六年级奥数分数大小的比较

合集下载

小学数学奥数基础教程(六年级)目30讲全[1]

小学数学奥数基础教程(六年级)目30讲全[1]

小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。

比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。

对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。

第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。

由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。

下面我们介绍另外几种方法。

1.“通分子”。

当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。

如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。

2.化为小数。

这种方法对任意的分数都适用,因此也叫万能方法。

但在比较大小时是否简便,就要看具体情况了。

3.先约分,后比较。

有时已知分数不是最简分数,可以先约分。

4.根据倒数比较大小。

5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。

小学五六年级奥数培优——分数的问题(word解析版)

小学五六年级奥数培优——分数的问题(word解析版)

小学五六年级奥数培优——分数的问题【知识点梳理】1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2.分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

【教学重难、点】一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。

②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③由整数部分和分数部分组成的分数叫做带分数。

2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。

③异分母分数,先化成同分母分数(分数单位相同),再进行比较。

(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。

(一般保留三位小数。

)3、分数和小数比较大小:一般把分数变成小数后比较更简便。

六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。

小学六年级奥数-第四章-分数的比较大小

小学六年级奥数-第四章-分数的比较大小

第四章分数大小的比较知识要点分数大小的比较方法有很多,主要有通分、倒数比较、相减比较、相除比较、交叉相乘等。

通分:(1)统一分母,比较分子,分子越大分数越大。

(2)统一分子,比较分母,分母越小分数越大.倒数比较:倒数大的分数小于倒数小的分数。

相减比较:有两个分数ba与dc,若ba-dc>0,则ba>dc;若ba-dc<0,则ba<dc。

相除比较:分数ba与dc,若ba÷dc的商为真分数,则ba<dc;若商为假分数,则ba>dc。

交叉相乘:分数ba与dc,若bc>ad,则ba>dc。

除了以上几种方法,还有用“1”减法、公式法、化小数比较等等。

典例巧解例1 有五个分数23,58,1523,1017,1219,请按从小到大的顺序排列。

点拨此题若统一分母比较麻烦,而分子的最小公倍数很容易找出为60,故统一分子。

解23=6090,58=6096,1523=6092,1017=60102,1219=6095,因为60102<6096<6095<6092<6090,所以1017<58<1219<1523<23.例2 比较99999959999997和66666616666663的大小。

点拨一可利用求倒数的方法比较。

解99999959999997的倒数是99999979999995=1+29999995,66666616666663的倒数是66666636666661=1+26666661比较倒数右边的结果知1+26666661>1+29999995,所以66666636666661>99999979999995,即99999959999997>66666616666663。

点拨二由于这两个分数的分子和分母都很接近,且都相差2,可以找到一个标准数。

这两个分数的大小都比1略小,则可用“1”做减法.解99999959999997=1-29999997,66666616666663=1-26666663。

由于29999997<26666663,在被减数相同的情况下,减数越小,说明差越大,所以99999959999997>66666616666663。

小学奥数教程-等差数列计算题1 (含答案)

小学奥数教程-等差数列计算题1 (含答案)

本讲是在分数计算方面技巧的基础上,进一步认识小数、分数,只是从比较大小方面认识它们,这一讲主要介绍一些比较较为复杂的小数、分数大小的方法,主要有通分子、通分母、倒数法、放缩法等。

