北师大版数学必修一综合检测试题(附答案)

合集下载

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第一章综合测试(含答案)

第一章综合测试一、选择题(本大题共10小题,共50分)1.已知集合{}15A x x =≤<,{}3B x a x a =-+<≤.若()B A B ⊆,则a 的取值范围为( )A .312⎛⎫-- ⎪⎝⎭,B .32⎛⎫-∞- ⎪⎝⎭,C .()1-∞-,D .32⎛⎫-+∞ ⎪⎝⎭, 2.已知集合M ,P 满足MP M =,则下列关系中:①M P =;②M P ;③M P P =;④P M ⊆.一定正确的是( )A .①②B .③④C .③D .④3.有下列四个命题:①{}0是空集;②若a ∈N ,则a -∉N ; ③集合{}2210A x x x =∈-+=R 有两个元素; ④集合6B x x ⎧⎫=∈∈⎨⎬⎩⎭N N 是有限集. 其中正确命题的个数是( )A .0B .1C .2D .34.下列命题中,真命题的个数是( )①若a b >,0c <,则c c a b>②“1a >,1b >”是“1ab >”的充分不必要条件 ③若0a <,则12a a+≤-④命题:“若1xy ≠,则1x ≠或1y ≠” A .1 B .2 C .3 D .45.“关于x 的不等式220x ax a -+>对x ∈R 恒成立”的一个必要不充分条件是( )A .01a <<B .01a ≤≤C .102a << D .1a ≥或a ≤06.已知集合65M a a a +⎧⎫=∈∈⎨⎬-⎩⎭N Z ,且,则M 等于( ) A .{}23, B .{}1234,,, C .{}1236,,, D .{}1234-,,, 7.已知集合{}220A x x x =--<,B 是函数()2lg 1y x =-的定义域,则( )A .AB = B .A B ⊂C .B A ⊂D .A B =∅8.已知集合401x A x x ⎧⎫-=⎨⎬+⎩⎭≤,()(){}2210B x x a x a =---<,若A B =∅,则实数a 的取值范围是( ) A .()2+∞, B .{}[)12+∞, C .()1+∞, D .[)2+∞,9.已知集合{}2340A x x x =--<,()(){}20B x x m x m =-⎡-+⎤⎣⎦>,若AB =R ,则实数m 的取值范围是( ) A .()1-+∞, B .()2-∞, C .()12-, D .[]12-,10.不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是( ) A .()30-, B .(]30-, C .[]30-, D .()[)30-∞-+∞,,二、填空题(本大题共4小题,共20分)11.已知集合{}2021A a a =-,,,{}519B a a =--,,,且()9A B ∈,则a =________. 12.已知集合{}2280P x x x =-->,{}Q x x a =≥,若P Q Q =,则实数a 的取值范围是________.13.命题:p x ∀∈R ,20x ax a ++≥,若命题p 为真命题,则实数a 的取值范围是________.14.若全集U =R ,集合{}24M x x =>,103x N x x ⎧⎫+=⎨⎬-⎩⎭<,则M N =________.三、解答题(本大题共7小题,共80分)15.设集合{}2320A x x x =-+=,集合()(){}()222150B x x a x a a =+++-=∈R .(1)若{}1AB =,求实数a 的值;(2)若AB A =,求实数a 的取值范围.16.设集合{}2230A x x x =+-<,集合{}10B x x a a =+<,>,命题:p x ∈A ,命题:p x ∈B .(1)若p 是q 的充要条件,求正实数a 的值;(2)若q ⌝是p ⌝的必要不充分条件,求正实数a 的取值范围.17.已知集合{}30A x x a =->,{}260B x x x =-->.(1)当3a =时,求A B ,A B ;(2)若()AC B ≠∅R ,求实数a 的取值范围.18.设集合{}2320A x x x =-+=,{}210B x x ax a =-+-=,{}220C x x mx =-+=,且A B A =,A C C =,求实数a ,m 的取值范围.19.已知二次函数()()20f x ax ax c a =-+≠,且不等式()2f x x >的解集为()12,. (1)求函数()f x 的解析式(2)若()f x x d +≥在x ∈R 时恒成立,求实数d 的取值范围.20.(1)已知()22f x x bx c =-++,不等式()0f x >的解集是()13-,,求b 的值.(2)若对于任意[]10x ∈-,,不等式()4f x t +≤恒成立,则实数t 的取值范围是多少?21.已知函数()()223f x x a x =+--.(1)若函数()f x 在[]24-,上是单调函数,求实数a 的取值范围;(2)当5a =,[]11x ∈-,时,不等式()24f x m x +->恒成立,求实数m 的范围.第一章综合测试答案解析一、1.【答案】C【解析】解:由条件得()B AB ⊆,又因为()A B B ⊆, 所以A B B =,即有B A ⊆.①当B =∅,有3a a -+≥,解得:32a -≤; ②当B ≠∅,有3135a a a a -+⎧⎪-⎨⎪+⎩<≥<,解得:312a --<≤. 综上,实数a 的取值范围为:312⎛⎤-- ⎥⎝⎦,. 2.【答案】B【解析】解:已知集合M ,P 满足M P M =,则P M ⊆,故④正确,①错误,②错误;由P M ⊆可得MP P =,故③正确. 3.【答案】B【解析】解:①{}0不是空集,故①不正确;②若a ∈N ,当0a =时,a -∈N ,故②不正确; ③集合{}{}22101A x x x =∈-+==R ,只有1个元素,故③不正确; ④集合{}61236B x x ⎧⎫=∈∈=⎨⎬⎩⎭N N ,,,,是有限集,故④正确. 故选B.4.【答案】C【解析】解:若a b >,0c <,则()c b a c c a b ab -=-可知,当0ab >时,有c c a b >;当0ab <时,有c c a b<.故①是假命题;②若1a >,1b >时,有1ab >;反之不一定,比如取2a =-,3b =-,有61ab =>成立,但不满足1a >,1b >,所以“1a >,1b >”是“1ab >”的充分不必要条件.故②是真命题;③若0a <,则()12a a ⎛⎫-+- ⎪⎝⎭≥,当且仅当1a =-时等号成立,所以有12a a +≤-.故③是真命题;④命题:“若1xy ≠,则1x ≠或1y ≠”的逆否命题为“若1x =且1y =,则1xy =”,是真命题,所以原命题亦为真命题.故④是真命题.5.【答案】B【解析】:若关于x 的不等式220x ax a -+>,x ∈R 恒成立可得2440a a -<,解得01a <<,所以“关于x 的不等式220x ax a -+>,x ∈R 恒成立”的一个必要不充分条件是01a ≤≤.6.【答案】D 【解析】解:因为集合65M a a a +⎧⎫⎧=∈∈⎨⎨⎬-⎩⎩⎭N Z ,且, 所以5a -可能值为1,2,3,6,所以对应a 的值为4,3,2,1-,所以集合{}1234M =-,,,. 7.【答案】C 【解析】解:{}{}22012A x x x x x =--=-<<<,要使函数()2lg 1y x =-有意义,则210x ->,解得11x -<<,即集合{}11B x x =-<<, 所以B A ⊂.8.【答案】B 【解析】解:集合{}40141x A x x x x ⎧⎫-==-⎨⎬+⎩⎭≤<≤, ()221210a a a -=-+∵≥,212a a +∴≥, 当212a a +=即1a =时,()(){}2210B x x a x a =---=∅<此时,满足已知A B =∅,当212a a +>即1a ≠时,()(){}{}2221021B x x a x a x a x a =---=+<<<若A B =∅,则24a ≥或211a +-≤,解得2a ≥.∴实数a 的取值范围是{}[)12+∞,9.【答案】C 【解析】解:集合{}()234014A x x x =--=-<,,集合()(){}()()2082B x x m x m m m =-⎡-+⎤=-++∞⎣⎦>,,, 若A B =R ,则124m m -⎧⎨+⎩>< 解得:()12m ∈-,. 10.【答案】A【解析】解:当0k =时不等式308-<符合题意;当0k ≠时,由一元二次不等式23208kx kx +-<对一切实数x 都成立, 则2034208k k k ⎧⎪⎨⎛⎫-⨯⨯- ⎪⎪⎝⎭⎩<<, 解得30k -<<. 综上,满足一元二次不等式23208kx kx +-<对一切实数x 都成立的k 的取值范围是(]30-,二、11.【答案】5或3-【解析】解:()9A B ∈;9A ∈∴;219a -=∴,或29a =;5a =∴,或3a =±;①5a =时,{}0925A =,,,{}049B =-,,,满足条件;②3a =时,{}229B =--,,,不满足集合元素的互异性; ③3a =-时,{}079A =-,,,{}849B =-,,,满足条件; 故答案为5或3-.12.【答案】()4+∞,【解析】解:由集合{}2280P x x x =-->解得{}24P x x x =-<或>,由P Q Q =,得Q P ⊆,{}Q x x a =∵≥,4a ∴>,故实数a 的取值范围是()4+∞,. 13.【答案】{}04a a ≤≤【解析】解:∵命题p 为真命题,即20x ax a ++≥在R 上恒成立,则240a a ∆=-≤,解得04a ≤≤,故实数a 的取值范围是{}04a a ≤≤.14.【答案】()23, 【解析】解:{}()(){}{}2422022M x x x x x x x x ==-+=->>>或<,()(){}{}10130133x N x x x x x x x ⎧⎫+==+-=-⎨⎬-⎩⎭<<<<,{}{}{}221323M N x x x x x x x =--=∴>或<<<<<三、15.【答案】解:(1)由题意知:{}{}232012A x x x =-+==,,{}1A B =∵,1B ∈∴,将1带入集合B 中得:()()212150a a +++-=,解得:3a =-或1a =,当时3a =-,集合{}14B =,符合题意;当1a =时,集合{}14B =,-,符合题意,综上所述:3a =-或1a =;(2)若A B A =,则B A ⊆,{}12A =∵,,B =∅∴或{}1B =或{}2或{}12,,①若B =∅,则()()2221450a a ∆=+--<,解得214a -<;②若{}1B =,则()21121115a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解;③若{}2B =,则()22221225a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解;④若{}12B =,,则()21221125a a ⎧+=-+⎪⎨⨯=-⎪⎩,无解. 综上214a -<. 16.【答案】解:{}()223031A x x x =+-=-<,,()11B a a =---,, (1)p ∵是q 的充要条件,A B =∴,即13110a a a --=-⎧⎪-=⎨⎪⎩>,解得2a =.(2)q ⌝∵是p ⌝的必要不充分条件,p ∴是q 的必要不充分条件,∴集合B 是集合A 的真子集, 13110.a a a ---⎧⎪-⎨⎪⎩≥,∴<,>或13110.a a a ---⎧⎪-⎨⎪⎩>,≤,>解得02a <<,即正实数a 的取值范围是()02,. 17.【答案】解:由30x a ->得3a x >,所以3a A x x ⎧⎫=⎨⎬⎩⎭>, 由260x x -->,得()()23x x +->0,解得2x -<或3x >,所以{}23B x x x =-<或>(1)当3a =时,{}1A x x =>, 所以{}3A B x x =>,{}21A B x x x =-<或>. (2)因为{}23B x x =-<或>,所以{}23C B x x =-R ≤≤.又因为()A C B ≠∅R ,所以33a <,解得9a <. 所以实数a 的取值范围是()9-∞,. 18.【答案】解:{}{}232012A x x x =-+==,. 因为A B A =,所以B A ⊆,所以B 可能为∅,{}1,{}2,{}12,,因为()()()224120a a a ∆=---=-≥,所以B ≠∅,又因为()()2111x ax a x x a -+-=-⎡--⎤⎣⎦,所以B 中一定有1,所以11a -=或12a -=,即2a =或3a =.经验证2a =,3a =均满足题意;又因为A C C =,所以C A ⊆, 所以C 可能为∅,{}1,{}2,{}12,. 当C =∅时,方程220x mx -+=无解,所以28m ∆=-<0,所以m -<当{}1C =时,m 无解;当{}2C =时,m 也无解;当{}12C =,时,3m =.综上所述,2a =或3a =;m -<3m =.19.【答案】解:(1)二次函数()()20f x ax ax c a =-+≠,且不等式()2f x x >的解集为()12,, 则()220ax a x c -++<的解集为()12,, 即方程()220ax a x c -++=的两个根为1和2,且0a >, 由根与系数关系可得:212a a ++=,12c a⨯=, 解得1a =,2c =,故函数()f x 的解析式为()22f x x x =-+;(2)若()f x x d +≥在x ∈R 时恒成立,则222x x d -+≥在x ∈R 时恒成立,由于()2222111x x x -+=-+≥,故1d ≤.高中数学 必修第一册 11 / 11 20.【答案】解:(1)由不等式()0f x >的解集是()13-,,可知1-和3是方程220x bx c -++=的根, 即2232b c ⎧=⎪⎪⎨⎪-=-⎪⎩,,解得46b c =⎧⎨=⎩,, 所以4b =(2)由(1)可知()2246f x x x =-++.所以不等式()4f x t +≤可化为2242t x x --≤,[]10x ∈-,. 令()2242g x x x =--,[]10x ∈-,, 由二次函数的性质可知()g x 在[]10x ∈-,上单调递减, 则()g x 的最小值为()02g =-,则2t -≤.所以实数t 的取值范围为(]2-∞-,. 21.【答案】解:(1)函数()f x 的对称轴为22a x -=-, 又函数()f x 在[]24-,上是单调函数,242a --∴≥或222a ---≤, 解得6a -≤或6a ≥.∴实数a 的取值范围为(][)66-∞-+∞,,; (2)当5a =,[]11x ∈-,时,()24f x m x +->恒成立,即21x x m ++>恒成立,令()21g x x x =++,()min g x m >恒成立,函数()g x 的对称轴[]1112x =-∈-,, ()min 1324g x g ⎛⎫=-= ⎪⎝⎭∴,即34m >, m ∴的范围为34⎛⎫-∞ ⎪⎝⎭,.。

