{2,4.6.8.10}M =后,分别求出含有2,4,6,8,10的子集个数,然后可求得结果. 【详解】{2,4.6.8.10}M =,其中含有元素2的子集共有4216=个,含有元素4的子集共有4216=个,含有元素6的子集共有4216=个,含有元素8的子集共有4216=个,含有元素10的子集共有4216=个, 所以123k P P P P S S S S ++++(246810)16480=++++⨯=.故选:B 【点睛】本题考查了对新定义的理解能力,考查了集合的子集个数的计算公式,属于基础题.5.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集.对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.6.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.7.C解析:C 【分析】根据条件求解,x y 的范围,结合,x N y N ∈∈,得到集合为{2,5,6},利用集合真子集个数的公式即得解. 【详解】由于260y N y x ∈∴=-+≥x ≤≤,又,x N ∈0,1,2x ∴=6,5,2y ∴=,即集合{}2|6,{2,5,6}y y x x ∈=-+∈=N N故真子集的个数为:3217-= 故选:C 【点睛】本题考查了集合真子集的个数,考查了学生综合分析,数学运算的能力,属于中档题.8.B解析:B 【分析】根据新定义运算⊕判断. 【详解】(1)任意两个非负整数的和仍然是非负整数,对任意a G ∈,0G ∈,00a a a +=+=,(1)正确;(2)任意两个偶数的积仍然是偶数,但不存在e G ∈,对任意a G ∈,使ae ea a ==,(2)错误;(3)21x x -+和21x x +-是两个二次三项式,它们的积2242(1)(1)21x x x x x x x -++-=-+-不是二次三项式,(3)错误;(4)设x a y c =+=+,,,a b c d Q ∈,则2(xy ac bd ad bc G =+++,而且1G ∈,11x x x ⋅=⋅=,(4)正确.∴正确的有2个. 故选:B. 【点睛】本题考查新定义,解题关键是对新定义的理解与应用.9.D解析:D 【分析】推导出C ⊆A ∩B ={-2,-1,0,1},由此能求出满足条件的集合C 的个数. 【详解】∵集合A ={x |-3≤x -1<1}={x |-2≤x <2},B ={-3,-2,-1,0,1,2},C ⊆A ∩B ={-2,-1,0,1}, ∴满足条件的集合C 的个数是:24=16.故选:D . 【点睛】本题考查满足条件的集合C 的个数的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.10.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案. 【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.11.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.12.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<;∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.二、填空题13.15【分析】先依题意化简集合M 再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合即得这样的集合的个数【详解】设为方程的两个根则当时;当时;当时;当时;由条件①知且又由条件②知A 是有一些成对的解析:15 【分析】先依题意化简集合M ,再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合,即得这样的集合的个数. 【详解】设a ,b 为方程2420x mx +-=的两个根,则a b m +=-,42ab =-, 当1=a ,42b =时,41m =±; 当2=a ,21b =时,19m =±; 当3a =,14b =时,11m =±; 当6a =,7b =时,1m =±;{}{}{}{}{}1,111,1119,1941,411,1,11,11,19,19,41,41M =-⋃-⋃-⋃-=----,由条件①知A ≠∅且A M ⊆,又由条件②知A 是有一些成对的相反数组成的集合. 所以M 的4对相反数共能组成42115-=个不同的非空集合A . 