模具氮化十种缺陷分析

合集下载

模具钢热处理十种组织缺陷分析及对策.

模具钢热处理十种组织缺陷分析及对策.

模具钢热处理十种组织缺陷分析及对策王荣滨(南弯工具厂江西330004摘要讨论了模具钢十种热处理组织缺陷及消除方法,可产生明显经济效益和社会效益。

关键词模具钢组织缺陷对策Abstract This paper analyzes ten kinds of microstruture defect of heat treatment moldsteel,and it also gives the relative solutions to avoid defects,which can obviously bringabout the economic benefit.K eyw ords mold steel microstructure defect countermeasures钢的物理性能、化学性能和力学性能决定钢的热处理组织,正常组织赋予钢产品优异性能和高寿命;热处理组织缺陷恶化钢的性能,降低模具产品质量和使用寿命,甚至产生废品和发生事故。

因种种原因,钢热处理主要有十种组织缺陷,分析原因,采取对策,提高模具使用寿命,有显著技术经济效益。

1奥氏体晶粒粗大钢奥氏体晶粒定为13级,1级最粗,13级最细。

1~3级为粗晶粒,4~6级为中等晶粒,7~9级为细晶粒,10~13级为超细晶粒。

晶粒愈细,钢的强韧性愈佳,淬火易得到隐晶马氏体;晶粒愈粗,钢的强韧性愈差,淬火易得到脆性大的粗马氏体。

实践证明,奥氏体形成后,随着温度升高和长时间保温,奥氏体晶粒急剧长大。

当加热温度一定时,快速加热奥氏体晶粒细小;慢速加热,奥氏体晶粒粗大。

奥氏体晶粒随钢中W、Mo、V元素增加而细化,随钢中C、Mn元素增加而增大。

钢最终淬火前未经预处理,奥氏体晶粒愈粗化,淬火得粗马氏体,强韧性低,脆性大。

仪表跑温,晶粒粗化,降低晶粒之间结合力,恶化力学性能。

对策—合理选择加热温度和保温时间。

加热温度过低,起始晶粒大,相转变缓慢;加热温度过高,起始晶粒细,长大倾向大,得到粗大奥氏体晶粒。

氮化处理的缺陷及原因分析.doc

氮化处理的缺陷及原因分析.doc

一、引言模具进行氮化处理可显著提高模具表面的硬度、耐磨性、抗咬合性、抗腐蚀性能和抗疲劳性能。

由于渗氮温度较低,一般在500-650℃范围内进行,渗氮时模具芯部没有发生相变,因此模具渗氮后变形较小。

一般热作模具钢(凡回火温度在550-650℃的合金工具钢)都可以在淬火、回火后在低于回火温度的温度区内进行渗氮;一般碳钢和低合金钢在制作塑料模时也可在调质后的回火温度下渗氮;一些特殊要求的冷作模具钢也可在氮化后再进行淬火、回火热处理。