2024-2025年北师大版数学必修第一册模块质量检测卷(带答案)

2024-2025年北师大版数学必修第一册模块质量检测卷(带答案)

模块质量检测卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A =⎩⎨⎧⎭⎬⎫x∈Z ⎪⎪⎪-3<x <12 ,B ={-1,0,1,2},能正确表示图中阴影部分的集合是( )A .{-1,0,1}B .{1,2}C .{0,1,2}D .{2}2.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方式估计该运动员三次投篮恰有两次命中的概率:先由计算机产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以三个随机数为一组,代表三次投篮结果,经随机模拟产生了如下12组随机数:137 960 197 925 271 815 952 683 829 436 730 257,据此估计,该运动员三次投篮恰有两次命中的概率为( )A .14B .38C .512D .583.函数f (x )=e x+2x -3的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)4.某地甲、乙、丙三所学校举行高三联考,三所学校参加联考的人数分别为300,400,500,为了调查此次联考数学学科的成绩,现采用分层抽样的方法从这三所学校中抽取一个容量为120的样本,那么应从乙学校中抽取的数学成绩的份数为( )A .30B .40C .50D .805.a ,b ∈R ,记m ax {a ,b }=⎩⎪⎨⎪⎧a (a ≥b )b (a <b ) ,则函数f (x )=m ax {|x +1|,x 2}(x ∈R )的最小值是( )A .3-52B .3+52C .1+52D .1-526.复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,我国现行定期储蓄中的自动转存业务就是类似复利计算的储蓄.某人在银行存入本金5万元并办理了自动转存业务,已知每期利率为p ,若存m 期,本利和为5.4万元,若存n 期,本利和为5.5万元,若存m +n 期,则利息为( )A .5.94万元B .1.18万元C .6.18万元D .0.94万元7.现有四个函数:①y =x ·sin x ;②y =x ·cos x ;③y =x ·|cos x |;④y =x ·2x的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是( )A .①④②③ B.①④③② C .④①②③ D.③④②①8.已知a 是方程x +lg x =3的解,b 是方程2x +100x=3的解,则a +2b 为( ) A .-32 B .32C .3D .-3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.下列命题是真命题的是( )A .若幂函数f (x )=x α过点(12 ,4),则α=-12B .∃x ∈(0,1),(12 )x>log 12 xC .∀x ∈(0,+∞),log 12x >log 13xD .命题“∃x ∈R ,sin x +cos x <1”的否定是“∀x ∈R ,sin x +cos x ≥1” 10.PM2.5的监测值是用来评价环境空气质量的指标之一.划分等级为:PM2.5日均值在35μg/m 3以下,空气质量为一级:PM2.5日均值在35~75μg/m 3,空气质量为二级:PM2.5日均值超过75μg/m 3为超标.如图是某地12月1日至10日PM2.5的日均值(单位:μg/m 3)变化的折线图,关于PM2.5日均值说法正确的是( )A .这10天的日均值的80%分位数为60B .前5天的日均值的极差小于后5天的日均值的极差C .这10天的日均值的中位数为41D .前5天的日均值的方差小于后5天的日均值的方差 11.下列选项正确的是( ) A .若a ≠0,则a +4a的最小值为4B .若x ∈R ,则x 2+3x 2+2的最小值是2C .若ab <0,则a b +b a的最大值为-2D .若正实数x ,y 满足x +2y =1,则2x +xy的最小值为612.已知函数f (x )=⎩⎪⎨⎪⎧2a -x,x ≥12x -a ,x <1 的图象如图所示,则下列说法正确的是( )A .a =1B .a =-1C .函数y =f (x +1)是偶函数D .关于x 的不等式f (x )>12的解集为(0,2)第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知一组样本数据x 1,x 2,…,x 10,且x 21 +x 22 +…+x 210 =2 022,平均数x -=12,则该组数据的方差为________.14.某电子商务公司对10 000名网络购物者2022年度的消费情况进行了统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 15.已知a >0,且a ≠1,log a 2=x ,则a 2x+a -2x=________.16.三个元件a ,b ,c 独立正常工作的概率分别是13 ,12 ,23 ,把它们随意接入如图所示电路的三个接线盒T 1,T 2,T 3中(一盒接一个元件),各种连接方法中,此电路正常工作的最大概率是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分12分)甲、乙两名战士在相同条件下各射靶10次,每次命中的环数如下:甲:8 6 7 8 6 5 9 10 4 7 乙:6 7 7 8 6 7 8 7 9 5 (1)分别计算以上两组数据的平均数; (2)分别求出以上两组数据的方差;(3)根据计算结果,评价这两名战士的射击情况.18.(本小题满分10分)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.19.(本小题满分12分)某工厂为了检验某产品的质量,随机抽取100件产品,测量其某一质量指数,根据所得数据,按[10,12),[12,14),[14,16),[16,18),[18,20]分成5组,得到如图所示的频率分布直方图.(1)估计该产品这一质量指数的中位数;(2)若采用分层抽样的方法从这一质量指数在[16,18)和[18,20]内的该产品中抽取6件,再从这6件产品中随机抽取2件,求这2件产品不是取自同一组的概率.20.(本小题满分12分)某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2 500万元,每生产x 百件,需另投入成本c (x )(单位:万元),当年产量不足30百件时,c (x )=10x 2+100x ;当年产量不小于30百件时,c (x )=501x +10 000x-4 500;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.(1)求年利润y (万元)关于年产量x (百件)的函数关系式;(2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?21.(本小题满分12分)甲、乙、丙三人进行摔跤比赛,比赛规则如下:①每场比赛有两人参加,另一人当裁判,没有平局;②每场比赛结束时,负的一方在下一场当裁判;③累计负两场者被淘汰;④当一人被淘汰后,剩余的两人继续比赛,直至其中一人累计负两场被淘汰,另一人最终获得冠军,比赛结束.已知在每场比赛中,甲胜乙和甲胜丙的概率均为23 ,乙胜丙的概率为12,各局比赛的结果相互独立.经抽签,第一场比赛甲当裁判.(1)求前三场比赛结束后,丙被淘汰的概率; (2)求只需四场比赛就决出冠军的概率; (3)求甲最终获胜的概率.22.(本小题满分12分)已知f (x )=log 3(3x+1)+12 kx (x ∈R )是偶函数.(1)求k 的值;(2)若函数y =f (x )的图象与直线y =12 x +a 有公共点,求a 的取值范围.模块质量检测卷1.答案:B解析:由题意,集合A ={x∈Z ⎪⎪⎪-3<x <12 }={-2,-1,0}, 根据图中阴影部分表示集合B 中元素除去集合A 中的元素,即为{1,2}. 故选B. 2.答案:A解析:由题意可知经随机模拟产生的12组随机数中,137,271,436这三组表示三次投篮恰有两次命中,故该运动员三次投篮恰有两次命中的概率为P =312 =14 ,故选A. 3.答案:C解析:f (x )=e x+2x -3,函数单调递增,计算得到f (0)=-2<0,f (1)=e -1>0,故函数在(0,1)有唯一零点.4.答案:B解析:由题意知,应从乙学校抽取120×400300+400+500 =40(份)数学成绩.5.答案:A解析:当|x +1|≥x 2,即x +1≥x 2或x +1≤-x 2,解得1-52 ≤x ≤1+52时,f (x )=max{|x +1|,x 2}=|x +1|=x +1,函数单调递增,所以f (x )min =1-52 +1=3-52;当x <1-52 时,f (x )=max{|x +1|,x 2}=x 2,函数单调递减,f (x )>f (1-52 )=3-52 ;当x >1+52 时,f (x )=max{|x +1|,x 2}=x 2,函数单调递增,f (x )>f (1+52 )=3+52 ;综上,f (x )min =3-52.故选A. 6.答案:D解析:由题意可得⎩⎪⎨⎪⎧5(1+p )m=5.45(1+p )n=5.5,则5(1+p )m ·5(1+p )n=5.4×5.5, 即存m +n 期,本利和为5(1+p )m +n=5.4×1.1=5.94,则存m +n 期,则利息为5.94-5=0.94万元.故选D. 7.答案:A解析:①y =x ·sin x 为偶函数,它的图象关于y 轴对称,故第一个图象即是;②y =x ·cosx 为奇函数,它的图象关于原点对称,它在⎝⎛⎭⎪⎫0,π2 上的值为正数,在⎝⎛⎭⎪⎫π2,π 上的值为负数,故第三个图象满足;③y =x ·|cos x |为奇函数,当x >0时,f (x )≥0,故第四个图象满足;④y =x ·2x,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,故选A.8.答案:C解析:因为a 是方程x +lg x =3的解,所以a +lg a =3,令t =lg a ,则有a =10t, 所以10t+t =3, ①因为b 是方程2x +100x =3的解,所以2b +100b =3,即2b +102b=3, ② 设f (x )=10x+x ,易知f (x )在R 上单调递增, 由①②得,t =2b ,所以lg a =2b , 代入a +lg a =3得,a +2b =3.故选C. 9.答案:BD解析:f (12 )=(12 )α=4,∴α=-2,A 错误;在同一平面直角坐标系上画出y =(12 )x与y =log 12x 两函数图象,如图1所示.图1 图2由图可知∃x ∈(0,1),(12 )x>log 12 x ,故B 正确;在同一平面直角坐标系上画出y =log 13x 与y =log 12x 两函数图象,如图2所示.由图可知,当x ∈(0,1)时,log 12x >log 13x ,当x =1时,log 12x =log 13x ,当x ∈(1,+∞)时,log 12x <log 13x ,故C 错误;根据存在量词命题的否定为全称量词命题可知,命题“∃x∈R ,sin x +cos x <1”的否定是“∀x ∈R ,sin x +cos x ≥1”,故D 正确.故选BD.10.答案:BD解析:10个数据为:30,32,34,40,41,45,48,60,78,80, 10×0.8=8,故80%分位数为60+782=69,A 选项错误.5天的日均值的极差为41-30=11,后5天的日均值的极差为80-45=35,B 选项正确. 中位数是41+452=43,C 选项错误.根据折线图可知,前5天数据波动性小于后5天数据波动性,所以D 选项正确. 故选BD.11.答案:CD解析:当a <0时,a +4a =-(-a -4a)≤-2-a ·(-4a) =-4,当且仅当-a =-4a,即a =-2时取等号,则a +4a 有最大值为-4,当a >0时,a +4a≥2a ·4a =4,当且仅当a =4a,即a =2时取等号,则a +4a的最小值为4,故A 错误;因为x 2+2 ≥2 ,1x 2+2>0,所以x 2+2 +1x 2+2≥2x 2+2·1x 2+2=2, 等号成立的条件是x 2+2 =1x 2+2,即x 2+2=1,方程无解,即最小值不为2,B 错误;若ab <0,故b a <0,a b <0,则a b +b a =-[(-a b )+(-b a)]≤-2-a b ·-ba=-2,当且仅当-ba =-a b即a =-b 时取等号,此时取得最大值-2,C 正确; 正实数x ,y 满足x +2y =1,则2x +x y =2x +4y x +x y =2+4y x +xy ≥2+24y x·x y=6,当且仅当4y x =x y ,即x =2y =12 时取等号,则2x +xy 的最小值为6,D 正确.故选CD.12.答案:ACD解析:由函数图象可知x =1为函数f (x )的对称轴,即函数满足f (2-x )=f (x ), 则当x >1时,2-x <1,故22-x -a=2a -x,∴2-x -a =a -x ,则a =1, 同理当x <1时,2-x >1,故2a -2+x=2x -a,∴a -2+x =x -a ,则a =1,综合可知a =1,A 正确;B 错误.将f (x )=⎩⎪⎨⎪⎧2a -x,x ≥12x -a ,x <1 的图象向左平移1个单位,即得函数y =f (x +1),x ∈R 的图象,则y =f (x +1)的图象关于y 轴对称,故y =f (x +1)为偶函数,C 正确; 当x ≥1时,f (x )=21-x,令21-x>12,解得x <2,故1≤x <2; 当x <1时,f (x )=2x -1,令2x -1>12,解得x >0,故0<x <1,综合可得0<x <2,即不等式f (x )>12 的解集为(0,2),D 正确.故选ACD. 13.答案:58.2解析:因为一组样本数据x 1,x 2,…,x 10,且x 21 +x 22 +…+x 210 =2 022,平均数x -=12,所以该组数据的方差为110[(x 1-12)2+(x 2-12)2+…+(x 10-12)2]=110 [(x 21 +x 22 +…+x 210 )-24(x 1+x 2+…+x 10)+10×122] =110 (2 022-24×10×12+10×122) =58.2.14.答案:(1)3.0 (2)6 000解析:(1)0.1×1.5+0.1×2.5+0.1×a +0.1×2.0+0.1×0.8+0.1×0.2=1,解得a =3.0.(2)消费金额在区间[0.5,0.9]内的频率为1-0.1×1.5-0.1×2.5=0.6, 则该区间内购物者的人数为10 000×0.6=6 000. 15.答案:174解析:由指对数的互化,log a 2=x ⇒a x=2,∴a 2x+a -2x=(a x )2+1(a x )2 =22+122 =174.16.答案:49解析:若T 1接入a ,T 2,T 3分别接入b ,c ,则该电路正常工作的概率为13 ×(1-12 ×13 )=518; 若T 1接入b ,T 2,T 3分别接入a ,c ,则该电路正常工作的概率为12 ×(1-23 ×13 )=718 ;若T 1接入c ,T 2,T 3分别接入a ,b ,则该电路正常工作的概率为23 ×(1-23 ×12 )=49 ;∵49 >718 >518 ,∴此电路正常工作的最大概率为49. 17.解析:(1)x -甲=110 ×(8+6+7+8+6+5+9+10+4+7)=7,x -乙=110×(6+7+7+8+6+7+8+7+9+5)=7.(2)s 2甲 =110×[(8-7)2+(6-7)2+…+(7-7)2]=3,s 2乙 =110×[(6-7)2+(7-7)2+…+(5-7)2]=1.2.(3)x - 甲=x -乙,说明甲、乙两战士的平均水平相当;s 2甲 >s 2乙 ,说明甲战士的射击情况波动大,因此乙战士比甲战士射击情况稳定.18.解析:由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3. ∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 19.解析:(1)因为(0.025+0.125)×2=0.3<0.5,0.3+0.200×2=0.7>0.5, 所以该产品这一质量指数的中位数在[14,16)内,设该产品这一质量指数的中位数为m ,则(m -14)×0.2+0.3=0.5, 解得m =15.(2)由频率分布直方图可得100×0.100×2=20,100×0.050×2=10, 即在[16,18)和[18,20]的产品分别有20,10件,采用分层抽样的方法抽取的6件产品中这一质量指数在[16,18)内的有4件,记为a ,b ,c ,d ,这一质量指数在[18,20]内的有2件,记为e ,f ,从这6件产品中随机抽取2件的情况有ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种;其中符合条件的情况有ae ,af ,be ,bf ,ce ,cf ,de ,df ,共8种,故所求概率P =815.20.解析:(1)当0<x <30时,y =500x -10x 2-100x -2 500=-10x 2+400x -2 500; 当x ≥30时,y =500x -501x -10 000x+4 500-2 500=2 000-⎝⎛⎭⎪⎫x +10 000x;∴y =⎩⎪⎨⎪⎧-10x 2+400x -2 500,0<x <30,2 000-⎝ ⎛⎭⎪⎫x +10 000x ,x ≥30.(2)当0<x <30时,y =-10(x -20)2+1 500,∴当x =20时,y max =1 500;当x ≥30时,y =2 000-⎝⎛⎭⎪⎫x +10 000x≤2000-2 x ·10 000x=2 000-200=1 800,当且仅当x =10 000x,即x =100时,y max =1 800>1 500,∴年产量为100百件时,该企业获得利润最大,最大利润为1 800万元. 21.解析:(1)记事件A 为甲胜乙,则P (A )=23 ,P (A -)=13 ,事件B 为甲胜丙,则P (B )=23 ,P (B -)=13 ,事件C 为乙胜丙,则P (C )=12 ,P (C -)=12 ,前三场比赛结束后,丙被淘汰的概率为P 1=P (C A -C )+P (CAB )=12 ×13 ×12 +12 ×23 ×23 =1136.(2)只需四场比赛就决出冠军的概率为P 2=P (C A - C A - )+P (C - B - C - B - )+P (CABA )+P (C -BAB )=12 ×13 ×12 ×13 +12 ×13 ×12 ×13 +12 ×23 ×23 ×23 +12 ×23 ×23 ×23 =1954 . (3)由于甲胜乙和甲胜丙的概率均为23 ,且乙胜丙和丙胜乙的概率也相等,均为12 ,第一场比赛甲当裁判,以后的比赛相对于甲,可视乙丙为同一人,设甲胜为事件D ,甲当裁判为事件E ,P 3=P (EDDD )+P (EDD D - D )+P (ED D - ED )+P (E D -EDD )=23 ×23 ×23 +23 ×23 ×13 ×23 +23 ×13 ×23 +13 ×23 ×23 =5681 . 22.解析:(1)∵y =f (x )是偶函数,∴f (-x )=f (x ), ∴log 3(3-x +1)-12 kx =log 3(3x+1)+12kx ,化简得log 3⎝ ⎛⎭⎪⎫3-x+13x +1 =kx ,即log 313x =kx ,∴log 33-x =kx ,∴-x =kx ,即(k +1)x =0对任意的x ∈R 都成立,∴k =-1; (2)由题意知,方程log 3(3x+1)-12 x =12x +a 有解,亦即log 3(3x+1)-x =a ,即log 3⎝ ⎛⎭⎪⎫3x+13x =a 有解, ∴log 3⎝ ⎛⎭⎪⎫1+13x =a 有解, 由13x >0,得1+13x >1,∴log 3⎝ ⎛⎭⎪⎫1+13x >0,故a >0,即a 的取值范围是(0,+∞).。