一、小数的大小比较常用方法为方便比较,往往把这些小数排成一个竖列,并在它们的末尾添上适当的“0”,使它们都变成小数位数相同的小数.(如果是循环小数,就把它改写成一般写法的形式)二、分数的大小比较常用方法⑴通分母:分子小的分数小. ⑵通分子:分母小的分数大. ⑶比倒数:倒数大的分数小.⑷与1相减比较法:分别与1相减,差大的分数小.(适用于真分数) ⑸重要结论:①对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大; ②对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大. ⑹放缩法在实际解题的过程中,我们还会用到其它一些思路!同学们要根据具体情况展开思维!三、数的估算时常用方法(1)放缩法:为求出某数的整数部分,设法放大或缩小.使结果介于某两个接近数之间,从而估算结果. (2)变换结构:将原来算式或问题变形为便于估算的形式.模块一、两个数的大小比较【例 1】 如果a =20052006,b = 20062007,那么a ,b 中较大的数是 【考点】两个数的大小比较 【难度】2星 【题型】填空 【关键词】希望杯,五年级,一试 【解析】 方法一:<与1相减比较法>1- 20052006= 12006;1- 20062007= 12007.因为12006> 12007,所以b 较大;方法二:<比倒数法>因为1120052006>,所以2006200720052006>,进而2005200620062007<,即a b <; 方法三:两个真分数,如果分子和分母相差相同的数,分子和分母都大的分数比较大,所以b 大【答案】b 例题精讲知识点拨教学目标比较与估算【巩固】试比较19951998和19461949的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】19951998>19461949【答案】19951998>19461949【巩固】比较444443444445和555554555556的大小【考点】两个数的大小比较【难度】2星【题型】填空【解析】因为44444321444445444445-=,55555421555556555556-=,显然22444445555556>,根据被减数一定,减数越大差越小的道理,有:444443555554 444445555556<【答案】444443555554 444445555556<【例 2】如果A=111111110222222221,B=444444443888888887,A与B中哪个数较大?【考点】两个数的大小比较【难度】3星【题型】填空【关键词】迎春杯,决赛【解析】方法一:观察可以发现A、B都很接近12,且比它小.我们不防与12比较.1 2-A12222222221=⨯,12-B=12888888887⨯,12-B<12-A,即B比A更接近12,换句话说B>A .方法二:11111111011111111044444444404444444432222222212222222214888888884888888887A B⨯===<=⨯,即A B<.方法三:112111111110A=,112444444443B=显然11A B>,则A B<【答案】B【巩固】如果222221333331,222223333334A B==,那么A和B中较大的数是.【考点】两个数的大小比较【难度】2星【题型】填空【关键词】祖冲之杯【解析】222221666663666662333331222223666669666668333334A B==>==,即A大【答案】A【巩固】试比较1111111和111111111的大小【考点】两个数的大小比较【难度】3星【题型】填空【解析】方法一:观察可知,这两个分数的分母都比分子的10倍多1.对于这样的分数,可以利用它们的倒数比较大小.1111111的倒数是1÷1111111=110111,111111111的倒数是1÷11111111110=11111,我们很容易看出101111>1011111,所以1111111<111111111;方法二:111111101110111111*********⨯==⨯,两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大,所以11101111,1111011111<即1111111.111111111< 【答案】1111111.111111111<【例 3】 在 a =20032003×2002和 b =20022003×2003中,较大的数是______ ,比较小的数大______ 。

六年级上册数学试题-奥数拔高专题《分数》全国通用版

六年级上册数学试题-奥数拔高专题《分数》全国通用版

小学六年级奥数拔高专题《分数》1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

一、分数与除法的关系,真分数和假分数1、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

2、真分数和假分数:①分子比分母小的分数叫做真分数,真分数小于1。

②分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③由整数部分和分数部分组成的分数叫做带分数。

2、假分数与带分数的互化:①把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

②把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

二、分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

2、分数的大小比较:①同分母分数,分子大的分数就大,分子小的分数就小;②同分子分数,分母大的分数反而小,分母小的分数反而大。

③异分母分数,先化成同分母分数(分数单位相同),再进行比较。

(依据分数的基本性质进行变化)三、约分(最简分数)1、最简分数:分子和分母只有公因数1的分数叫做最简分数。

2、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(并不是一定要把分数化成与它相等的最简分数才叫约分;但一般要约到最简分数为止)注意:分数加减法中,计算结果能约分的,一般要约分成最简分数。

五、分数和小数的互化:1、小数化分数:一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几??,能约分的必须约成最简分数;2、分数化小数:用分子除以分母,除不尽的按要求保留几位小数。