实践证明,经氮化处理后的模具使用寿命显著提高,因此模具氮化处理已经在生产中得到广泛应用。

但是,由于工艺不正确或操作不当,往往造成模具渗氮硬度低、深度浅、硬度不均匀、表面有氧化色、渗氮层不致密、表面出现网状和针状氮化物等缺陷,严重影响了模具使用寿命。

因此研究模具渗氮层缺陷、分析其产生的原因、探讨减少和防止渗氮缺陷产生的工艺措施,对提高模具的产品质量,延长使用寿命具有十分重要的意义。

二、模具渗氮层硬度偏低模具渗氮表层硬度偏低将会降低模具的耐磨性能,大大减少渗氮模具的使用寿命。

模具渗氮层硬度偏低的原因(1)渗氮模具表层含氮量低。

这是由于渗氮时炉温偏高或者在渗氮第一阶段的氨分解率过高,即炉内氮气氛过低。

(2)模具预先热处理后基体硬度太低。

(3)渗氮炉密封不良、漏气或初用新的渗氮罐。

预防措施:适当降低渗氮温度,对控温仪表要经常校正,保持适当的渗氮温度。

模具装炉后应缓慢加热,在渗氮第一阶段应适当降低氨分解率。

渗氮炉要密封,对漏气的马弗罐应及时更换。

新渗氮罐要进行预渗氮,使炉内氨分解率达到平稳。

对因渗氮层含氮量较低的模具可进行一次补充渗氮,其渗氮工艺为:渗氮温度520℃ ,渗氮时间8~10h,氨分解率控制在20%-30%。

在模具预先热处理时要适当降低淬火后的回火温度,提高模具的基体硬度。

三、模具渗氮层浅模具渗氮层浅将会缩短模具硬化层耐磨寿命。

模具渗氮层偏浅的原因:(1)模具渗氮时间太短、渗氮温度偏低、渗氮炉有效加热区的温度分布不均匀、渗氮过程第一阶段氮浓度控制不当(氨分解率过高或过低)等。

十大铸件不良现象及原因教育资料

十大铸件不良现象及原因教育资料

铸件不良现象及产生的原因2.成因:1)铁水浇注温度太低或浇注不足。

2)模型设计中,如水口太小,入水慢。

3)浇注之铁水压力不足,薄壁处或拐角处铁水不易成形。

4)浇注分层,多次浇注。

5)液流流头产生了凝固堵塞或流头氧化造成两股流头不能融合在一起第一种:冷隔3.对策:①提高浇注温度,增强铁水的流动性。

②合理的设置入水口的位置,避免距离浇口较远部位因铁水氧化和降温出现冷隔。

③保证排气通畅,降低冲型阻力。

④提高冲型速度,增加冲型力。

⑤避免铁水氧化。

⑥避免断续浇注。

⑦多处入水时,保证铁水交汇处铁液具有较高温度。

1. 现象:铸件主体有裂纹状的间隙或断流,不完整的位置多呈现冷硬的圆弧面,外观较为光洁。

第二种:砂(渣)眼1.原因:流路或模具的表面光洁度或拔模斜度小对策:1、避免生产使用的模板表面生锈。

2、提高模具的质量,减少补土的使用;模具上的补土应完整、平滑。

3、模具的使用和存放要小心,避免模具表面的碰伤。

4、增加拔模斜度。

现象:在铸件表面上出现分布不均匀的小空洞,通常呈现不规整,深浅不一且内部较不光洁,无冷口现象。

2 原因——流路设计不合理,浇注时铁水的冲刷形成砂眼。

对策:1、改变入水位置,避免入水严重冲击砂型。

2、改变入水口面积,降低铁水的冲刷力。

3、制作压边或采用综合式浇注系统,提高浇注系统的挡渣效果。

3 原因——流路设计不合理,冲型时间过长,长时间的烘烤及“水份迁移”造成局部型砂强度低形成砂眼。

对策:流路设计保证快速冲型,同时冲型。

现象:在铸件表面上出现分布不均匀的小空洞,通常呈现不规整,深浅不一且内部较不光洁,无冷口现象。

4 原因——型砂含水量低。

对策:1、调整型砂水份。

2、长时间停机后,要将皮带上的型砂排掉。

3、长时间未浇注的型砂要报废。

5 原因——浇口杯的位置向下偏移,造型时在浇口杯上积存的型砂在脱模时落入型腔。

对策:1、将浇口杯锁紧。

2、必要时去除反板浇口杯的上缘部分,以防止反板抬起后,DISA衡量挤压浇口杯造成浇口杯下移。

molding成缺陷分析

molding成缺陷分析

成缺陷分析(中)分类:注塑工艺2007.8.3 08:59 作者:周洁阳 | 评论:0 | 阅读:2398八、气泡和空洞(气蚀)气泡和空洞大多是指成型制件厚壁内部产生的空隙,因注射成型先冷凝固化的是成型制件的外壳,相对整个制件来说熔料数量不足,由此产生真空孔洞,一般发生在制品厚的地方和注口料处。

称之为气泡或空洞,一般说来,如果在开模瞬间已发现存在气泡是属于气体干扰问题。

真空泡的形成是由于充注进塑料不足或压力较低。

在模具的急剧冷却作用下,与型腔接触的熔料牵扯,造成体积损失的结果。

从这个意义来说,气泡这一叫法不恰当,至少在成型后瞬间孔洞中没有进入空气。

这种原因产生的气泡不能说不是成型制件的缺陷,但作为不透明制件或着色制件使用,大多数是不成问题的。

但是,必须消除透明制件及直浇口成型主浇道根部的气泡。

1、注塑机方面:(同缩痕相似)2、模具方面:厚壁部位3、工艺方面:这与压缩不足产生缩痕的原因相同。

因此需加大主浇道、浇道及浇口直径,降低熔料温度,升高模具温度,使用流动性差的塑料,保证充足的注射和保压时间,降低注射速度。

可是,对于厚壁制件及结晶性塑料,即使采取必要的措施,大多数仍不能消除空洞。

非透明制件产生几个缩孔还没有什么妨碍,对于不允许有气泡的制件,可不考虑缩孔,要使内部不产生气泡,可在壁厚部位末充分硬化之前脱模,然后浸在温水中缓慢冷却,这种方法对防止气泡有时还是有效的。