故答案为:15. 【点睛】 关键点点睛:本题解题关键在于明确题中条件要求集合A 是由互为相反数的四组数字构成的非空集合,即计算集合个数突破难点.14.【解析】因为所以为方程的解则解得所以集合 解析:{}1,3【解析】 因为{}1A B ⋂=,所以1x =为方程240x x m -+=的解, 则140m -+=,解得3m =,所以2430x x -+=,(1)(3)0x x --=,集合{}1,3B =.15.答案见解析【分析】求得集合化简集合分三种情况讨论得到集合;再分别得若选择①若选择②若选择③时实数a 的取值范围【详解】当时;当时;当时若选择①则当时要使则所以当时满足题意当时不满足题意所以选择①则实数解析:答案见解析 【分析】求得集合[1,1)B =-,化简集合{()(1)0,}A xx a x x R =-+<∈∣,分1a >-,1a =-,1a <-三种情况讨论得到集合A ;再分别得若选择①,若选择②,若选择③时,实数a的取值范围. 【详解】{}2log (1)1,R [1,1)B x x x =-≤∈=-∣,0,{()(1)0,}1x a A x x R x x a x x R x -⎧⎫=<∈=-+<∈⎨⎬+⎩⎭∣∣,当1a >-时,(1,)A a =-; 当1a =-时,A =∅; 当1a <-时,(,1)A a =- 若选择①AB A =,则A B ⊆,当1a >-时,要使(1,)[1,1)a -⊆-,则1a ≤,所以11a -<≤ 当1a =-时,A =∅,满足题意 当1a <-时,(,1)A a =-不满足题意 所以选择①,则实数a 的取值范围是[-1,1] 若选择②A B ⋂≠∅,当1a >-时,(1,),[1,1)A a B =-=-,满足题意; 当1a =-时,A =∅,不满足题意;当1a <-时,(,1),[1,1)A a B =-=-,不满足题意 所以选择②,则实数a 的取值范围是(1,)-+∞. 若选择③RB A ⊆,当1a >-时,(1,),(,1][,)RA a A a =-=-∞-⋃+∞,而[1,1)B =-,不满足题意当1a =-时,,R RA A =∅=,而[1,1)B =-,满足题意当1a <-时,(,1),(,][1,)RA a A a =-=-∞⋃-+∞,而[1,1)B =-,满足题意.所以选择③,则实数a 的取值范围是(,1]-∞-,综上得:若选择①,则实数a 的取值范围是[-1,1];若选择②,则实数a 的取值范围是(1,)-+∞;若选择③,则实数a 的取值范围是(,1]-∞-.【点睛】本题考查集合间的包含关系,集合间的运算,属于中档题.16.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭; 因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈,因为常数a 是正整数,所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-, 所以{}21,,0,,21,2A B a a a ⋃=-+-, 所以A B 中所有元素之和是2a ,故答案为:2a【点睛】本题考查集合的并集,考查解含绝对值的不等式17.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题 解析:{0a a =或}1a ≥【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果【详解】 0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意; 0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题. 18.①②③【分析】对于①按照和两种情况讨论可得①正确;对于②根据不可能都为1可得不可能既属于又属于可得②正确;对于③根据中的一个为0另一个为1可得时必有或时必有由此可知③正确【详解】对于①因为所以当时根解析:①②③【分析】对于①,按照x A ∈和x A ∉两种情况讨论,可得①正确;对于②,根据,m n 不可能都为1,可得x 不可能既属于A ,又属于B 可得②正确;对于③,根据,m n 中的一个为0,另一个为1,可得x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,由此可知③正确.