新北师大版数学必修一期末测试卷(含详细解析)

新北师大版数学必修一期末测试卷(含详细解析)

综合测试题(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·四川理,1)设集合A ={x|-2≤x ≤2},Z 为整数集,则集合A ∩Z 中元素的个数是( )A .3B .4C .5D .62.已知集合A ={x|0<log4x<1},B ={x|x ≤2},则A ∩B =( )A .(0,1)B .(0,2]C .(1,2)D .(1,2]3.(2015·广东高考)下列函数中,既不是奇函数,也不是偶函数的是( )A .y =x +exB .y =x +1xC .y =2x +12xD .y =1+x24.设f(x)=⎩⎪⎨⎪⎧|x -1|-2,|x|≤111+x2,|x|>1,则f[f(12)]=( )A.12B.413C .-95D.25415.log43、log34、log 4334的大小顺序是( )A.log34<log43<log433 4B.log34>log43>log433 4C.log34>log4334>log43D.log4334>log34>log436.函数f(x)=ax2-2ax+2+b(a≠0)在闭区间[2,3]上有最大值5,最小值2,则a,b的值为( )A.a=1,b=0B.a=1,b=0或a=-1,b=3C.a=-1,b=3D.以上答案均不正确7.函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A.14B.12C.2 D.48.(2015·安徽高考)函数f(x)=错误!的图像如图所示,则下列结论成立的是( )A.a>0,b>0,c<0B .a<0,b>0,c>0C .a<0,b>0,c<0D .a<0,b<0,c<09.(2016·山东理,9)已知函数f(x)的定义域为R.当x <0时,f(x)=x3-1;当-1≤x ≤1时,f(-x)=-f(x);当x >12时,f(x +12)=f(x -12).则f(6)=( )A .-2B .-1C .0D .210.函数f(x)=(x -1)ln|x|-1的零点的个数为( )A .0B .1C .2D .311.设0<a<1,函数f(x)=loga(a2x -2ax -2),则使f(x)<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,loga3)D .(loga3,+∞)12.有浓度为90%的溶液100g ,从中倒出10g 后再倒入10g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg2=0.3010,lg3=0.4771)( )A .19B .20C .21D .22第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.已知loga 12>0,若ax2+2x -4≤1a,则实数x 的取值范围为________.14.直线y =1与曲线y =x2-|x|+a 有四个交点,则a 的取值范围________ .15.若函数y =m·3x-1-1m·3x-1+1的定义域为R ,则实数m 的取值范围是________.16.已知实数a ≠0,函数f(x)=⎩⎪⎨⎪⎧2x +a , x<1-x -2a , x≥1,若f(1-a)=f(1+a),则a的值为________.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设A ={x|x2+4x =0},B ={x|x2+2(a +1)x +a2-1=0}. (1)若A ∩B =B ,求a 的值. (2)若A ∪B =B ,求a 的值.18.(本小题满分12分)已知函数f(x)=log 12 [(12)x -1],(1)求f(x)的定义域;(2)讨论函数f(x)的增减性.19.(本小题满分12分)设函数f(x)=ax -1x +1,其中a ∈R.(1)若a =1,f(x)的定义域为区间[0,3],求f(x)的最大值和最小值;(2)若f(x)的定义域为区间(0,+∞),求a 的取值范围,使f(x)在定义域内是单调减函数.20.(本小题满分12分)(1)定义在(-1,1)上的奇函数f(x)为减函数,且f(1-a)+f(1-a2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g(x),当x ≥0时,g(x)为减函数,若g(1-m)<g(m)成立,求m 的取值范围.21.(本小题满分12分)已知函数y =f(x)的定义域为D ,且f(x)同时满足以下条件: ①f(x)在D 上单调递增或单调递减函数;②存在闭区间[a ,b]∈D(其中a<b),使得当x ∈[a ,b]时,f(x)的取值集合也是[a ,b].那么,我们称函数y =f(x)(x ∈D)是闭函数.(1)判断f(x)=-x3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.(2)若f(x)=k +x +2是闭函数,求实数k 的取值范围.(注:本题求解中涉及的函数单调性不用证明,直接指出增函数还是减函数即可) 22.(本小题满分12分)已知函数f(x)=log 12 (x2-mx -m.(1)若m =1,求函数f(x)的定义域;(2)若函数f(x)的值域为R ,求实数m 的取值范围;(3)若函数f(x)在区间(-∞,1-3)上是增函数,求实数m 的取值范围. 一.选择题1.[答案] C[解析] 由题可知,A ∩Z ={-2,-1,0,1,2},则A ∩Z 中元素的个数为5.故选C. 2.[答案] D[解析] 因为A ={x|0<log4x<1}={x|1<x<4}, B ={x|x ≤2}.所以A ∩B ={x|1<x<4}∩{x|x ≤2}={x|1<x ≤2}. 3.[答案] A[解析] 令f(x)=x +ex ,则f(1)=1+e ,f(-1)=-1+e -1即f(-1)≠f(1),f(-1)≠-f(1),所以 y =x +ex 既不是奇函数也不是偶函数,而BCD 依次是偶函数、奇函数、偶函数,故选A. 4.[答案] B[解析] 由于|12|<1,所以f(12)=|12-1|-2=-32,而|-32|>1,所以f(-32)=错误!=1134=413,所以f[f(12)]=413,选B. 5.[答案] B[解析] 将各式与0,1比较.∵log34>log33=1,log43<log44=1,又0<34<1,43>1,∴log 43 34<0.6.[答案] B[解析] 对称轴x =1,当a>0时在[2,3]上递增, 则错误!解得错误!当a<0时,在[2,3]上递减, 则错误!解得错误! 故选B.有log 43 34<log43<log34.所以选B.7.[答案] B[解析] ∵当a>1或0<a<1时,ax 与loga(x +1)的单调性一致, ∴f(x)min +f(x)max =a ,即1+loga1+a +loga(1+1)=a ,∴a =12.8.[答案] C[解析] 由f(x)=错误!及图像可知,x ≠-c ,-c>0,则c<0;当x =0时,f(0)=错误!>0,所以b>0;当y =0,ax +b =0,所以x =-ba >0,所以a<0.故a<0,b>0,c<0,选C.9.[答案] D[解析] ∵当x>2时,f(x +12)=f(x -12),∴f(x +1)=f(x),∴f(6)=f(5)=f(4)=…=f(1),又当-1≤x ≤1时,f(x)=-f(-x).∴f(1)=-f(-1),又因为当x<0时,f(x)=x3-1, ∴f(1)=-f(-1)=-[(-1)3-1]=2. 10.[答案] D[解析] f(x)=(x -1)ln|x|-1的零点就是方程(x -1)ln|x|-1=0的实数根,而该方程等价于方程ln|x|=1x -1,因此函数的零点也就是函数g(x)=ln|x|的图像与h(x)=1x -1的图像的交点的横坐标.在同一平面直角坐标系内分别画出两个函数的图像(图略),可知两个函数图像有三个交点,所以函数有三个零点. 11.[答案] C[解析] 利用指数、对数函数性质.考查简单的指数、对数不等式. 由a2x -2ax -2>1得ax>3,∴x<loga3. 12.[答案] C[解析] 操作次数为n 时的浓度为(910)n +1,由(910)n +1<10%,得n +1>-1lg 910=-12lg3-1≈21.8,∴n ≥21. 二.填空题13.[答案] (-∞,-3]∪[1,+∞) [解析] 由loga 12>0得0<a<1.由a x2+2x -4≤1a 得a x2+2x -4≤a -1,∴x2+2x -4≥-1,解得x ≤-3或x ≥1. 14.[答案] 1<a<54[解析] y =⎩⎪⎨⎪⎧x2-x +a ,x≥0x2+x +a ,x<0作出图像,如图所示.此曲线与y 轴交于(0,a)点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a<54.15.[答案] [0,+∞)[解析] 要使函数y =m·3x-1-1m·3x-1+1的定义域为R ,则对于任意实数x ,都有m·3x -1+1≠0,即m ≠-⎝ ⎛⎭⎪⎫13x -1.而⎝ ⎛⎭⎪⎫13x -1>0,∴m ≥0. 故所求m 的取值范围是m ≥0,即m ∈[0,+∞). 16.[答案] -34[解析] 首先讨论1-a,1+a 与1的关系. 当a<0时,1-a>1,1+a<1,所以f(1-a)=-(1-a)-2a =-1-a ; f(1+a)=2(1+a)+a =3a +2.因为f(1-a)=f(1+a),所以-1-a =3a +2. 解得a =-34.当a>0时,1-a<1,1+a>1,所以f(1-a)=2(1-a)+a =2-a. f(1+a)=-(1+a)-2a =-3a -1, 因为f(1-a)=f(1+a)所以2-a =-3a -1,所以a =-32(舍去)综上,满足条件的a =-34.三、解答题17.[分析] A ∩B =B ⇔B ⊆A ,A ∪B =B ⇔A ⊆B. [解析] A ={-4,0}. (1)∵A ∩B =B ,∴B ⊆A.①若0∈B ,则a2-1=0,a =±1. 当a =1时,B =A ;当a =-1时,B ={0},则B ⊆A.②若-4∈B ,则a2-8a +7=0,解得a =7,或a =1. 当a =7时,B ={-12,-4}, A.③若B =∅,则Δ=4(a +1)2-4(a2-1)<0,a<-1. 由①②③得a =1,或a ≤-1. (2)∵A ∪B =B ,∴A ⊆B.∵A ={-4,0},又∵B 中至多只有两个元素, ∴A =B. 由(1)知a =1.18.[解析] (1)(12)x -1>0,即x<0,所以函数f(x)定义域为{x|x<0}.(2)∵y =(12)x -1是减函数,f(x)=log 12 x 是减函数,∴f(x)=log 12 [(12)x -1]在(-∞,0)上是增函数.19.[解析] f(x)=ax -1x +1=错误!=a -错误!,设x1,x2∈R ,则f(x1)-f(x2)=a +1x2+1-a +1x1+1=错误!.(1)当a =1时,f(x)=1-2x +1,设0≤x1<x2≤3,则f(x1)-f(x2)=错误!, 又x1-x2<0,x1+1>0,x2+1>0, ∴f(x1)-f(x2)<0,∴f(x1)<f(x2), ∴f(x)在[0,3]上是增函数, ∴f(x)max =f(3)=1-24=12,f(x)min =f(0)=1-21=-1.(2)设x1>x2>0,则x1-x2>0,x1+1>0,x2+1>0. 若使f(x)在(0,+∞)上是减函数,只要f(x1)-f(x2)<0, 而f(x1)-f(x2)=错误!,∴当a +1<0,即a<-1时,有f(x1)-f(x2)<0, ∴f(x1)<f(x2).∴当a<-1时,f(x)在定义域(0,+∞)内是单调减函数. 20.[解析] (1)∵f(1-a)+f(1-a2)>0, ∴f(1-a)>-f(1-a2).∵f(x)是奇函数,∴f(1-a)>f(a2-1).又∵f(x)在(-1,1)上为减函数,∴⎩⎪⎨⎪⎧ 1-a<a2-1,-1<1-a<1,-1<1-a2<1,解得1<a< 2.(2)因为函数g(x)在[-2,2]上是偶函数,则由g(1-m)<g(m)可得g(|1-m|)<g(|m|).又当x ≥0时,g(x)为减函数,得到⎩⎪⎨⎪⎧ |1-m|≤2,|m|≤2,|1-m|>|m|,即错误!解之得-1≤m<12. 21.[解析] (1)f(x)=-x3在R 上是减函数,满足①;设存在区间[a ,b],f(x)的取值集合也是[a ,b],则⎩⎪⎨⎪⎧ -a3=b -b3=a ,解得a =-1,b =1,所以存在区间[-1,1]满足②,所以f(x)=-x3(x ∈R)是闭函数.(2)f(x)=k +x +2是在[-2,+∞)上的增函数,由题意知,f(x)=k +x +2是闭函数,存在区间[a ,b]满足②,即⎩⎨⎧ k +a +2=a k +b +2=b即a ,b 是方程k +x +2=x 的两根,化简得,a ,b 是方程x2-(2k +1)x +k2-2=0的两根,且a ≥k ,b>k.令f(x)=x2-(2k +1)x +k2-2,得错误!解得-94<k ≤-2, 所以实数k 的取值范围为(-94,-2]. 22.[解析] (1)m =1时,f(x)=log 12(x2-x -1),由x2-x -1>0可得:x>1+52或x<1-52, ∴函数f(x)的定义域为(1+52,+∞)∪(-∞,1-52). (2)由于函数f(x)的值域为R ,所以z(x)=x2-mx -m 能取遍所有的正数从而Δ=m2+4m ≥0,解得:m ≥0或m ≤-4.即所求实数m 的取值范围为m ≥0或m ≤-4.(3)由题意可知:错误!⇒2-2错误!≤m<2. 即所求实数m 的取值范围为[2-23,2).。

北师大版数学必修一综合测试题及答案

北师大版数学必修一综合测试题及答案

必修一综合测试注意事项:⒈本试卷分为选择题、填空题和简答题三部分,共计150分,时间90分钟。

⒉答题时,请将答案填在答题卡中。

一、选择题:本大题10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I M N 等于 ( )A.{0,4}B.{3,4}C.{1,2} D 。

∅ 2、设集合2{650}M x x x =-+=,2{50}N x x x =-=,则M N 等于 ( ) A 。

{0} B 。

{0,5} C.{0,1,5} D 。

{0,-1,-5}3、计算:9823log log ⋅= ( )A 12B 10C 8D 64、函数2(01)xy a a a =+>≠且图象一定过点 ( )A (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数12log y x =的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x|0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g (x)都是奇函数 B f(x)是奇函数,g (x)是偶函数C f(x)与g (x)都是偶函数D f(x )是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >>二、填空题:本大题共4小题,每小题5分,满分20分11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫ ⎝⎛+3264=______ 13、函数212log (45)y x x =--的递减区间为______14、函数122x )x (f x -+=的定义域是______三、解答题 :本大题共5小题,满分80分.解答须写出文字说明、证明过程或演算步骤。