出于这种原因的气泡与冷却不均匀产生缩孔的原因完全相同。

因此,防止缺陷的方法也完全相同,消除气泡从理论上来说也是困难的。

因此,重要的是避免将所需制件设计成易产生气泡的形状。

在温水中缓冷也是有效的。

4、塑料方面:由挥发成分引起塑料中含有水分或挥发成分、以及塑料或添加成分在料筒内分解产生气体时,随着熔料一起被注入型腔内就造成气泡。

由于挥发成分或水分而产生气泡时,在充分干燥原料的同时,可通过提高背压及充分冷却料斗下部来改善料筒内的排气,即可消除气泡。

氮化硅缺陷-概述说明以及解释

氮化硅缺陷-概述说明以及解释

氮化硅缺陷-概述说明以及解释1.引言1.1 概述氮化硅是一种具有广泛应用前景的半导体材料,其特性与传统硅材料相比具有巨大优势。

然而,与其他半导体材料一样,氮化硅也存在各种缺陷。

这些缺陷严重影响了氮化硅材料的性能和可靠性。

氮化硅缺陷可以分为点缺陷、线缺陷和面缺陷三种类型。

点缺陷主要包括氮空位、硅空位和氮硅空位等。

线缺陷指的是氮化硅中的位错和螺旋走滑子等缺陷。

面缺陷包括晶界、堆垛层错和表面缺陷等。

这些缺陷不仅会导致器件性能的衰退,还会影响电子迁移率、界面态密度和边坡率等重要指标。

此外,缺陷还会引起氮化硅中的应力积累和杂质扩散,进一步导致材料的退化和失效。

为了克服这些缺陷对氮化硅材料性能的影响,研究人员提出了许多改善方法。

例如,通过合适的工艺控制和表面处理,可以降低缺陷密度和杂质含量。

此外,选择合适的晶体生长方法和优化化学组成可以有效地改善氮化硅材料的质量。

总之,氮化硅缺陷是制约其应用的重要因素,深入了解和研究这些缺陷,寻找适当的改善方法,将是进一步提高氮化硅材料性能的关键所在。

通过持续的研究和技术突破,相信氮化硅材料在未来的应用领域会有更大的发展潜力。

1.2文章结构文章结构部分的内容可以如下所示:文章结构:本文主要围绕氮化硅缺陷展开,分为引言、正文和结论三个部分。

引言部分包括概述、文章结构和目的三个小节,用于介绍文章的背景和目的。

正文部分主要包括氮化硅的基本特性和缺陷类型两个小节,详细探讨了氮化硅的基本性质以及存在的各种缺陷类型。

最后,结论部分总结了氮化硅缺陷对材料性能的影响,并探讨了改善氮化硅缺陷的方法。

通过以上结构安排,本文旨在全面深入地探讨氮化硅缺陷的相关问题,为相关领域的研究提供参考和支持。

1.3 目的本文的目的是探讨氮化硅缺陷对其性能和应用的影响,并提出改善氮化硅缺陷的方法。

通过对氮化硅材料的基本特性和缺陷类型进行深入分析,我们将了解氮化硅缺陷对其导热性能、机械性能和电学性能等方面的影响。

模具氮化及氮化设备

模具氮化及氮化设备

3、合金元素对渗氮过程的影响

1)碳钢的含碳量越多,氮的扩散系数越小。

2)合金元素的影响

a、合金元素与氮的亲和力顺序,依次递增: Ni→Fe→Mn→Cr→Mo→W→Nb→V→Ti→Zr。与氮的亲和力越
强,形成的氮化物愈稳定。

b、H13渗氮时,形成合金氮化物主要由含Cr、Mo、V的碳化物与氮
原子相互作用,在化合物层和扩散层形成三种弥散析出的CrN、 Mo2N、VN合金元素的氮化物,具有高的硬度和熔点,但很脆。 C、合金元素的存在阻碍氮在铁中的扩散。
正 压 8-10h
1-2h
炉冷到 200℃以下 空冷
二段氮化法
500-510℃
炉内510-530℃ 控制540-550℃ 分解率 40-60 分解率 70-90
300℃
分解率 20-30
随炉降温 到200℃ 以下出炉 空冷
正 压
0、5h
正 压
4-5h
4-5h
1-2h
二段氮化法:强渗与扩散两段,可以减缓氮化层梯度,缩短氮化总的时间。
氮化基础知识及氮化设备的基本结构
渗氮原理
(一)概论
1、什么叫渗氮? 渗氮亦称氮化 ,是指在一定温度下,在含氮介质中使氮原子 渗入模具(工件)表层的化学热处理方法。 2、氮化优点: 模具氮化后具有极高的表面硬度和耐磨性,高的疲劳性和高 的耐腐蚀性,加热温度低,变形小。 3、氮化缺点: 生产周期较长。 4、氮化种类: 按目的分类:强化渗氮和抗蚀渗氮。 按介质分类:气体渗氮、液体渗氮、固体渗氮。 按设备分类:气体渗氮、离子渗氮、低压脉冲渗氮。
气体渗氮设备


