文科数学2010-2019高考真题分类训练专题九 解析几何第二十四讲 直线与圆—后附解析答案
文科数学2010-2019高考真题分类训练专题九,解析几何第二十七讲,抛物线—后附解析答案

文科数学2010-2019高考真题分类训练专题九,解析几何第二十七讲,抛物线—后附解析答案(2)求的最小值及此时点G的坐标. 3.(2019全国III文21)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B. (1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程. 1.解析(1)设,则. 由于,所以切线DA的斜率为,故,整理得设,同理可得. 故直线AB的方程为. 所以直线AB过定点. (2)由(1)得直线AB的方程为. 由,可得. 于是. 设M为线段AB的中点,则. 由于,而,与向量平行,所以.解得t=0或. 当=0时,=2,所求圆的方程为;当时,,所求圆的方程为. 2010-2018年一、选择题1.(2017新课标Ⅱ)过抛物线:的焦点,且斜率为的直线交于点(在轴上方),为的准线,点在上且⊥,则到直线的距离为A.B.C.D.2.(2016年全国II卷)设F为抛物线C:y2=4x 的焦点,曲线y=(k0)与C交于点P,PF⊥x轴,则k= A.B.1 C.D.2 3.(2015陕西)已知抛物线()的准线经过点,则该抛物线的焦点坐标为A.(-1,0) B.(1,0) C.(0,-1) D.(0,1) 4.(2015四川)设直线与抛物线相交于两点,与圆相切于点,且为线段的中点.若这样的直线恰有4条,则的取值范围是A.B.C.D.5.(2014新课标1)已知抛物线:的焦点为,准线为,是上一点,是直线与的一个焦点,若,则= A.B.C.3 D.2 6.(2014新课标2)设为抛物线C:的焦点,过且倾斜角为30°的直线交于两点,为坐标原点,则△的面积为A.B.C.D.7.(2014辽宁)已知点在抛物线C:的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为A.B.C.D.8.(2013新课标1)为坐标原点,为抛物线的焦点,为上一点,若,则的面积为A.B.C.D.9.(2013江西)已知点,抛物线的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|= A.2: B.1:2 C.1: D.1:3 10.(2012新课标)等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于、两点,,则的实轴长为A.B.C.4 D.8 11.(2012山东)已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为A.B.C.D.12.(2011新课标)已知直线过抛物线C的焦点,且与C的对称轴垂直,与C交于,两点,,为C的准线上一点,则的面积为A.18 B.24 C.36 D.48 二、填空题13.(2018北京)已知直线过点且垂直于轴,若被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.14.(2015陕西)若抛物线的准线经过双曲线的一个焦点,则= 15.(2014湖南)如图,正方形的边长分别为,原点为的中点,抛物线经过.16.(2013北京)若抛物线的焦点坐标为,则,准线方程为.17.(2012陕西)右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米.18.(2010浙江)设抛物线的焦点为,点.若线段的中点在抛物线上,则到该抛物线准线的距离为_____________.三、解答题19.(2018全国卷Ⅱ)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.20.(2018浙江)如图,已知点是轴左侧(不含轴)一点,抛物线:上存在不同的两点,满足,的中点均在上.(1)设中点为,证明:垂直于轴;(2)若是半椭圆()上的动点,求面积的取值范围.21.(2017新课标Ⅰ)设,为曲线:上两点,与的横坐标之和为4.(1)求直线的斜率;(2)设为曲线上一点,在处的切线与直线平行,且,求直线的方程.22.(2017浙江)如图,已知抛物线.点,,抛物线上的点,过点作直线的垂线,垂足为.(Ⅰ)求直线斜率的取值范围;(Ⅱ)求的最大值.23.(2016年全国I卷)在直角坐标系中,直线:交轴于点,交抛物线:于点,关于点的对称点为,连结并延长交于点.(I)求;(II)除以外,直线与是否有其它公共点?说明理由.24.(2016年全国III卷)已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.25.(2016年浙江)如图,设抛物线的焦点为F,抛物线上的点A到y轴的距离等于.(I)求p的值;(II)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M 的横坐标的取值范围.26.(2015浙江)如图,已知抛物线:,圆:,过点作不过原点的直线,分别与抛物线和圆相切,为切点.(Ⅰ)求点的坐标;(Ⅱ)求的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.27.(2015福建)已知点为抛物线()的焦点,点在抛物线上,且.(Ⅰ)求抛物线的方程;(Ⅱ)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.28.(2014山东)已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有,当点的横坐标为3时,为正三角形。
2024年高考数学(文)真题专练目录

第十九讲三视图以及表面积体积
第二十讲空间点线面的位置关系
专题09解析几何
第二十一讲直线与圆
第二十二讲椭圆
第二十三讲双曲线
第二十四讲抛物线
专题10概率与统计
第二十五讲统计初步
第二十六讲回归分析与独立性检验
第二十七讲概率
专题11算法初步
第二十八讲算法与程序框图
专题12推理与证明
第二十九讲推理与证明
专题13复数
第三十讲复数
专题14坐标系与参数方程
第三十一讲坐标系与参数方程
专题15基本不等式选讲
第三十二讲不等式选讲
2024年高考数学(文)真题专练目录
编号
内容
下载
五年真题热点练
专题01集合与常用逻辑用语
第一讲集合
第二讲常用逻辑用语
专题02函数及基本初等函数
第三讲函数的概念与性质
第四讲三种基本初等函数
第五讲函数与方程
第六讲函数的综合及其应用
专题数及其应用
第七讲导数的计算以及几何意义
第八讲导数的综合应用
专题04三角函数与解三角形
第九讲三角函数恒等变换
第十讲三角函数的图象以及性质
第十一讲解三角形
专题05平面向量
第十二讲平面向量的概念及运算
第十三讲向量的应用
专题06数列及其应用