【详解】对于①,因为A B ⊆,所以当x A ∉时,根据定义可得0m =,所以(1)0m n -=,当x A ∈,则必有x B ∈,根据定义有1n =,所以(1)0m n -=,故对于任意x ∈R ,都有(1)0m n -=,故①正确;对于②,因为对任意,0x R mn ∈=,所以,m n 中不可能都为1,即x A ∈和x B ∈不可能同时成立,所以A B φ⋂=,故②正确;对于③,因为对任意,1x R m n ∈+=,所以,m n 中的一个为0,另一个为1,即x A ∈时,必有x B ∉,或x B ∈时,必有x A ∉,所以R A C B =,故③正确.综上所述: 所有正确命题的序号为:①②③.故答案为①②③【点睛】本题考查了元素与集合,集合与集合之间的关系,对新定义的理解能力,属于中档题. 19.【分析】分5种情况讨论的范围计算函数值并求元素的和【详解】①当时;②当时;③当时;④时;⑤当时则中所有元素的和为故答案为12【点睛】本题考查新定义的题型需读懂题意并能理解应用分类讨论解决问题本题的难解析:12【分析】 分103x ≤<,1132x ≤<,1223x ≤<,213x ≤<,1x =,5种情况讨论2,3x x 的范围,计算函数值,并求元素的和.【详解】 ①当103x ≤<时, 220,3x ⎡⎫∈⎪⎢⎣⎭,[)30,1x ∈, ∴ [][][]230x x x ===,[][][]230x x x ++= ;②当1132x ≤<时,22,13x ⎡⎫∈⎪⎢⎣⎭,331,2x ⎡⎫∈⎪⎢⎣⎭ , [][]20,x x ∴==[]31x =,[][][]231x x x ∴++=;③当1223x ≤<时,[)21,2x ∈ ,33,22x ⎡⎫∈⎪⎢⎣⎭[]0x ∴=,[]21x = ,[]31x = ,[][][]232x x x ∴++=; ④213x ≤<时,42,23x ⎡⎫∈⎪⎢⎣⎭,[)32,3x ∈ []0x ∴=,[]21x =,[]32x =,[][][]233x x x ∴++=;⑤当1x =时[]1x =,[]22x =,[]33x = ,[][][]236x x x ∴++={}0,1,2,3,6A ∴=,则A 中所有元素的和为0123612++++=.故答案为12【点睛】本题考查新定义的题型,需读懂题意,并能理解,应用,分类讨论解决问题,本题的难点是分类较多,不要遗漏每种情况20.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】 解21x ->可得集合B ,对于A ,先将1|0x x a-≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤, 要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.三、解答题21.(1)()2,3-;(2)1[2-,)+∞. 【分析】(1)当1m =-时,求出集合B ,再由并集的定义可得答案.(2)推导出B A ⊆,当B =∅时,21m m -,当B ≠∅时,212113m m m m <-⎧⎪-⎨⎪-⎩,由此能求出实数m 的取值范围.【详解】(1)当1m =-时,集合{|13}A x x =-<<,集合{|22}B x x .(){|2233},A B x x ∴⋃=-<-<=.(2)集合{|13}A x x =-<<,集合{|21}B x m x m =<<-. 因为A B B =,B A ∴⊆,∴当B =∅时,21m m -,解得13m , 当B ≠∅时,212113m m m m <-⎧⎪-⎨⎪-⎩,解得1123m -<. ∴实数m 的取值范围是1[2-,)+∞.【点睛】本题考查交集、并集定义、不等式的性质等基础知识,考查运算求解能力以及分类讨论思想的应用,是基础题. 22.(1)14a a ⎧⎫≤⎨⎬⎩⎭;(2)1344a a ⎧⎫<≤⎨⎬⎩⎭. 【分析】(1)根据空集的概念列出关于a 的不等式,求解出a 的取值范围;(2)先根据C ≠∅求解出a 的初步范围,然后根据条件求解出A B 的结果,最后再根据子集关系求解出a 的取值范围.【详解】解:(1)因为{}122C x a x a =-<<=∅,所以122a a -≥,所以14a ≤, 即实数a 的取值范围是14a a ⎧⎫≤⎨⎬⎩⎭. (2)因为{}122C x a x a =-<<≠∅,所以122a a -<,即14a >. 因为{}14A x x =-<<,352B x x ⎧⎫=-<<⎨⎬⎩⎭,所以312A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭, 因为()C A B ⊆⋂,所以12132214a a a ⎧⎪-≥-⎪⎪≤⎨⎪⎪>⎪⎩,解得1344a <≤, 即实数a 的取值范围是1344aa ⎧⎫<≤⎨⎬⎩⎭. 