生产中通常通过调节氨分解率控制渗氮过程。氨分 解率测定仪,是利用氨溶于水而其分解产物不溶于水这 一特性进行测量的。使用时首先将上半部加入适当的水, 然后将炉罐中的废气引入标有刻度的玻璃容器中,通过 泡泡瓶排出,然后依次关闭排气阀、排水阀和进气阀, 打开进水阀,向充满废气的玻璃容器中注水。由于氨溶 于水,水占有的体积即可代表未分解氨的容积,剩余容 积为分解产物占据,从刻度可直接读出氨分解率。近年 来,随着技术的发展,以电信号来反映氨分解率的测量 仪器已投入生产应用,使得渗氮过程计算机控制成为可 能。

模具成形的缺陷种类及其原因

模具成形的缺陷种类及其原因

模具成形的缺陷种类及其原因1、充型不良现象有充型不满、边部塌陷等形式。

主要会造成产品成形的失败、原料的浪费、人工工艺和时间的浪费。

缺陷成因有很多,填充材料温度低、供给不足、流动性差;成形机预制射出压力低,管嘴孔径太小,汽筒管嘴堵塞;模具内表面润滑不良、温度低、入胶口流道小、水口位置不当、通气口位置不当或没有、冷却渣堵在流道或入胶口等2、毛刺现象主要是接缝毛刺。

会导致产品的加工困难和走形,严重时也可能使产品报废。

成因是填充材料温度高、供给过剩、流动性太好,成形机预制射出压力高,模具束模力度不足、温度高、相对机械能力,及其投影面积大等。

,3、缩水现象主要是出模后的塑性变形引起的。

成因是填充材料温度高、供给不足、收缩率太大,成形机预制射出压力低、保压时间短、射出速度过慢,模具内表面温度高、冷却时间短、成形壳体壁厚不一、入胶口流道小、推出不当等。

4、结合线现象主要是针对异形件而言,在线形转折处形成明显的痕迹。

成因是填充材料温度低、硬化过快、干燥不充分、润滑不良,成形机预制射出压力低、射出速度慢,模具内表面温度低、润滑不良、温度低、入胶口流道小、水口位置不当、通气口位置不当或没有等。

5、表面不良、有阴影主要是局部表面颜色和光泽的异常。

成因是填充材料挥发性大、混有异物、干燥不充分,供给不足,成形机预制射出压力低、管嘴堵塞或径小、射出速度慢,模具入胶口流道小、腐蚀对策不充分、离模材太多、通气口位置不当或没有等。

6、气痕现象成因有很多,填充材料温度低、流动性差、润滑不良,成形机预制射出压力低、射出速度慢、管嘴孔径太小,模具内表面润滑不良、温度低、入胶口流道小等。

7、银条痕气泡成因有很多,填充材料温度高、挥发性大、干燥不充分,成形机预制射出压力低、射出速度快、射出容量小、保压时间短,模具通气孔不当、成形壳体壁厚不一、入胶口流道小等。