2021-2022学年北师大版高中数学必修1全册检测含答案

2021-2022学年北师大版高中数学必修1全册检测含答案

本册综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共50分) 一、选择题(每小题5分,共50分)1.已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( C ) A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0}D .{-3,-2,-1}解析:由交集的意义可知M ∩N ={-2,-1,0}. 2.函数f (x )=x -4lg x -1的定义域是( D ) A .[4,+∞) B .(10,+∞) C .(4,10)∪(10,+∞)D .[4,10)∪(10,+∞) 解析:要使函数有意义需⎩⎪⎨⎪⎧ x -4≥0,lg x ≠1,即⎩⎪⎨⎪⎧x ≥4,x ≠10,解得:4≤x <10或x >10.3.已知幂函数f (x )=x α的部分对应值如下表,则f (x )的奇偶性是( C )A.奇函数 B .偶函数 C .非奇非偶函数D .既是奇函数,又是偶函数解析:由2=4α知α=12,∴f (x )=x 12 为非奇非偶函数.4.已知集合A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有元素之和为( B )A .2B .-2C .0D. 2 解析:A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },①当k 2-2=2时,k =±2,k =2时,k -2=0∈A ,∴k ≠2;k =-2时,k -2=-4∉A ,成立;②当k 2-2=0时,k =±2,k -2=±2-2∉A ,成立; ③当k 2-2=1时,k =±3,k -2=±3-2∉A ,成立; ④当k 2-2=4时,k =±6,k -2= ±6-2∉A ,成立.从而得到B ={±2,±3,±6,-2},∴集合B 中所有元素之和为-2.故选B. 5.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2<0”的是( C )A .f (x )=ln xB .f (x )=(x -1)2C .f (x )=1x +1D .f (x )=x 3 解析:对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2<0,即x 1<x 2时,都有f (x 1)>f (x 2),即有f (x )在(0,+∞)上是减函数, 对于A ,y =ln x 在(0,+∞)上是增函数,故A 不满足;对于B ,函数在(-∞,1)上是减函数,(1,+∞)上是增函数,故B 不满足; 对于C ,函数在(-1,+∞),(-∞,-1)上均为减函数,则在(0,+∞)上是减函数,故C 满足;对于D ,函数在R 上是增函数,故D 不满足. 故选C.6.已知f (x )=⎩⎨⎧2e x -1,x <32,log 3(x 2-1),x ≥32,则f (f (2))的值是( C )A .0B .1C .2D .3解析:∵f (2)=log 3(22-1)=log 33=1, ∴f (f (2))=f (1)=2e 1-1=2.7.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则实数a 的范围是( D ) A .a ≤-3 B .a ≤5 C .a ≥3D .a ≥5解析:因为函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,所以-2(a -1)-2≥4,即a ≥5,故选D.8.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( D )A .一次函数B .二次函数C .指数型函数D .对数型函数解析:由题意可知,函数模型对应的函数是个增函数,而且增长速度越来越慢,故应采用对数型函数来建立函数模型,故选D.9.函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( C )A .f (x )=e x -1B .f (x )=(x -1)2C .f (x )=4x -1D .f (x )=ln(x -12)解析:g (12)=2+1-2>0,g (14)=2+12-2<0;且g (x )=4x +2x -2连续,故g (x )=4x +2x -2的零点在(14,12)上;f (x )=e x -1的零点为0,f (x )=(x -1)2的零点为1; f (x )=4x -1的零点为14,f (x )=ln(x -12)的零点为32;故选C.10.若函数y =f (x )定义域为R ,且满足f (-x )=-f (x ),当a ,b ∈(-∞,0]时总有f (a )-f (b )a -b>0(a ≠b ),若f (m +1)>f (2),则实数m 的取值范围是( B ) A .-3≤m ≤1 B .m >1C .-3<m <1D .m <-3或m >1解析:∵当a ,b ∈(-∞,0]时总有f (a )-f (b )a -b >0(a ≠b ),∴当a ,b ∈(-∞,0],a -b 与f (a )-f (b )同号, ∴f (x )在(-∞,0]上单调递增, 又∵f (-x )=-f (x ),∴f (x )为奇函数,∴f (x )在R 上为增函数, ∴由f (m +1)>f (2)得,m +1>2, ∴m >1.第Ⅱ卷(非选择题,共100分) 二、填空题(每小题5分,共25分)11.计算:lg 12-lg 58+lg 252-log 89×log 278=13.解析:lg 12-lg 58+lg 252-log 89×log 278=lg ⎝⎛⎭⎫12×85×252-2lg33lg2×3lg23lg3=lg10-23=1-23=13. 12.设f (x )是定义在R 上的偶函数,且当x >0时,f (x )=2x -3,则f (-2)=1. 解析:f (-2)=f (2)=22-3=1.13.已知函数y =log a (14x +b )(a ,b 为常数,其中a >0,a ≠1)的图像如图所示,则a +b的值为34.解析:由图像知,log a b =2,log a (34+b )=0,解得,b =14,a =12;故a +b =34.故答案为:34.14.若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是[-4,0].解析:f (x )=x 2+a |x -2|=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2x 2-ax +2a ,x <2,要使f (x )在(0,+∞)上单调递增,则⎩⎨⎧-a2≤2a 2≤0,解得-4≤a ≤0;∴实数a 的取值范围是[-4,0].故答案为[-4,0]. 15.下列叙述:①存在m ∈R ,使f (x )=(m -1)·x m 2-4m +3是幂函数; ②函数y =1x +1在(-∞,-1)∪(-1,+∞)上是减函数;③函数y =log 2x +x 2-2在(1,2)内只有一个零点;④定义域内任意两个变量x 1,x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )在定义域内是增函数.其中正确的结论序号是①③④.解析:①使f (x )=(m -1)·x m 2-4m +3是幂函数,则 m -1=1,得m =2,此时f (x )=x -1,故①正确;②减区间应为(-∞,-1)和(-1,+∞)不能合并,故②错误;③∵f (1)=log 21+1-2=-1<0,f (2)=lg 22+22-2=3>0,∴f (1)f (2)<0,且f (x )在(1,2)上单调递增.故③正确;④由已知得x 1-x 2与f (x 1)-f (x 2)同号,∴f (x )在定义域上为增函数.三、解答题(本题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤)16.(本题满分12分)已知全集U =R ,集合A ={x |x >4},B ={x |-6<x <6}. (1)求A ∩B ; (2)求∁R B ;(3)定义A -B ={x |x ∈A ,x ∉B },求A -B ,A -(A -B ). 解:(1)∵A ={x |x >4},B ={x |-6<x <6}, ∴A ∩B ={x |4<x <6}; (2)∁R B ={x |x ≥6,或x ≤-6}; (3)∵A -B ={x |x ∈A ,x ∉B }, ∴A -B ={x |x ≥6}, A -(A -B )={x |4<x <6}.17.(本题满分12分)(1)计算:(8125)- 13 -(-35)0+160.75+(0.25) 12 ;(2)已知:log 32=a,3b =5,试用a ,b 表示log 330 . 解:(1)原式=(1258) 13 -1+16 34 +(25100)12=52-1+23+510=10; (2)∵3b =5,∴b =log 35,∴log 330=12log 330=12log 3(2×3×5)=12(log 32+log 33+log 35)=12(a +b +1). 18.(本题满分12分)已知函数f (x )=a +b x (b >0,b ≠1)的图像过点(1,4)和点(2,16). (1)求f (x )的表达式; (2)解不等式f (x )>(12)3-x 2;(3)当x ∈(-3,4]时,求函数g (x )=log 2f (x )+x 2-6的值域.解:(1)由题知⎩⎪⎨⎪⎧4=a +b ,16=a +b 2,解得⎩⎪⎨⎪⎧ a =0,b =4或⎩⎪⎨⎪⎧a =7,b =-3.(舍去)∴f (x )=4x .(2)f (x )>(12)3-x 2,∴4x >(12)3-x 2,∴22x >23-x 2,∴2x >x 2-3, 解得-1<x <3.∴不等式的解集为(-1,3).(3)∵g (x )=log 2f (x )+x 2-6=log 24x +x 2-6 =2x +x 2-6=(x +1)2-7, 又∵x ∈(-3,4],∴g (x )min =-7,当x =4时,g (x )max =18.∴值域为[-7,18].19.(本题满分12分)如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB =a (a >2),BC =2,且AE =AH =CF =CG ,设AE =x ,绿地面积为y .(1)写出y 关于x 的函数关系式,指出这个函数的定义域; (2)当AE 为何值时,绿地面积最大? 解:(1)S △AEH =S △CFG =12x 2,S △BEF=S △DGH =12(a -x )(2-x ).∴y =S ▭ABCD -2S △AEH -2S △BEF =2a -x 2-(a -x )(2-x )=-2x 2+(a +2)x . 由⎩⎪⎨⎪⎧x >0,a -x >0,2-x ≥0,a >2,得0<x ≤2,∴y =-2x 2+(a +2)x,0<x ≤2; (2)当a +24<2,即2<a <6时, 则x =a +24时,y 取最大值(a +2)28;当a +24≥2,即a ≥6时,y =-2x 2+(a +2)x ,在(0,2]上是增函数,则x =2时,y 取最大值2a -4.综上所述:当2<a <6时,AE =a +24时,绿地面积取最大值(a +2)28;当a ≥6时,AE =2时,绿地面积取最大值2a -4.20.(本题满分13分)已知定义域为R 的函数f (x )=-2x +a2x +1是奇函数.(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围. 解:(1)由题设,需f (0)=-1+a2=0,∴a =1,∴f (x )=1-2x1+2x,经验证,f (x )为奇函数,∴a =1.(3)由f (t 2-2t )+f (2t 2-k )<0, 得f (t 2-2t )<-f (2t 2-k ),∵f (x )是奇函数,∴f (t 2-2t )<f (k -2t 2), 由(2)知,f (x )是减函数, ∴原问题转化为t 2-2t >k -2t 2, 即3t 2-2t -k >0对任意t ∈R 恒成立, ∴Δ=4+12k <0,解得k <-13,所以实数k 的取值范围是⎝⎛⎭⎫-∞,-13. 21.(本题满分14分)已知函数f (x )=bx -aax (a >0,x >0)的图像过点(a,0).(1)判断函数f (x )在(0,+∞)上的单调性并用函数单调性定义加以证明; (2)若a >15,函数f (x )在[15a ,5a ]上的值域是[15a,5a ],求实数a 的值.解:(1)函数f (x )=bx -a ax (a >0,x >0)的图像过点(a,0),则0=ab -aa 2,则b =1,则f (x )=x -a ax =1a -1x, f (x )在(0,+∞)上为增函数,证明如下:设0<m <n ,则f (m )-f (n )=1a -1m -(1a -1n )=m -nmn ,由于0<m <n ,则m -n<0,mn >0,则f (m )-f (n )<0,则f (x )在(0,+∞)上为增函数. (2)由于f (x )在(0,+∞)上为增函数,则函数f (x )在[15a ,5a ]上的值域是[f (15a),f (5a )],即有⎩⎨⎧1a -5a =15a1a -15a =5a,解得a =25.。