【点睛】易错点睛:根据集合的包含关系求解参数范围时的注意事项:(1)注意分析集合为空集的可能;(2)列关于参数的不等式时,注意等号是否能取到.23.(1)423a ≤≤;(2)23a ≤或4a ≥ 【分析】(1)考虑A 是B 的子集即可求解;(2)分类讨论当B 为空集和不为空集两种情况求解.【详解】 (1)若x A ∈是x B ∈的充分条件,234a a ≤⎧⎨≥⎩,解得423a ≤≤; (2)A B =∅,当B =∅时,即3,0a a a ≥≤,当B ≠∅时,04a a >⎧⎨≥⎩或032a a >⎧⎨≤⎩,即203a <≤或4a ≥. 综上所述:23a ≤或4a ≥ 【点睛】此题考查根据充分条件与集合关系求解参数取值范围,易错点在于漏掉考虑空集情况. 24.(1){|210}A B x x ⋃=<<,(){|23U A B x x =<<或710}x ≤<;(2)(,3]-∞.【分析】(1)根据集合的运算法则计算;(2)由子集的定义求解.【详解】(1)∵{}|37A x x =≤<,{}|210B x x =<<,{}|0U x x =>,{|210}A B x x ⋃=<<,{|03U A x x =<<或7}x ≥,则(){|23U A B x x =<<或710}x ≤<;(2)∵{}|5C x a x a =-<<,()C A B ⊆⋃,若5a a ≤-,即52a ≤,则B =∅,满足题意; 若52a >,则2510a a ≤-⎧⎨≤⎩,解得3a ≤,∴532a <≤, 综上,a 的范围是(,3]-∞.【点睛】本题考查集合的综合运算,考查由包含关系确定参数范围,解题时要注意空集是任何集合的子集,这类问题一般要分类讨论.25.(1)R (2)106m <≤或413m ≤≤ 【分析】(1)求出集合A ,B ,根据集合的并集运算即可;(2){|3},C x m x m =<<1{|02A B x x ⋂=<<或14}x <≤,利用()C A B ⊆,列出不等式组,求出实数m 的取值范围.【详解】由2()lg(231)f x x x =-+可得:22310x x -+>, 所以1{|2A x x =<或1}x >, 因为()2(],,2x g x x =∈-∞,所以{|04}B x x =<,所以A B R =.(2){|3}C x m x m =<<,1{|02A B x x ⋂=<<或14}x <≤, 因为()C A B ⊆, 所以0132m m <⎧⎪⎨≤⎪⎩或134m m ≤⎧⎨≤⎩,解得106m <≤或413m ≤≤, 故实数m 的取值范围106m <≤或413m ≤≤. 【点睛】本题考查并集、交集、子集定义等基础知识,考查运算求解能力,属于中档题. 26.(1)2(2)21a -<≤【分析】(1)先化简{}{}2|3202,1=++==--A x x x ,再由{1}A B ⋂=-,则1B -∈,代入求解.(2)将A B A ⋃=转化为B A ⊆,再分B 是空集和不是空集两种情况讨论求解.【详解】(1)因为{}{}2|3202,1=++==--A x x x 又因为{1}A B ⋂=-所以1B -∈所以()12(1)130++⨯-++=a a解得:2a =(2)因为A B A ⋃=所以B A ⊆当()2[2(1)]430∆=+-+<a a 时 解得21a -<<,B =∅ 成立当()2[2(1)]430∆=+-+=a a 时 解得:2a =-或1a =当2a =-时, {}1B =,不成立,当1a =时,{}2B =-,成立,当()2[2(1)]43>0∆=+-+a a 时 解得:2a <-或>1a ,此时{}2,1==--B A 才成立,而2(a+1)=-332a ⎧⎨+=⎩ ,解得 5=-21a a ⎧⎪⎨⎪=-⎩无解. 综上:实数a 的取值范围21a -<≤【点睛】本题主要考查了集合的基本运算和已知集合关系求参数的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.。

北师大版数学必修一综合测试题及答案

北师大版数学必修一综合测试题及答案