8、黑条痕成因有很多,填充材料温度高、润滑剂过多、干燥不充分,模具通气孔位置不。

当或没有、模槽粘着油垢等。

氮化零件表面花斑或颜色不一致的原因

氮化零件表面花斑或颜色不一致的原因

氮化零件表面花斑或颜色不一致的原因以氮化零件表面花斑或颜色不一致的原因为标题,写一篇文章。

标题:氮化零件表面花斑或颜色不一致的原因概述:氮化零件是一种经过氮化处理的金属零件,具有硬度高、耐磨性好等优点,广泛应用于机械制造和工业生产中。

然而,有时候我们会发现氮化零件的表面出现花斑或颜色不一致的情况,这是由于一些特定的原因导致的。

本文将就此问题展开讨论。

一、加工工艺不当氮化零件的加工工艺对于表面质量有着重要的影响。

如果在加工过程中,刀具磨损严重、切削速度过快或切削液不合适,都可能导致零件表面出现花斑或颜色不一致的情况。

此外,加工过程中的温度控制也很关键,如果温度过高或过低,都会对零件表面质量产生负面影响。

二、氮化工艺参数不合理氮化工艺是指将待处理零件置于含有氨气的高温环境中,使其与氨气发生反应,从而在零件表面形成氮化层。

如果氮化工艺参数不合理,也会导致表面花斑或颜色不一致的问题。

例如,氨气浓度过高或过低、氮化温度偏离标准、保温时间不足等都可能造成氮化层不均匀,从而出现花斑或颜色不一致的情况。

三、材料质量差异氮化零件的质量主要取决于材料的质量。

如果选用的材料存在质量差异,比如含杂质较多、材料强度不均匀等问题,那么在氮化过程中就会出现表面花斑或颜色不一致的情况。

因此,在选择材料时,需要严格控制材料的质量,确保其符合氮化要求。

四、氮化层厚度不均匀氮化层的厚度对于零件的性能有着重要的影响。

如果氮化层厚度不均匀,部分区域较厚,而其他区域较薄,那么在表面形成的花斑或颜色就会不一致。

这可能是由于气氛中的杂质、材料的表面形貌不均匀等原因导致的。

因此,在氮化过程中,需要确保氮化层厚度的均匀性,避免出现花斑或颜色不一致的情况。

五、其他因素除了以上几点,还有一些其他因素也可能导致氮化零件表面出现花斑或颜色不一致的情况。

比如,气氛中存在的杂质、零件的表面处理不当、设备出现故障等都可能对氮化零件的表面质量产生影响。

因此,在氮化过程中,需要综合考虑各种因素,确保零件表面的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
模具氮化十种缺陷分析2NH3
2「N」+3H2? 分解后的~650 一.氮化机理在500?活性氮原子被钢件表面吸收,并向金属内部扩散,首先溶解在a-Fe中形成固溶体,饱和后逐渐形成氮化物层HV1000。

氮化层特性:1.高硬度/高耐磨/抗疲劳/抗粘结/抗腐蚀/抗擦伤/畸变小。

2.氮化不仅可以消除模具张(拉伸)应力,而且赋予模具压缩应力。

从这方面讲,氮化优于去应力退火,去应力退火只是消除模具张应力。

二.模具氮化十种缺陷分析
1.渗氮层硬度过低
原因:成份不对或混料等导致渗氮模具表层含氮量不足;钢件未经调质处理,未获得回火索氏体组织,或虽经调质处理,但基体组织硬度过低,渗氮层如附在薄冰上;工件不干净;使用新渗氮罐或旧罐久未退氮;氮化炉密封不严而漏气。

返修:返修时用汽油或酒精清理干净渗氮表面,在520 ?~530 ? 20-25%NH3分解率控制在补渗7-10H,2.渗层浅
原因:加热不均;工件表面有油污,锈迹和氧化物;装炉过密;强渗期NH3分解率不稳定;扩散期期不稳定。

对策:NH3分解率控制在20-40%
3.渗层硬度不均匀,有软点。

原因:材料有严重偏析;调质温度高;工件表面脱碳和污染;氮化;. .
炉加热器分布不合理。

4.模具崎变
原因:模具设计不合理;模具存在较大组织应力和加工应力;温度不均匀,升温过快,模具出炉冷却速度过快;装挂不合理;氮化层比容较大,产生组织应力与渗氮层厚度成正比。

对策:升温速度50-70?/H,出炉温度〈200 ?,易产生畸变的工件最
好用辉光离子氮化。

5.氮化层耐蚀性差
原因:当氮化层有一层致密的,化学稳定性高的ε相层
(0.015-0.060MM)时,模具有良好的搞蚀性. ε相层含氮量在6.1-8.5%为宜.
6.氮化模具表面氧化
原因:炉内负压;出炉温度高.
7.模具表面腐蚀
原因:模具长期在潮湿,碱性,酸性环境中服役.
8.渗氮层脆性大,起泡剥落有裂纹.
原因:组织缺陷;模具设计不当,有较多尖角锐边和表面积过大,活性氮
原子从多方面同时渗入,氮浓度高形成ξ脆性相.渗氮介质活性太强,
表面吸收大于扩散,表面含氮量超过11%形成脆性相;NH3含水量大,
分解率过高,强渗温度高,时间长;
9.鱼骨状氮化物
原因:NH3含水超标;原材料大块铁素体未消除.
;.
.
10.网状,波纹状和针状氮化物
原因:模具调质温度过高;模具设计不当;NH3含水量过大. ;.。

相关文档
最新文档