(一般保留三位小数。

)3、分数和小数比较大小:一般把分数变成小数后比较更简便。

六、分数的加法和减法 1、真分数加减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。

分数大小比较方法口诀

分数大小比较方法口诀

分数大小比较方法口诀在学习数学的过程中,我们经常会遇到分数的大小比较问题。

分数的大小比较是数学中的一个基础知识点,也是我们学习数学的重要内容之一。

下面,我将为大家介绍一些分数大小比较的方法口诀,希望能够帮助大家更好地掌握这一知识点。

一、同分母比较。

1. 同分母比较大小,分子大,分数大。

当两个分数的分母相等时,我们只需要比较它们的分子大小即可。

分子大的分数就是大的分数。

例如,比较1/4和3/4的大小,由于它们的分母相等,所以只需要比较它们的分子大小,3/4大于1/4,所以3/4大于1/4。

二、同分子比较。

1. 同分子比较大小,分母大,分数小。

当两个分数的分子相等时,我们只需要比较它们的分母大小即可。

分母大的分数就是小的分数。

例如,比较2/5和2/7的大小,由于它们的分子相等,所以只需要比较它们的分母大小,2/5小于2/7,所以2/5小于2/7。

三、异分母比较。

1. 通分后比较大小,分子大,分数大。

当两个分数的分母不相等时,我们需要先将它们通分,然后再比较它们的分子大小。

分子大的分数就是大的分数。

例如,比较1/3和2/5的大小,我们先将它们通分为5分之15和6分之15,然后再比较它们的分子大小,6分之15大于5分之15,所以2/5大于1/3。

2. 通分后比较大小,分子小,分数小。

同样是异分母比较,如果分子小的话,那么分数就小。

例如,比较2/7和3/8的大小,我们先将它们通分为16分之112和14分之112,然后再比较它们的分子大小,14分之112小于16分之112,所以3/8小于2/7。

以上就是关于分数大小比较的方法口诀,希望对大家有所帮助。

通过掌握这些方法口诀,我们可以更快地比较分数的大小,提高解题效率。

在学习数学的过程中,我们还需要多做练习,加深对分数大小比较的理解,从而更好地掌握这一知识点。

希望大家能够认真学习,取得更好的成绩。

小学六年级奥数 第四章 分数的比较大小

小学六年级奥数 第四章 分数的比较大小

第四章分数大小的比较知识要点分数大小的比较方法有很多,主要有通分、倒数比较、相减比较、相除比较、交叉相乘等。

通分:(1)统一分母,比较分子,分子越大分数越大。

(2)统一分子,比较分母,分母越小分数越大。

倒数比较:倒数大的分数小于倒数小的分数。

相减比较:有两个分数ba与dc,若ba-dc>0,则ba>dc;若ba-dc<0,则ba<dc。

相除比较:分数ba与dc,若ba÷dc的商为真分数,则ba<dc;若商为假分数,则ba>dc。

交叉相乘:分数ba与dc,若bc>ad,则ba>dc。

除了以上几种方法,还有用“1”减法、公式法、化小数比较等等。

典例巧解例1 有五个分数23,58,1523,1017,1219,请按从小到大的顺序排列。

点拨此题若统一分母比较麻烦,而分子的最小公倍数很容易找出为60,故统一分子。

解23=6090,58=6096,1523=6092,1017=60102,1219=6095,因为60102<6096<6095<6092<6090,所以1017<58<1219<1523<23。

例2 比较99999959999997和66666616666663的大小。

点拨一可利用求倒数的方法比较。

解99999959999997的倒数是99999979999995=1+29999995,66666616666663的倒数是66666636666661=1+26666661比较倒数右边的结果知1+26666661>1+29999995,所以66666636666661>99999979999995,即99999959999997>66666616666663。