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

第七章综合测试一、选择题1.已知甲射击命中目标的概率为12,乙射击命中日标的概率为13,甲、乙是否命中目标相互之间无影响,现在甲、乙两人同时射击目标一次,则目标被击中的概率是()A.16B.13C.23D.562.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为()A.0.2484B.0.25C.0.90D.0.39243.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,如果他记得密码的最后一位是偶数,则他不超过2次就按对的概率是()A.45B.35C.25D.154.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.12B.512C.14D.165.如图,A B C,,表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是()A.0.994B.0.686C.0.504D.0.4966.甲乙两名射击运动员进行射击比赛,甲中靶的概率为0.8,乙中靶的概率为0.9.甲乙各射击一次,则两人都中靶的概率为()A.0.26B.0.72C.0.8D.0.987.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是()A.0.18B.0.21C.0.39D.0.428.根据天气预报,某一天A城市和B城市降雨的概率均为0.6,假定这一天两城市是否降雨相互之间没有影响,则该天这两个城市中,至少有一个城市降雨的概率为()A.0.16B.0.48C.0.52D.0.849.甲乙两人投球命中率分别为23,35,且是否投中互不影响,两人各投球一次,恰好有一人命中的概率为( )A .12B .25C .715D .81510.若事件A 与B 相互独立,()23P A =,()14P B =,则P AB( ) A .16 B .712 C .34D .111211.5G 指的是第五代移动通信技术,是最新一代蜂窝移动通信技术,某公司研发5G 项目时遇到一项技术难题,由甲、乙两个部门分别独立攻关,已知甲部门攻克该技术难题的概率为0.8,乙部门攻克该技术难题的概率为0.7,则该公司攻克这项技术难题的概率为( ) A .0.56B .0.86C .0.94D .0.9612.甲、乙、丙三人参加学业水平测试,已知他们通过测试的概率分别为112323,,,且每人是否通过测试相互独立,则这三人中至少有一人通过测试的概率为( ) A .19B .12C .78D .89二、填空题13.世卫组织就新型冠状病毒感染的肺炎疫情称,新型病毒可能造成“持续人传人”.通俗点说就是存在A 传B ,B 又传C ,C 又传D ,这就是“持续人传人”.那么A 、B 、C 就会被称为第一代、第二代、第三代传播者.假设一个身体健康的人被第一代、第二代、第三代传播者感染的概率分别为0.9,0.8,0.7,健康的小明参加了一次多人宴会,事后知道,参加宴会的人有5名第一代传播者,3名第二代传播者,2名第三代传播者,试计算,小明参加聚会,仅和感染的10个人其中一个接触,感染的概率有多大________.14.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是________.15.在一段线路中有4个自动控制的常用开关A 、B 、C 、D ,如图连接在一起,假定在2019年9月份开关A ,D 能够闭合的概率都是0.7,开关B ,C 能够闭合的概率都是0.8,则在9月份这段线路能正常工作的概率为________.16.每次同时抛掷质地均匀的硬币4枚,抛n 次()*2n n N ,∈,各次结果相互独立,记出现至少有1枚硬币面朝上的次数为X ,若()5E X >,则n 的最小值为________.三、解答题17.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?18.袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.(1)求取球3次即终止的概率;(2)求甲取到白球的概率.19.某学校就学生对端午节文化习俗的了解情况,进行了一次20道题的问卷调查,每位同学都是独立答题,在回收的试卷中发现甲同学答对了12个,乙同学答对了16个.假设答对每道题都是等可能的,试求:(1)任选一道题目,甲乙都没有答对的概率;(2)任选一道题目,恰有一人答对的概率.20.溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为23,乙队每人回答问题正确的概率分别为123234,,,且两队各人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.21.2020年6月28日上午,未成年人保护法修订草案二审稿提请十三届全国人大常委第二十次会议审议,修改草案二审稿针对监护缺失、校园欺凌研究损害、网络沉迷等问题,进一步压实监护人、学校住宿经营者网络服务提供者等主体,加大对未成年人保护力度我校为宣传未成年保护法,特举行一次未成年人保护法知识竞赛,两人一组,每一轮竞赛中,小组两人分别答两题,若答对题数不少于3题,被称为“优秀小组”,已知甲乙两位同学组成一组,且同学甲和同学乙答对题的概率分为1p ,2p .(1)若134p =,223p =,则在第一轮竞赛中,求他们获“优秀小组”的概率;(2)若1265p p +=,且每轮比赛互不影响,则在竞赛中甲乙同学要想获得“优秀小组”次数为9次,则理论上至少要进行多少轮竞赛才行?并求此时1p ,2p 的值.22.某高校的入学面试中有4道不同的题目,每位面试者都要回答这4道题目.已知李明答对第1题、第2题、第3题、第4题的概率分别为11112345,,,,假设对这4道题目能否答对是独立的,该高校要求至少答对其中的3道题才能通过面试.用i A 表示事件“李明答对第i 道题”(1234i ,,,). (1)写出所有的样本点;(2)求李明通过面试的概率.第七章综合测试答案解析一、 1.【答案】C【解析】先转化对立事件,根据独立事件概率乘法公式以及对立事件概率公式求解,即得结果.因为目标被击中,指甲、乙两人至少有一人命中目标,其对立事件为甲、乙两人都未命中目标,所以目标被击中的概率是1121(1)(1)233---=, 故选:C本题考查独立事件概率乘法公式以及对立事件概率公式,考查基本分析求解能力,属基础题. 2.【答案】D【解析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案.由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=; 两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D .本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题. 3.【答案】C【解析】任意按最后一位数字,不超过2次就按对有两种情形,一种是按1次就按对和第一次没有按对,第二次按对,求两种情形的概率和即可;密码的最后一个数是偶数,可以为0,2,4,6,8. 按一次就按对的概率:115P =, 第一次没有按对,第二次按对的概率:2411545P =⨯= 则不超过两次就按对的概率:1225P P P =+=, 故选:C .本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式的运用,是基础题.4.【答案】B【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(1A )与仅第二个实习生加工一等品(2A )两种情况, 则1221135+=343412P A P A P A . 故选B . 5.【答案】B【解析】由题中意思可知,当A 、B 元件至少有一个在工作,且C 元件在工作时,该系统正常工作,再利用独立事件的概率乘法公式可得出所求事件的概率.由题意可知,该系统正常工作时,A 、B 元件至少有一个在工作,且C 元件在工作, 当A 、B 元件至少有一个在工作时,其概率为()()110.910.80.98--⨯-=, 由独立事件的概率乘法公式可知,该系统正常工作的概率为0.980.70.686⨯=, 故选B .本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题. 6.【答案】B【解析】利用独立事件的概率乘法公式可求得所求事件的概率. 甲乙各射击一次,则“甲中靶”与“乙中靶”相互独立, 所以,甲乙各射击一次,则两人都中靶的概率为0.80.90.72⨯=. 故选:B .本题考查利用独立事件的概率的乘法公式计算事件的概率,考查计算能力,属于基础题. 7.【答案】C【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解.解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束). 根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=.甲队以3:0获胜的概率是:20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中等题. 8.【答案】D【解析】求其对立事件两城市均未降雨的概率,进而可得结果.记A 城市和B 城市降雨分别为事件A 和事件B ,故()0.6P A =,()0.6P B =, 可得()0.4P A =,()0.4P B =,两城市均未降雨的概率为()0.40.40.16P A B ⋅=⨯=, 故至少有一个城市降雨的概率为10.160.84-=, 故选:D .本题主要考查了相互独立事件的概率公式的应用,以及对立事件的应用,属于基础题. 9.【答案】C【解析】恰有一人命中有两种情形:甲中乙不中和甲不中乙中甲命中的概率为23,不命中的概率为21133-=; 乙命中的概率为35,不命中的概率为32155-=;设恰好有一人命中的概率为P ,则22137353515P =⨯+⨯=.故选:C此题为基本概念题,考查独立事件发生的概率算法. 10.【答案】C【解析】根据事件A 与B 相互独立,则P AB P A P B ,再由P AB P A P BP AB 求解.因为事件A 与B 相互独立,且23P A ,14P B , 所以16P AB P A P B , 所以21133464P A BP AP BP AB故选:C本题主要考查独立事件的概率以及并集事件的概率,属于基础题. 11.【答案】C【解析】计算不能攻克的概率,得到答案. 根据题意:()()110.810.70.94P =---=. 故选:C .本题考查了概率的计算,意在考查学生的计算能力和应用能力. 12.【答案】D【解析】先求得三人都没通过测试的概率,由此求得三人中至少有一人通过测试的概率. 所求事件的对立事件为“三人均未通过测试”,概率为21113239⨯⨯=,故至少一人通过测试的概率为18199-=. 故选:D本小题主要考查相互独立事件概率计算,属于基础题. 二、13.【答案】0.83【解析】求出小明与第一代、第二代、第三代传播者接触的概率,利用独立事件、互斥事件的概率公式求解即可.设事件A ,B ,C 为第一代、第二代、第三代传播者接触, 事件D 为小明被感染,由已知得:()0.5P A =,()0.3P B =,()0.2P C =,()|0.9P D A =,()|0.8P D B =,()|0.7P D C =, ()()()()()()()|+||0.90.50.80.30.70.20.83P D P D A P A P D B P B P D C P C +==⨯+⨯+⨯=.∴小明参加聚会,仅和感染的10个人其中一个接触,感染的概率为0.83.故答案为:0.83.本题考查概率的求法,考查独立事件、互斥事件的概率公式以及条件概率的性质等基础知识,考查运算求解能力,是基础题. 14.【答案】0.18【解析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查. 前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108⨯⨯⨯=, 前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072⨯⨯⨯=,综上所述,甲队以4:1获胜的概率是0.1080.0720.18q =+=.由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算. 15.【答案】0.967 6【解析】先计算线路不能正常工作的概率,用1减去这个概率,求得正常工作的概率.B C ,段不能正常工作的概率为10.80.80.36-⨯=.线路不能正常工作的概率为0.30.30.36⨯⨯,故能正常工作的概率为10.30.30.360.9676-⨯⨯=.本小题主要考查相互独立事件概率计算,考查对立事件的方法计算概率,属于基础题. 16.【答案】6【解析】先计算出实验一次,至少有1枚硬币正面朝上的概率,根据二项分布期望公式列不等式,解不等式求得n 的最小值.实验一次,至少有1枚硬币正面朝上的概率为41151216⎛⎫-= ⎪⎝⎭,由题知15~,16X B n ⎛⎫ ⎪⎝⎭,则15516EX n =>,即163n >,所以正整数n 的最小值为6. 故答案为:6本小题主要考查二项分布的识别和二项分布期望的有关计算,属于中等题. 三、17.【答案】解:(1)设事件M 为“甲和乙先赛且共进行4场比赛”,则有两类:第一种是甲和乙比赛,甲胜乙,再甲与丙比赛,丙胜甲,再丙与乙比赛,乙胜丙,再进行第四场比赛; 第二种是甲和乙比赛,乙胜甲,再乙与丙比赛,丙胜乙,再丙与甲比赛,甲胜丙,再进行第四场比赛; 故所求概率()231213711135232530P M ⎛⎫⎛⎫⎛⎫=⨯-⨯+-⨯-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以甲和乙先赛且共进行4场比赛的概率为730; (2)设事件A 表示甲与乙先赛且甲获得冠军;事件B 表示甲与丙先赛且甲获得冠军;事件C 表示乙与丙先赛且甲获得冠军, 则()2323122132511135352332539P A ⎛⎫⎛⎫⎛⎫=⨯+⨯-⨯⨯+-⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ()323213312327111535325523550P B ⎛⎫⎛⎫⎛⎫=⨯+⨯-⨯-⨯+-⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;()123132212352535P C ⎛⎫=⨯⨯+-⨯⨯= ⎪⎝⎭;因为52729505>>, 所以甲与乙进行首场比赛时,甲获得冠军的概率最大.【解析】(1)将情况按照第一场比赛甲胜乙、乙胜甲分类,由独立事件的乘法公式计算出概率,再由互斥事件概率的加法公式即可得解;(2)由独立事件的乘法公式计算出概率,再由互斥事件概率的加法公式分别计算出三种情况下甲获得冠军的概率,比较大小即可得解.本题考查了互斥事件概率加法公式及独立事件概率乘法公式的应用,考查了运算求解能力与分类讨论思想,属于中等题.18.【答案】解:(1)设事件A 为“取球3次即终止”.即甲第一次取到的是黑球,接着乙取到的是黑球,甲取到的是白球,因此,()433765635P A ⨯⨯==⨯⨯(2)设事件B 为“甲取到白球”,“第i 次取到白球”为事件i A ,1,2,3,4,5i =,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球, 所以()()()()()131355P B P A A A P A P A P A ==++343343213776576543⨯⨯⨯⨯⨯⨯=++⨯⨯⨯⨯⨯⨯ 361227353535=++=. 【解析】(1)依题意甲第一次取到的是黑球,接着乙取到的是黑球,第三次取球甲取到的是白球,即可求出概率;(2)依题意甲只可能在第1次,第3次和第5次取到白球,再根据互斥事件的概率公式计算可得; 考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.属于中等题.19.【答案】记“任选一道题目,甲答对”为事件A ,“任选一道题目,乙答对”为事件B , 根据古典概型概率计算公式,得()123205P A ==,()164205P B == 所以()25P A =,()15P B =(1)“两人都没答对记为AB , 所以()()()2125525P AB P A P B ==⨯=. (2)“恰有一人答对”AB AB =所以()()()()()()()312411555525P ABAB P AB P AB P A P B P A P B =+=+=⨯+⨯=.【解析】根据古典概型求出任选一道题目,甲答对和乙答对的概率,再利用相互独立事件和互斥事件的概率,求出(1)和(2)中的每一个事件的概率.本题主要考查了古典概型,概率的加法公式和乘法公式,属于基础题.20.【答案】解:(1)记“甲队总得分为3分”为事件A ,记“甲队总得分为1分”为事件B , 甲队得3分,即三人都回答正确,其概率为()222833327P A =⨯⨯=, 甲队得1分,即三人中只有1人回答正确,其余两人都答错, 其概率为()2222222222(1)(1)(1)(1)(1)(1)3333333339P B =⨯-⨯-+-⨯⨯-+-⨯-⨯=. ∴甲队总得分为3分与1分的概率分别为827,29.(2)记“甲队得分为2分”为事件C ,记“乙队得分为1分”为事件D , 事件C 即甲队三人中有2人答对,其余1人答错, 则()2222222224(1)(1)(1)3333333339P C =⨯⨯-+⨯-⨯+-⨯⨯=, 事件D 即乙队3人中只有1人答对,其余2人答错, 则()1231231231(1)(1)(1)(1)(1)(1)2342342344P D =⨯-⨯-+-⨯⨯-+-⨯-⨯=, 由题意得事件C 与事件D 相互独立,∴甲队总得分为2分且乙队总得分为1分的概率:()()()411949P CD P C P D ==⨯=.【解析】(1)记“甲队总得分为3分”为事件A ,记“甲队总得分为1分”为事件B ,甲队得3分,即三人都回答正确,甲队得1分,即三人中只有1人回答正确,其余两人都答错,由此利用相互独立事件概率乘法公式能求出甲队总得分为3分与1分的概率.(2)记“甲队得分为2分”为事件C ,记“乙队得分为1分”为事件D ,事件C 即甲队三人中有2人答对,其余1人答错,事件D 即乙队3人中只有1人答对,其余2人答错,由题意得事件C 与事件D 相互独立,由此利用相互独立事件概率乘法公式能求出甲队总得分为2分且乙队总得分为1分的概率. 本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中等题.21.【答案】(1)由题可知,所以可能的情况有①同学甲答对1次,同学乙答对2次; ②同学甲答对2次,同学乙答对1次;③同学甲答对2次,同学乙答对2次.故所求概率2222122122222222312321322443433433P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅+⋅⋅+⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)他们在轮竞赛中获“优秀小组”的概率为()()()()()()()()22222122122211222122221221212121123P C p p C p C p C p p C p C p p p p p p p =-+-+=+-因为1265p p +=,所以()212121235P p p p p =- 因为101p ≤≤,201p ≤≤,1265p p +=,所以1115p ≤≤,2115p ≤≤,又212129225p p p p ≤+⎛⎫= ⎪⎝⎭所以12192525p p ≤≤, 令12t p p =,则2212212()335525P h t t t t ⎛⎫==-+=--+ ⎪⎝⎭19,525t ⎡⎤∈⎢⎥⎣⎦ 所以当925t =时,max 297625P =,他们小组在n 竞赛中获“优秀小组”次数ξ满足~(,)B n p ξ由max ()9np =,则96251929733625n ==≈,所以理论上至少要进行19轮比赛. 此时1265p p +=,12925p p =,1235p p ==.【解析】(1)由题意可知获“优秀小组”的情况包含三种情况,分别计算概率,再求和; (2)首先计算甲乙同学获得“优秀小组”的概率()()212121223P p p p p p p =+-,再根据1265p p +=,利用基本不等式求12p p 的范围,再将概率表示为二次函数求P 的最大值,根据()max 9np =,计算n 的最小值.本题考查独立事件概率,二项分布,最值的综合应用,重点考查读懂题意,抽象与概括能力,属于中等题型,本题第二问的关键是求出每次获得“优秀小组”的概率的最大值,并能抽象概括他们小组在n 竞赛中获“优秀小组”次数ξ满足~(,)B n p ξ.22.【答案】(1)李明能通过面试的样本空间中样本点:1231241342341234{}A A A A A A A A A A A A A A A A A ,,,,= (2)由(1)知,李明通过面试的概率()()()()()()1231241342341234P A P X A A A P X A A A P X A A A P X A A A P X A A A A ==+=+=+=+=又这4道题目能否答对是独立的,且李明答对第1题、第2题、第3题、第4题的概率分别为11112345,,,()123124P X A A A ==,()124130P X A A A ==,()134140P X A A A ==,()134160P X A A A ==,()12341120P X A A A A ==即()18P A =【解析】(1)由题意知李明通过面试的样本点有:1231241342341234A A A A A A A A A A A A A A A A ,,,,; (2)由这4道题目能否答对是独立的,且李明答对第1题、第2题、第3题、第4题的概率分别为11112345,,,,即可求得李明通过面试的概率.本题考查了概率的概念及独立事件的概念计算,由题意任意答对3个及以上的题可通过面试即可写出通过面试的所有样本点,根据基本事件的独立性,利用独立事件的乘法概率公式求样本点概率,进而求得通过面试的概率.。