1,已知函数()lg(2),()lg(2),()()().f x x g x x h x f x g x =+=-=+设 (1)求函数()h x 的定义域(2)判断函数()h x 的奇偶性,并说明理由. 解:(1)()()()lg(2)lg(2)h x f x g x x x =+=++-由 20()20x f x x +>⎧=⎨->⎩ 得22x -<< 所以,()h x 的定义域是(-2,2)()f x Q 的定义域关于原点对称()()()lg(2)lg(2)()()()h x f x g x x x g x f x h x -=-+-=-++=+=()h x ∴为偶函数2.已知函数()f x 对一切实数,x y R ∈都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =. (Ⅰ)求(0)f 的值; (Ⅱ)求()f x 的解析式;(Ⅲ)已知a R ∈,设P :当102x <<时,不等式()32f x x a +<+ 恒成立; Q :当[2,2]x ∈-时,()()g x f x ax =-是单调函数。

如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求()R A C B I (R 为全集). ,解析:(Ⅰ)令1,1x y =-=,则由已知(0)(1)1(121)f f -=--++ ∴(0)2f =-(Ⅱ)令0y =, 则()(0)(1)f x f x x -=+ 又∵(0)2f =- ∴2()2f x x x =+-(Ⅲ)不等式()32f x x a +<+ 即2232x x x a +-+<+即21x x a -+<当102x <<时,23114x x <-+<, 又213()24x a -+<恒成立故{|1}A a a =≥又()g x 在[2,2]-上是单调函数,故有112,222a a --≤-≥或 ∴{|3,5}B a a a =≤-≥或 ∴{|35}R C B a a =-<< ∴()R A C B I ={|15}a a ≤<22()2(1)2g x x x ax x a x =+--=+--3,(本小题满分12分)二次函数f (x )满足且f (0)=1.(1) 求f (x )的解析式;(2) 在区间上,y=f(x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.解:(Ⅰ) 设12,[1,)x x ∈+∞,且12x x <,则21212111()()()()f x f x x x x x -=+-+122112(1)()x x x x x x -=- 121x x ≤<Q ∴210x x -> ∴121x x >,∴1210x x ->∴122112(1)()0x x x x x x --> ∴21()()0f x f x ->,即12()()f x f x < ∴()y f x =在[1,)+∞上是增函数4,已知函数f(x)=2x +2ax +b,且f(1)=52,f(2)=174。

北师大版高中数学必修一综合测试题

北师大版高中数学必修一综合测试题

x ⎩ - 2 x , x > 0 ,则 f [ f (-2)] =6.幂函数 f(x)的图像过点(3, 19 ),那么 f (8) 的值为 4 C . 1A . 2 2B . 2x 是偶函数B. f ( x ) = x 2 , x ∈ ( - 3,3 ] 是偶函数必修 1 复习题一、选择题:(每小题 5 分,共 60 分)1.下列四个关系式中,正确的是 ()学习必备 欢迎下载A. e a > e bB. e a < e bC. e a = e bD. e a 与 e b 不能确定9.已知函数 y = x 2 + 2 x - 3 , x ∈ [-2,2 ],则最大值最小值分别为 ( )A. ∅∈ {a }B. a ∉{a }C. {a } ∈{a, b }D.a ∈{a,b }2.下列各个对应中, 从 A 到 B 构成映射的是()A B A B A BA B1 4 1 13 1a 2 2 5 4 2b 35 362 53 cA.B.C.D.3.函数 y = log (1 + x )+ 2 - x 的定义域为 ()2A.(0,2 )B.(-1,2 ]C.(-1,2 )D.[0,2 ]4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较A .最小值为-3,最大值为 5B .最小值为-4,最大值为 5C .最小值为-4,无最大值D .最大值为 5,无最小值10.设 lg 2 = a , lg3 = b ,则 lg 6 ( )A. a + bB. a • bC. a - bD. a ÷ b11.函数 f ( x ) = - x 2 + 3 x + 4 的零点是 ( )A. 1,-4B. -1,4C. -1D. 412.设 且 ,则 ( )A .B .C .D .二、填空题(每题 4 分,共 16 分)13.已知 A = { ∈ N | 0 ≤ x < 3}的真子集的个数是 ;符合该学生走法的是()dddd⎧ x 2 + 1, x ≤ 0 14.