点拨二由于这两个分数的分子和分母都很接近,且都相差2,可以找到一个标准数。

这两个分数的大小都比1略小,则可用“1”做减法。

解99999959999997=1-29999997,66666616666663=1-26666663。

由于29999997<26666663,在被减数相同的情况下,减数越小,说明差越大,所以99999959999997>66666616666663。

小学六年级奥数专项练习24 比较大小

小学六年级奥数专项练习24  比较大小

小学六年级奥数专项练习专题24 比较大小【理论基础】我们已经掌握了基本的比较整数、小数、分数大小的方法。

本周将进一步研究如何比较一些较复杂的数或式子的值的大小。

解答这种类型的题目,需要将原题进行各种形式的转化,再利用一些不等式的性质进行推理判断。

如:a >b >0,那么a 的平方>b 的平方;如果a >b >0,那么1a <1b ;如果ab >1,b >0,那么a >b等等。

比较大小时,如果要比较的分数都接近1时,可先用1减去原分数,再根据被减数相等(都是1),减数越小,差越大的道理判断原分数的大小。

如果两个数的倒数接近,可以先用1分别除以这两个数。

再根据被除数相等,商越小,除数越大的道理判断原数的大小。

除了将比较大小转化为比差、比商等形式外,还常常要根据算式的特点将它作适当的变形后再进行判断。

例1比较777773777778 和888884888889的大小。

这两个分数的分子与分母各不相同,不能直接比较大小,使用通分的方法又太麻烦。

由于这里的两个分数都接近1,所以我们可先用1分别减去以上分数,再比较所得差的大小,然后再判断原来分数的大小。

因为1-777773777778 =5777778 ,1-888884888889 =58888895777778 >5888889 所以777773777778 <888884888889。

练习11、 比较77777757777777 和66666616666663的大小。

2、 将9876598766 ,98769877 ,987988 ,9899 按从小到大的顺序排列出来。

3、 比较235861235862 和652971652974的大小。

例2比较1111111 和111111111哪个分数大?可以先用1分别除以这两个分数,再比较所得商的大小,最后判断原分数的大小。

因为1÷1111111 =1111111 =1011111÷111111111 =111111111 =1011111101111 >1011111 所以1111111 <111111111练习21、 比较A =3331666 和B =33166 的大小2、 比较111111110222222221 和444444443888888887 的大小3、 比较88888878888889 和99999919999994 的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数大小的比较
同学们已经熟悉了整数、小数的大小比较的方法,而对于两个不同的分数,有分母相同、分子相同以及分子、分母都不相同三种情况,其中前两种情况下的分数大小的比较比较简单,方法是:分母相同的两个分数,分子大的那个分数较大;分子相同的两个分数,分母小的那个分数较大。

第三种情况,即分子、分母都不相同的两个分数的大小比较,我们可以应用分数的基本性质,把分母通分,化成分母相同但大小不变的两个分数来进行比较。

但有时候用分母通分的方法比较大小,计算起来很复杂,这时候我们就可以考虑应用分数的基本性质,把这些分数化成分子相同但大小不变的分数来比较大小,这就是分子通分法。

在实际的计算中我们还会遇到一些分数,无论是用通分子还是通分母的方法比较都不简单,那我们会选择倒数比较法。

倒数越大,原分数越小;倒数越小,原分数越大。

在比较分数大小时还有一种作差(和)比较法。

做差比较时,如果减去的这个分数小,那么所得的差就大,原来这个分数的值就大;作和比较时,如果加上的这个分数小,则和小,这个分数就小,加上的这个分数大,则和大,这个分数就大。

例1、比较分数

的大小
例2、将下列分数按由大到小的顺序排列。



练习一:
1、比较下列各组分数的大小
(1)

(2)

2、四个分数



中,哪个分数最大?哪个分数最小?
3、把下面的分数按照从小到大的顺序排列。




4、将下面的分数按照从大到小的顺序排列。





5、若A=12344×98766,B=12345×98765,比较A和B的大小
6、将下列分数按照从小到大的顺序连接起来。




例3、比较

的大小
例4、比较下列三个分数的大小。



练习2、
1、选用适当的方法,比较下列各组分数的大小
(1)

(2)

(3)

(4)

2、比较分数

的大小
3、把下面的几个分数按照从大到小的顺序排列。




4、比较下列三个分数的大小。



5、用倒数比较法比较

的大小。

6、原乘式是4.75×N,误写成4.75×N后,与原结果相差0.5。

问:原结果是什么值?
例5、比较分数

的大小。

例6、比较分数

的大小。

练习3、
1、比较分数

的大小。

2、比较分数

的大小。

3、比较下列每组分数的大小。

(1)

(2)

(3)

(4)

4、把下面的分数按照从大到小的顺序排列。

2
,2
,2
5、比较
×
×
×
×…×

的大小。

继续阅读。

相关文档
最新文档