北师大版数学必修一综合测试题及答案

北师大版数学必修一综合测试题及答案

1,已知函数()lg(2),()lg(2),()()().f x x g x x h x f x g x =+=-=+设 (1)求函数()h x 的定义域(2)判断函数()h x 的奇偶性,并说明理由. 解:(1)()()()lg(2)lg(2)h x f x g x x x =+=++-由 20()20x f x x +>⎧=⎨->⎩ 得22x -<< 所以,()h x 的定义域是(-2,2)()f x Q 的定义域关于原点对称()()()lg(2)lg(2)()()()h x f x g x x x g x f x h x -=-+-=-++=+=()h x ∴为偶函数2.已知函数()f x 对一切实数,x y R ∈都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =. (Ⅰ)求(0)f 的值; (Ⅱ)求()f x 的解析式;(Ⅲ)已知a R ∈,设P :当102x <<时,不等式()32f x x a +<+ 恒成立; Q :当[2,2]x ∈-时,()()g x f x ax =-是单调函数。

如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求()R A C B I (R 为全集). ,解析:(Ⅰ)令1,1x y =-=,则由已知(0)(1)1(121)f f -=--++ ∴(0)2f =-(Ⅱ)令0y =, 则()(0)(1)f x f x x -=+ 又∵(0)2f =- ∴2()2f x x x =+-(Ⅲ)不等式()32f x x a +<+ 即2232x x x a +-+<+即21x x a -+<当102x <<时,23114x x <-+<, 又213()24x a -+<恒成立故{|1}A a a =≥又()g x 在[2,2]-上是单调函数,故有112,222a a --≤-≥或 ∴{|3,5}B a a a =≤-≥或 ∴{|35}R C B a a =-<< ∴()R A C B I ={|15}a a ≤<22()2(1)2g x x x ax x a x =+--=+--3,(本小题满分12分)二次函数f (x )满足且f (0)=1.(1) 求f (x )的解析式;(2) 在区间上,y=f(x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.解:(Ⅰ) 设12,[1,)x x ∈+∞,且12x x <,则21212111()()()()f x f x x x x x -=+-+122112(1)()x x x x x x -=- 121x x ≤<Q ∴210x x -> ∴121x x >,∴1210x x ->∴122112(1)()0x x x x x x --> ∴21()()0f x f x ->,即12()()f x f x < ∴()y f x =在[1,)+∞上是增函数4,已知函数f(x)=2x +2ax +b,且f(1)=52,f(2)=174。

2024-2025年北师大版数学必修第一册第一章单元质量评估卷(带答案)

2024-2025年北师大版数学必修第一册第一章单元质量评估卷(带答案)