已知函数 f ( x ) = ⎨;OtO t O t O tA .B .C .D .5.下列函数的值域是 的是()A .B .C .D .()14D .647. 下列说法正确的是()A.f ( x ) = - 3C.f ( x ) = x 3 + x 是奇函数D.f ( x ) = x + 1 是奇函数15.已知定义在 R 上的奇函数 f ( x ) ,当 x > 0 时, f ( x ) = x 3 + x ,那么 x < 0 时, f ( x ) =16.某地的中国移动“神州行”卡与中国联通130 网的收费标准如下表:网络 月租费 本地话费 长途话费甲:联通130 网 12 元 每分钟 0.36 元 每 6 秒钟 0.06 元乙:移动“神州行”卡 无 每分钟 0.6 元 每 6 秒钟 0.07 元(注:本地话费以分钟为单位计费,长途话费以6 秒钟为单位计费)若某人每月拨打本地电话时间是长途电话时间的 5 倍,且每月通话时间 (分钟)的范围在区间 (60, 70)内,则选择较为省钱的网络为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料 (灿若寒星 精心整理制作)必修1全册 综合测试题(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2011·新课标文)已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个2.(2012·银川高一检测)设函数f(x)=log a x(a>0,且a ≠1)在(0,+∞)上单调递增,则f(a +1)与f(2)的大小关系是( )A .f(a +1)=f(2)B .f(a +1)>f(2)C .f(a +1)<f(2)D .不确定3.下列函数中,与函数y =1x 有相同定义域的是( )A .f(x)=ln xB .f(x)=1x C .f(x)=|x|D .f(x)=e x4.(2011·北京文)已知全集U =R ,集合P ={x |x 2≤1},那么∁U P =( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)5.函数y =ln x +2x -6的零点,必定位于如下哪一个区间( ) A .(1,2) B .(2,3) C .(3,4)D .(4,5)6.已知f (x )是定义域在(0,+∞)上的单调增函数,若f (x )>f (2-x ),则x 的取值范围是( )A .x >1B .x <1C .0<x <2D .1<x <27.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 28.(2012·德阳高一检测)已知log 32=a,3b =5,则log 330由a ,b 表示为( )A.12(a +b +1) B.12(a +b )+1 C.13(a +b +1)D.12a +b +19.若a >0且a ≠1,f (x )是偶函数,则g (x )=f (x )·log a (x +x 2+1)是( )A .奇函数B .偶函数C .非奇非偶函数D .奇偶性与a 的具体值有关10.定义两种运算:a ⊕b =a 2-b 2,a ⊗b =(a -b )2,则函数f (x )=2⊕x (x ⊗2)-2的解析式为( )A .f (x )=4-x 2x ,x ∈[-2,0)∪(0,2) B .f (x )=x 2-4x ,x ∈(-∞,2]∪[2,+∞) C .f (x )=-x 2-4x ,x ∈(-∞,2]∪[2,+∞) D .f (x )=-4-x 2x ,x ∈[-2,0)∪(0,2]第Ⅱ二、填空题(本大题共5个小题,每小题5分,共25分,把答案填在题中横线上)11.幂函数f (x )的图像过点(3,427).则f (x )的解析式是________. 12.(2011·安徽文)函数y =16-x -x 2的定义域是________. 13.设函数f (x )=x (e x +ae -x )(x ∈R )是偶函数,则实数a 的值为________.14.已知f (x 6)=log 2x ,则f (8)=________.15.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ),若函数f (x )在x ∈[2,+∞)上为增函数,则a 的取值范围为________.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)设全集U 为R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},A ∩(∁U B )={4},求A ∪B .17.