第十四讲递推数列与数列求和
第十五讲数列的综合应用
专题07不等式及其应用
第十六讲不等式的性质与一元二次不等式
第十七讲二元一次不等式(组)与线性规划
第十八讲不等式的综合利用
理科数学2010-2019高考真题分类训练专题九解析几何第二十五讲直线与圆

专题九 解析几何第二十五讲 直线与圆2019年1.(2019北京理3)已知直线l 的参数方程为x =1+3t y =2+4tìíî (t 为参数),则点(1,0) 到直线l 的距离是(A )15 (B )25 (C )45 (D )652.(2019江苏10)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x =+>上的一个动点, 则点P 到直线+y =0的距离的最小值是 .3(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.4.(2019浙江12)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =_____,r =______.2010-2018年2010-2018年一、选择题1.(2018全国卷Ⅲ)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP ∆面积的取值范围是A .[2,6]B .[4,8] C. D.2.(2018天津)已知圆2220x y x +-=的圆心为C,直线1,232⎧=-+⎪⎪⎨⎪=-⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 . 3.(2018北京)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当θ,m 变化时,d 的最大值为A .1B .2C .3D .44.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3 B.3 C.3 D .135.(2017新课标Ⅲ)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r ,则λμ+的最大值为A .3 B. CD .26.(2015山东)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为A .53-或35- B .32-或23- C .54-或45- D .43-或34-7.(2015广东)平行于直线210x y ++=且与圆225x y +=相切的直线的方程是A .250x y ++=或250x y +-=B .20x y ++=或20x y +=C .250x y -+=或250x y --=D .20x y -=或20x y -=8.(2015新课标2)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交于y 轴于M 、N 两点,则MN =A .26B .8C .46D .109.(2015重庆)已知直线l :10()x ay a R +-=∈是圆C :224210x y x y +--+=的对称轴,过点(4,)A a -作圆C 的一条切线,切点为B ,则AB =A .2B .C .6D .10.(2014新课标2)设点0(,1)M x ,若在圆22:=1O x y +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是A .[]1,1-B .1122⎡⎤-⎢⎥⎣⎦,C .⎡⎣D .22⎡-⎢⎣⎦, 11.(2014福建)已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+=12.(2014北京)已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=o,则m 的最大值为A .7B .6C .5D .413.(2014湖南)若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则m = A .21 B .19 C .9 D .11-14.(2014安徽)过点P )(1,3--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是A .]60π,(B .]30π,(C .]60[π,D .]30[π, 15.(2014浙江)已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是A .-2B .-4C .-6D .-816.(2014四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是A .B .C .D .17.(2014江西)在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为A .45πB .34πC .(6π-D .54π18.(2013山东)过点(3,1)作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=19.(2013重庆)已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为A .4B 1C .6- D20.(2013安徽)直线250x y +-=被圆22240x y x y +--=截得的弦长为A .1B .2C .4D .21.(2013新课标2)已知点()1,0A -;()1,0B ;()0,1C ,直线y ax b =+(0)a >将△ABC 分割为面积相等的两部分,则b 的取值范围是A .(0,1)B .11,22⎛⎫- ⎪ ⎪⎝⎭ C .1123⎛⎤-⎥ ⎦⎝ D .11,32⎡⎫⎪⎢⎣⎭22.(2013陕西)已知点(,)M a b 在圆221:O x y +=外, 则直线1ax by +=与圆O 的位置关系是A .相切B .相交C .相离D .不确定23.(2013天津)已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则A .12-B .1C .2D .1224.(2013广东)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是A .0x y +=B .10x y ++=C .10x y +-=D .0x y ++=25.(2013新课标2)设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为A .1y x =-或1y x =-+B .1)y x =-或1)y x =-C .1)y x =-或1)y x =-D .1)2y x =-或1)2y x =-- 26.(2012浙江)设a R ∈,则“1a =”是“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件27.