第一章 单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|x 2-1=0},则下列结论错误..的是( ) A .1∈A B .{-1} A C .∅⊇A D .{-1,1}=A2.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”.其名篇“但使龙城飞将在,不教胡马度阴山”(人在阵地在,人不在阵地在不在不知道),由此推断,胡马度过阴山是龙城飞将不在的什么条件?( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知集合M ={x|x(x -2)<0},N ={x|x -1<0},则下列Venn 图中阴影部分可以表示集合{x|1≤x<2}的是( )4.已知命题p :∃x ,y ∈Z ,2x +4y =3,则( ) A.p 是假命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 B.p 是假命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 C.p 是真命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 D.p 是真命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 5.已知a <0,-1<b <0,则( ) A.-a <ab <0 B .-a >ab >0C.a >ab >ab 2 D .ab >a >ab 26.已知集合A ={x |x 2+x -2≤0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +1x -2≥0 ,则A ∩(∁R B )=( ) A.(-1,2) B .(-1,1) C.(-1,2] D .(-1,1]7.“关于x 的不等式x 2-2ax +a >0的解集为R ”的一个必要不充分条件是( )A.0<a <1 B .0<a <13C.0≤a ≤1 D.a <0或a >138.若正数a ,b 满足2a +1b =1,则2a+b 的最小值为( )A.42 B .82 C.8 D .9二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.有下列命题中,真命题有( )A.∃x ∈N *,使x 为29的约数B.∀x ∈R ,x 2+x +2>0C.存在锐角α,sin α=1.5D.已知A ={a |a =2n },B ={b |b =3m },则对于任意的n ,m ∈N *,都有A ∩B =∅10.已知1a <1b<0,下列结论中正确的是( )A.a <b B .a +b <ab C.|a |>|b | D .ab <b 211.若对任意x ∈A ,1x∈A ,则称A 为“影子关系”集合,下列集合为“影子关系”集合的是( )A.{-1,1} B .⎩⎨⎧⎭⎬⎫12,2 C.{}x |x 2>1 D .{x |x >0}12.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为x =1,点B 坐标为(-1,0),则下面结论中正确的是( )A.2a +b =0B.4a -2b +c <0C.b 2-4ac >0D.当y <0时,x <-1或x >4第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.不等式-x 2+6x -8>0的解集为________.14.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7 000万元,则x 的最小值为________.15.若1a +1b =12(a >0,b >0),则4a +b +1的最小值为________.16.已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对(A ,B )叫作有序集合对,则有序集合对(A ,B )的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |1<x <2},B ={x |m -2<x <2m }. (1)当m =2时,求A ∩B ;(2)若________,求实数m 的取值范围.请从①∀x ∈A 且x ∉B ;②“x ∈B ”是“x ∈A ”的必要条件;这两个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)18.(本小题满分12分)已知p :x 2-3x -4≤0;q :x 2-6x +9-m 2≤0,若p 是q 的充分条件,求m 的取值范围.19.(本小题满分12分)已知函数f (x )=ax 2+bx ,a ∈(0,1).(1)若f (1)=2,求1a +4b的最小值;(2)若f (1)=-1,求关于x 的不等式f (x )+1>0的解集.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为y =x 2-40x +1 600,x ∈[30,50],已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)若集合A ={x |x 2+2x -8<0},B ={x ||x +2|>3},C ={x |x2-2mx +m 2-1<0,m ∈R }.(1)若A ∩C =∅,求实数m 的取值范围. (2)若(A ∩B )⊆C ,求实数m 的取值范围.22.(本小题满分12分)已知x >0,y >0,2xy =x +4y +a . (1)当a =16时,求xy 的最小值;(2)当a =0时,求x +y +2x +12y的最小值.第一章 单元质量评估卷1.答案:C解析:因为A ={x |x 2-1=0}={-1,1},所以选项A ,B ,D 均正确,C 不正确. 2.答案:A解析:因为人在阵地在,所以胡马度过阴山说明龙城飞将不在,因为人不在阵地在不在不知道,所以龙城飞将不在,不能确定胡马是否度过阴山,所以胡马度过阴山是龙城飞将不在的充分条件,结合选项,可得A 正确.3.答案:B解析:x (x -2)<0⇒0<x <2,x -1<0⇒x <1,选项A 中Venn 图中阴影部分表示M ∩N =(0,1),不符合题意;选项B 中Venn 图中阴影部分表示∁M (M ∩N )=[1,2),符合题意;选项C 中Venn 图中阴影部分表示∁N (M ∩N )=(-∞,0],不符合题意;选项D 中Venn 图中阴影部分表示M ∪N =(-∞,2),不符合题意.故选B.4.答案:A解析:由于x ,y 是整数,2x +4y 是偶数,所以p 是假命题.原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以p 的否定是“∀x ,y ∈Z ,2x +4y ≠3”.故选A.5.答案:B解析:∵a <0,-1<b <0,∴ab >0,a <ab 2<0,故A ,C ,D 都不正确,正确答案为B.6.答案:D解析:由x 2+x -2≤0,得-2≤x ≤1,∴A =[-2,1].由x +1x -2≥0,得x ≤-1或x >2,∴B =(-∞,-1]∪(2,+∞).则∁R B =(-1,2],∴A ∩(∁R B )=(-1,1].故选D.7.答案:C解析:因为关于x 的不等式x 2-2ax +a >0的解集为R ,所以函数f (x )=x 2-2ax +a 的图象始终落在x 轴的上方,即Δ=4a 2-4a <0,解得0<a <1,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集,故选C.8.答案:D解析:∵a >0,b >0,且2a +1b =1,则2a+b =⎝ ⎛⎭⎪⎫2a +b ⎝ ⎛⎭⎪⎫2a +1b =5+2ab+2ab ≥5+4=9,当且仅当2ab =2ab 即a =13,b =3时取等号,故选D.9.答案:AB解析:A 中命题为真命题.当x =1时,x 为29的约数成立;B 中命题是真命题.x 2+x +2=⎝ ⎛⎭⎪⎫x +12 2+74 >0恒成立;C 中命题为假命题.根据锐角三角函数的定义可知,对于锐角α,总有0<sin α<1;D 中命题为假命题.易知6∈A ,6∈B ,故A ∩B ≠∅.10.答案:BD解析:因为1a <1b<0,所以b <a <0,故A 错误;因为b <a <0,所以a +b <0,ab >0,所以a +b <ab ,故B 正确;因为b <a <0,所以|a |>|b |不成立,故C 错误;ab -b 2=b (a -b ),因为b <a <0,所以a -b >0,即ab -b 2=b (a -b )<0,所以ab <b 2成立,故D正确.故选BD.11.答案:ABD解析:根据“影子关系”集合的定义,可知{-1,1},⎩⎨⎧⎭⎬⎫12,2 ,{x |x >0}为“影子关系”集合,由{x |x 2>1},得{x |x <-1或x >1},当x =2时,12 ∉{x |x 2>1},故不是“影子关系”集合.故选ABD.12.答案:ABC解析:∵二次函数y =ax 2+bx +c (a ≠0)图象的对称轴为x =1,∴-b2a =1,得2a +b=0,故A 正确;当x =-2时,y =4a -2b +c <0,故B 正确;该函数图象与x 轴有两个交点,则b 2-4ac >0,故C 正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象的对称轴为x =1,点B 的坐标为(-1,0),∴点A 的坐标为(3,0),∴当y <0时,x <-1或x >3,故D 错误.故选ABC.13.答案:(2,4)(或写成{x |2<x <4}) 解析:原不等式等价于x 2-6x +8<0, 即(x -2)(x -4)<0,得2<x <4. 14.答案:20解析:把一月份至十月份的销售额相加求和,列出不等式,求解. 七月份:500(1+x %),八月份:500(1+x %)2. 所以一月份至十月份的销售总额为:3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-2.2(舍)或1+x %≥1.2,所以x min =20. 15.答案:19解析:由1a +1b =12 ,得2a +2b=1,4a +b +1=(4a +b )⎝ ⎛⎭⎪⎫2a +2b +1=8+2+8a b +2b a+1≥11+28a b ·2ba=19.当且仅当8a b =2ba,即a =3,b =6时,4a +b +1取得最小值19.16.答案:(1){6} (2)32解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,所以6∉B ,故A ={6}. (2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个;当集合A 中有2个元素时,5∉B ,2∉A ,此时有序集合对(A ,B )有5个;当集合A中有3个元素时,4∉B ,3∉A ,此时有序集合对(A ,B )有10个;当集合A 中有4个元素时,3∉B ,4∉A ,此时有序集合对(A ,B )有10个;当集合A 中有5个元素时,2∉B ,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个.综上,可知有序集合对(A ,B )的个数是1+5+10+10+5+1=32.17.解析:(1)当m =2时,B ={x |0<x <4}, 所以A ∩B ={x |1<x <2}. (2)若选择条件①,由∀x ∈A 且x ∉B 得:A ∩B =∅, 当B =∅时,m -2≥2m ,即m ≤-2; 当B ≠∅时,m -2<2m ,即m >-2m -2≥2或2m ≤1,即m ≥4或m ≤12 , 所以m ≥4或-2<m ≤12,综上所述:m 的取值范围为:m ≥4或m ≤12.若选择条件②,由“x ∈B ”是“x ∈A ”的必要条件得:A ⊆B,即⎩⎪⎨⎪⎧m -2≤12m ≥2 ,所以1≤m ≤3. 18.解析:由x 2-3x -4≤0,解得-1≤x ≤4, 由x 2-6x +9-m 2≤0,可得[x -(3+m )][x -(3-m )]≤0,① 当m =0时,①式的解集为{x |x =3};当m <0时,①式的解集为{x |3+m ≤x ≤3-m }; 当m >0时,①式的解集为{x |3-m ≤x ≤3+m };若p 是q 的充分条件,则集合{x |-1≤x ≤4}是①式解集的子集.可得⎩⎪⎨⎪⎧m <0,3+m ≤-1,3-m ≥4 或⎩⎪⎨⎪⎧m >0,3-m ≤-1,3+m ≥4,解得m ≤-4或m ≥4.故m 的取值范围是(-∞,-4]∪[4,+∞). 19.解析:(1)由f (1)=2可得:a +b =2, 因为a ∈(0,1),所以2-b ∈(0,1)⇒1<b <2,所以1a +4b =12 ×(a +b )⎝ ⎛⎭⎪⎫1a +4b =12 ×⎝ ⎛⎭⎪⎫1+4+b a +4a b ≥12 ×⎝ ⎛⎭⎪⎫5+2b a ·4a b =92,当且仅当b a =4a b 时取等号,即当且仅当a =23 ,b =43 时取得最小值为92.(2)由f (1)=-1可得:a +b =-1, 则f (x )+1>0化为:ax 2-(a +1)x +1=(ax -1)(x -1)>0,因为0<a <1,所以1a>1,则解不等式可得x >1a或x <1,则不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1a或x <1 .20.解析:(1)当x ∈[30,50]时,设该工厂获利为S 万元,则S =20x -(x 2-40x +1 600)=-(x -30)2-700,所以当x ∈[30,50]时,S 的最大值为-700,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损.