(本小题满分12分)(2012·广州高一检测)(1)不用计算器计算:log 327+lg25+lg4+7log72+(-9.8)0(2)如果f (x -1x )=(x +1x )2,求f (x +1). 18.(本小题满分12分)已知函数f (x )=x 32x -1,(1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f (x )>0.19.(本小题满分12分)已知函数f (x )是定义在R 上的奇函数,并且当x ∈(0,+∞)时,f (x )=2x .(1)求f (log 213)的值; (2)求f (x )的解析式.20.(本小题满分13分)已知二次函数f (x )=ax 2+bx +c (a ≠0)和一次函数g (x )=-bx (b ≠0),其中a ,b ,c 满足a >b >c ,a +b +c =0(a ,b ,c ∈R ).(1)求证:两函数的图像交于不同的两点; (2)求证:方程f (x )-g (x )=0的两个实数根都小于2.21.(本小题满分14分)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22,(1)求每年砍伐面积的百分比;(2)至今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?1[答案] B[解析] 本题考查了集合运算、子集等,含有n 个元素的集合的所有子集个数是2n .∵M ={0,1,2,3,4},N ={1,3,5},∴M ∩N ={1,3}, 所以P 的子集个数为22=4个. 2[答案] B[解析] ∵f(x)=log a x 在(0,+∞)上单调递增, ∴a>1,∴a +1>2, ∴f(a +1)>f(2),故选B . 3[答案] A[解析] 函数y =1x 的定义域为(0,+∞),故选A .4[答案] D[解析] 本题考主要考查集合的运算与解不等式问题. P ={x |x 2≤1}={x |-1≤x ≤1}, 所以∁U P =(-∞,-1)∪(1,+∞). 5[答案] B[解析] 令f (x )=ln x +2x -6,设f (x 0)=0, ∵f (1)=-4<0,f (3)=ln3>0, 又f (2)=ln2-2<0,f (2)·f (3)<0, ∴x 0∈(2,3). 6[答案] D[解析]由已知得⎩⎪⎨⎪⎧ x >02-x >0x >2-x⇒⎩⎨⎧x >0x <2x >1,∴x ∈(1,2),故选D. 7[答案] D[解析] ∵y 1=40.9=21.8, y 2=80.48=(23)0.48=21.44,y 3=21.5, 又∵函数y =2x 是增函数,且1.8>1.5>1.44. ∴y 1>y 3>y 2. 8[答案] A[解析] 3b =5,b =log 35, log 330=12log 330=12log 3(3×10) =12(1+log 310)=12(1+log 32+log 35)=12(a +b +1). 9[答案] A[解析] g (-x )=f (-x )·log a (-x +x 2+1)=f (x )·log a 1x 2+1+x=-f (x )·log a (x +x 2+1)=-g (x ). 则g (x )是奇函数. 10[答案] D[解析] ∵a ⊕b =a 2-b 2,a ⊗b =(a -b )2, ∴f (x )=2⊕x (x ⊗2)-2=22-x 2(x -2)2-2=4-x 2|x -2|-2. ∵-2≤x ≤2且|x -2|-2≠0,即x ≠0, ∴f (x )=4-x 22-x -2=-4-x 2x ,x ∈[-2,0)∪(0,2].11[答案] f (x )=x 34[解析] 设f (x )=x α,将(3,427)代入,得3α=427=334 ,则α=34.∴f (x )=x 34.12[答案] {x |-3<x <2}[解析] 该题考查函数的定义域,考查一元二次不等式的解法,注意填定义域(集合).由6-x -x 2>0, 得x 2+x -6<0, 即{x |-3<x <2}. 13[答案] -1[解析] ∵f (-x )=f (x )对任意x 均成立,∴(-x )·(e -x +ae x )=x (e x+ae -x )对任意x 恒成立,∴x (-ae x -e -x )=x (e x +ae -x ),∴a =-1. 14[答案] 12[解析] ∵f (x 6)=log 2x =16log 2x 6,∴f (x )=16log 2x ,∴f (8)=16log 28=16log 223=12. 15[答案] (-∞,16][解析] 任取x 1,x 2∈[2,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 21+a x 1-x 22-a x 2=(x 1-x 2)x 1x 2[x 1x 2(x 1+x 2)-a ],要使函数f (x )在x ∈[2,+∞)上为增函数,需使f (x 1)-f (x 2)<0恒成立.∵x 1-x 2<0,x 1x 2>4>0,∴a <x 1x 2(x 1+x 2)恒成立. 又∵x 1+x 2>4,∴x 1x 2(x 1+x 2)>16,∴a ≤16, 即a 的取值范围是(-∞,16].16[解析] ∵(∁U A )∩B ={2},A ∩(∁U B )={4}, ∴2∈B,2∉A,4∈A,4∉B ,根据元素与集合的关系,可得⎩⎪⎨⎪⎧ 42+4p +12=022-10+q =0,解得⎩⎪⎨⎪⎧p =-7,q =6.∴A ={x |x 2-7x +12=0}={3,4},B ={x |x 2-5x +6=0}={2,3},经检验符合题意.∴A ∪B ={2,3,4}.17[解析] (1)原式=log 3332+lg(25×4)+2+1 =32+2+3=132. (2)∵f (x -1x )=(x +1x )2=x 2+1x 2+2=(x 2+1x 2-2)+4=(x -1x )2+4 ∴f (x )=x 2+4 ∴f (x +1)=(x +1)2+4 =x 2+2x +5.18[解析] (1)由2x -1≠0,即2x ≠1,得x ≠0, 所以函数f (x )的定义域为(-∞,0)∪(0,+∞).(2)因为f (1)=1,f (-1)=2,所以f (-1)≠f (1),且f (-1)≠-f (1),所以f (x )既不是奇函数也不是偶函数.(3)由于函数的定义域为(-∞,0)∪(0,+∞),因为当x >0时,2x >1,2x -1>0,x 3>0,所以f (x )>0; 当x <0时,0<2x <1,2x -1<0,x 3<0,所以f (x )>0. 综上知f (x )>0.本题得证.19[解析] (1)因为f (x )为奇函数,且当x ∈(0,+∞)时,f (x )=2x , 所以f (log 213)=f (-log 23)=-f (log 23) =-2log23=-3.(2)设任意的x ∈(-∞,0),则-x ∈(0,+∞), 因为当x ∈(0,+∞)时,f (x )=2x ,所以f (-x )=2-x , 又因为f (x )是定义在R 上的奇函数,则f (-x )=-f (x ), 所以f (x )=-f (-x )=-2-x ,即当x ∈(-∞,0)时,f (x )=-2-x ; 又因为f (0)=-f (0),所以f (0)=0, 综上可知,f (x )=⎩⎪⎨⎪⎧2x,x >00,x =0-2-x ,x <0.20[解析] (1)若f (x )-g (x )=0,则ax 2+2bx +c =0, ∵Δ=4b 2-4ac =4(-a -c )2-4ac =4[(a -c 2)2+34c 2]>0,故两函数的图像交于不同的两点.(2)设h (x )=f (x )-g (x )=ax 2+2bx +c ,令h (x )=0可得ax 2+2bx +c =0.由(1)可知,Δ>0.∵a >b >c ,a +b +c =0(a ,b ,c ∈R ),∴a >0,c <0, ∴h (2)=4a +4b +c =4(-b -c )+4b +c =-3c >0, -2b 2a =-b a =a +c a =1+ca <2,即有⎩⎪⎨⎪⎧Δ>0a >0h (2)>0-2b 2a <2,结合二次函数的图像可知,方程f (x )-g (x )=0的两个实数根都小于2. 21[解析] (1)设每年砍伐的百分比为x (0<x <1). 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-(12)110.(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a ,即(12)m10 =(12)12,m 10=12,解得m =5,故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n , 令22a (1-x )n ≥14a ,即(1-x )n≥24, (12)n10 ≥(12)32,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.。

相关文档
最新文档