(2)由题知,二氧化碳的平均处理成本P =y x=x +1 600x-40,x ∈[30,50],当x ∈[30,50]时,P =x +1 600x-40≥2x ·1 600x-40=40,当且仅当x =1 600x,即x =40时等号成立,所以当处理量为40吨时,每吨的平均处理成本最少.21.解析:(1)由已知可得A ={x |-4<x <2},B ={x |x <-5或x >1},C ={x |m -1<x <m +1}.若A ∩C =∅,则m -1≥2或m +1≤-4, 解得m ≥3或m ≤-5.所以实数m 的取值范围为{m |m ≤-5或m ≥3}. (2)结合(1)可得A ∩B ={x |1<x <2}.若(A ∩B )⊆C ,即{x |1<x <2}⊆{x |m -1<x <m +1}, 则⎩⎪⎨⎪⎧m -1≤1m +1≥2,解得1≤m ≤2.所以实数m 的取值范围为{m |1≤m ≤2}.22.解析:(1)当a =16时,2xy =x +4y +16≥2x ·4y +16=4xy +16, 即2xy ≥4xy +16, 即(xy +2)(xy -4)≥0, 所以xy ≥4,即xy ≥16,当且仅当x =4y =8时等号成立, 所以xy 的最小值为16.(2)当a =0时,2xy =x +4y ,即12y +2x=1,所以x+y+2x+12y=x+y+1=(x+y)⎝⎛⎭⎪⎫2x+12y+1=72+2yx+x2y≥72+22yx·x2y=112,当且仅当2yx=x2y,即x=3,y=32时等号成立,所以x+y+2x+12y的最小值为112.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修一模块综合检测 数 学 试 题一、 选择题(本大题共10小题,每小题5分,共50分,在每小题给的四个选项中,只一个是符合题目要求的).1.已知集合M ={0,1,2,3,4},N={1,3,5},P=M∩N,则P 的子集共有 ( ) A.2个 B.4个 C .6个 D .8个2.函数()lg3f x x =-的定义域是( ) A.(0,2)B .[0,2] C.[0,2)ﻩ D.(0,2]3.下列函数中,值域是(0,)+∞的是( )A . xy -=131)( B. 12-=x y C. xy -=215D x y 21-=4.若偶函数)(x f 在),0(+∞上是减函数,则下列关系式中成立的是( )A .)43()32()21(f f f >-> B.)32()43()21(f f f >->C .)32()21()43(f f f >-> ﻩD .)21()32()43(f f f >>-5.设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =( ) A.3- B. 1- C. 1D.3 6.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( ﻩ)A.0<a<b<1<d<c B.0<b<a <1<c <d C.0<d <c<1<a<b ﻩD.0<c<d <1<a <b7.函数2()1(0,1)x f x aa a -=+>≠ 的图象恒过定点( )A. (0,1) B. (0,2) C . (2,1) D . (2,2)8.已知log (1)()(3) 1 (1)a x x f x a x x ≥⎧=⎨--<⎩ 是定义在R 求a的取值范围是( ) A.[2,3) B .(1,3) C.(1,)+∞ D .(1,2] x ( )xA.(0,1)ﻩ B .(1,2)ﻩ C.(,)23 ﻩﻩ D.(,)3410.设函数()log (01)a f x x a =<<的定义域为[,](m n m <)n ,值域为[0,1],若n m -的最小值为13,则实数a的值为( ) A. 14 B. 14或23C .23ﻩD . 23或34二、填空题(本大题共5小题,每小题5分,共25分).11.计算= .12.若a x f x++=131)(是奇函数,则实数=a 13.若定义域为R 的偶函数f(x )在[0,+∞)上是增函数, 且f (21)=0,则满足不等式 f(log 4x)>0的x的集合是 . 14.已知函数()xf ex =,则()2f =15.函数()x f 的定义域为A ,若A x x ∈21,且()()21x f x f =时总有21x x =,则称()x f 为单函 数.例如,函数()()R ∈+=x x x f 1是单函数.下列命题:①函数()()R ∈-=x x x x f 22是单函数;②函数()⎩⎨⎧<-≥=2,2,2,log 2x x x x x f 是单函数;③若()x f 为单函数,A x x ∈21,且21x x ≠,则()()21x f x f ≠;④函数()x f 在定义域内某个区间D 上具有单调性,则()x f 一定是单函数.其中的真命题是 (写出所有真命题的编号).三、解答题(本大题共6小题,解答应写出必要的文字说明、证明过程及演算步骤;共75分).16.(本小题12分)已知集合A ={x|a -1<x<2a+1},B ={x|0<x<1},若A∩B=φ,求实数a 的取值范围.17.(本小题12分)设函数2,(0)()3,(0)x bx c x f x x x ⎧++<=⎨-+≥⎩,若,1)2(),0()4(-=-=-f f f (I)求函数)(x f 的解析式;(II)画出函数)(x f 的图象,并说出函数)(x f 的单调区间. 18.(本小题12分)已知函数()f x 定义域为(0,+∞)且单调递增,满足f (4)=1,()()()f xy f x f y =+ (I)求f (1)的值;探究用()f x 和n 表示f (nx )的表达式(n ∈N *); (II )若()f x + f (x -3)≤1,求x 的取值范围.19.(本小题12分)设当1≤x 时,函数1422x x y +=-+的值域为D ,且当x D ∈时,恒有2()54fx x k x x=++≤,求实数k 的取值范围.20.(本小题13分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当420x ≤≤时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年). (I )当020x <≤时,求函数()v x 的表达式;(II)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大,并求出最大值.21.(本小题14分)已知1()log 1ax f x x +=-(10≠>a a 且). (I )判断函数)(x f 的奇偶性,并证明; (II)讨论()x f 的单调性;(III )是否存在实数a ,使得()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m --,若存在,求出实数a 的取值范围;若不存在,则说明理由.参考答案题号 1 2 3 4 5 6 7 8 9 10 答案BDAAADDACD二、填空题(5×5=25分) 11. 6 12.21-13.1(2,)(0,)2+∞ 14. ln 2 15. ③ 三、解答题(本大题共6小题,解答应写出必要的文字说明、证明过程及演算步骤;共75分)16.(本小题12分)已知集合A ={x|a -1<x<2a +1},B={x|0<x<1},若A∩B=φ,求实数a 的取值范围.解:∵A∩B=Ø,当A=Ø时,有2a+1≤a -1∴a≤-2;当A≠Ø时,有2a+1>a-1∴a>-2.又∵A∩B=Ø,则有2a +1≤0或a-1≥1∴a≤- 12或a≥2, ∴-2<a≤-12或a≥2,综上可知:a≤- 12或a≥2.17.(本小题12分)设函数2,(0)()3,(0)x bx c x f x x x ⎧++<=⎨-+≥⎩,若,1)2(),0()4(-=-=-f f f(I)求函数)(x f 的解析式;(I I)画出函数)(x f 的图象,并说出函数)(x f 的单调区间. 解:(I ),1)2(),0()4(-=-=-f f f ∴3416=+-c b ,124-=+-c b 解得3,4==c b ∴⎩⎨⎧≥+-<++=0,30,34)(2x x x x x x f(II)图象略,由图象可知单调区间为: (]2,-∞-,(]0,2-,()+∞,0,其中增区间为(]0,2-,减区间为(]2,-∞-,().,0+∞18.(本小题12分)已知函数()f x 定义域为(0,+∞)且单调递增,满足f (4)=1,()()()f xy f x f y =+ (I )求f (1)的值;探究用()f x 和n 表示f (nx )的表达式(n ∈N*); (II )若()f x + f (x -3)≤1,求x 的取值范围;解:(I)令x =1,y =4,则f (4)=f (1×4)=f (1)+f (4)∴f (1)=0∵()()()f xy f x f y =+∴()()()n n f x f x x x x nf x =••••=个(II)()f x +f (x -3)=f [x (x -3)]≤1=f (4),又()f x 在(0,+∞)上单调递增∴ (3)414303430x x x x x x x -≤⎧-≤≤⎧⎪->⇒⇒<≤⎨⎨>⎩⎪>⎩∴ x ∈(3,4]19.(本小题12分)设当1≤x 时,函数1422x x y +=-+的值域为D ,且当x D ∈时,恒有2()54fx x k x x=++≤,求实数k 的取值范围. 解:令t=2x ,由x≤1,则t∈(0,2],则原函数y=t 2-2t+2=(t-1)2+1∈[1,2],即D=[1,2], 由题意:f(x )=x 2+kx+5≤4x ,法1:则x2+(k-4)x+5≤0当x ∈D 时恒成立21(4)502(4)250k k +-+≤⎧∴⎨+-+≤⎩212k k ≤-⎧⎪∴⎨≤-⎪⎩∴ k ≤-2. 法2:则在x D ∈时恒有5()4k x x≤-++成立,故m i n5()42k x x⎡⎤≤-++=-⎢⎥⎣⎦ 20. (本小题13分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4(尾/立方米)时,v 的值为2(千克/年);当420x ≤≤时,v 是x 的一次函数;当x 达到20(尾/立方米)时,因缺氧等原因,v 的值为0(千克/年). (I )当020x <≤时,求函数()v x 的表达式;(I I)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大,并求出最大值.解:(I )由题意:当04x <≤时,()2v x =;当420x <≤时,设()b ax x v +=,显然()b ax x v +=在[4,20]是减函数,由已知得20042a b a b +=⎧⎨+=⎩,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩故函数()x v =**2,04,15,420,82x x N x x x N⎧<≤∈⎪⎨-+≤≤∈⎪⎩(II )依题意并由(I)可得()=x f *2*2,04,15,420,.82x x x N x x x x N ⎧<≤∈⎪⎨-+≤≤∈⎪⎩ 当04x ≤≤时,()x f 为增函数,故()max (4)f x f ==428⨯=;当420x ≤≤时,()22221511100(20)(10)82888f x x x x x x =-+=--=--+,()max (10)12.5f x f ==. 所以,当020x <≤时,()x f 的最大值为12.5.21.(本小题14分)已知1()log 1ax f x x +=-(10≠>a a 且). (I )判断函数)(x f 的奇偶性,并证明; (II)讨论()x f 的单调性;(III)是否存在实数a ,使得()f x 的定义域为[],m n 时,值域为[]1log ,1log a a n m --,若存在,求出实数a 的取值范围;若不存在,则说明理由. 解:(I)由101x x +>-得:1x <-或1x > .所以,函数()f x 的定义域为(,1)(1,)-∞-+∞. 又111()log log log ()111a a a x x x f x f x x x x -+-+-===-=---+-()f x ∴为奇函数.(II)任取12,(1,)x x ∈+∞,且12x x <,则120x x -<.因为12211212112()011(1)(1)x x x x x x x x ++--=>---- 所以12121111x x x x ++>--,当1a >时,所以121211log log 11a a x x x x ++>--,故12()()f x f x >,所以,函数()x f 在区间(1,)+∞上单调递减.,同理可证:当01a <<时,函数()x f 在区间(,1)-∞-上单调递增. (III )假设存在实数a 满足题目条件.由题意得:0,0m n >>,又[],(,1)(1,)m n ⊆-∞-+∞,1m n∴<<又1log 1log a a n m-<-,log log a a m n ∴>,1a ∴>.故由(II)得:函数()x f 在区间(1,)+∞上单调递减.所以,函数()x f 在区间[],m n 上单调递减.故()1log ()1log a a f m m f n n =-⎧⎨=-⎩,所以1log log 11log log1a a a am am m n a n n+⎧=⎪⎪-⎨+⎪=⎪-⎩,所以22(1)0(1)0m a m a n a n a ⎧+-+=⎨+-+=⎩,,m n ∴是方程2(1)0x a x a +-+=的两个不同的实根.故方程2(1)0x a x a +-+=在区间(1,)+∞上有两个不同的实根.则2(1)40112(1)0a a a f ⎧∆=-->⎪-⎪->⎨⎪>⎪⎩,解得:3a >+又1a >, 所以,3a >+,满足题目条件的实数a 存在,实数a的取值范围是(3)++∞.。

相关文档
最新文档