(2012天津)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是A .[1B .(,1)-∞∞UC .[2-D .(,2)-∞-∞U28.(2012湖北)过点(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +…分为两部分,使得这两部分的面积之差最大,则该直线的方程为A .20x y +-=B .10y -=C .0x y -=D .340x y +-=29.(2012天津)在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于,A B 两点,则弦AB 的长等于A .B .CD .130.(2011北京)已知点A (0,2),B (2,0).若点C 在函数y = 的图像上,则使得ΔABC 的面积为2的点C 的个数为A .4B .3C .2D .1 31.(2011江西)若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .(3-,3)B .(3-,0)U (0,3)C .[D .(,U +) 32.(2010福建)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为A .22++2=0x y xB .22++=0x y x C .22+y =0x x - D .22+2=0x y x -33.(2010广东)若圆心在x O 位于y 轴左侧,且与直线20x y +=相切,则圆O 的方程是A .22(5x y -+=B .22(5x y +=C .22(5)5x y -+=D .22(5)5x y ++= 二、填空题34.(2018江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r ,则点A 的横坐标为 .35.(2017江苏)在平面直角坐标系xOy 中,(12,0)A -,(0,6)B ,点P 在圆O :2250x y +=上,若20PA PB ⋅u u u r u u u r ≤,则点P 的横坐标的取值范围是 .36.(2015湖北)如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A的上方),且2AB =.(Ⅰ)圆C 的标准..方程为 ; (Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NAMANB MB =; ②2NBMANA MB -=; ③22NBMANA MB +=.其中正确结论的序号是 . (写出所有正确结论的序号)37.(2014江苏)在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 .38.(2014重庆)已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC ∆为等边三角形,则实数=a _________.39.(2014湖北)直线1l :y x a =+和2l :y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.40.(2014山东)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为3C 的标准方程为 .41.(2014陕西)若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为____.42.(2014重庆)已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BC AC ⊥,则实数a 的值为_________.43.(2014湖北)已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则(Ⅰ)b = ;(Ⅱ)λ= .44.(2013浙江)直线23y x =+被圆22680x y x y +--=所截得的弦长等于__________.45.(2013湖北)已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .46.(2012北京)直线y x =被圆22(2)4x y +-=截得的弦长为 .47.(2011浙江)若直线250x y -+=与直线260x my +-=互相垂直,则实数m =__.48.(2011辽宁)已知圆C 经过A (5,1),B (1,3)两点,圆心在轴上,则C 的方程为__.49.(2010新课标)圆心在原点上与直线20x y +-=相切的圆的方程为 .50.(2010新课标)过点A (4,1)的圆C 与直线0x y -=相切于点(2,1)B ,则圆C 的方程为 .三、解答题51.(2016年全国I)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.52.(2014江苏)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m . 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (I )求新桥BC 的长;(II )当OM 多长时,圆形保护区的面积最大?53.(2013江苏)如图,在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆C的半径为1,圆心在l 上. ylO A(I )若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程;(II )若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.54.(2013新课标2)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为23(I )求圆心P 的轨迹方程;(II )若P 点到直线y x =2,求圆P 的方程. 55.(2011新课标)在平面直角坐标系xoy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.(I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.56.(2010北京)已知椭圆C 的左、右焦点坐标分别是(2,0),2,0)6椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.直线y t(I)求椭圆C的方程;(II)若圆P与x轴相切,求圆心P的坐标;Q x y是圆P上的动点,当t变化时,求y的最大值.(Ⅲ)设(,)。
9年全国高考文科数学试题分类汇编之专题九解析几何第二十四讲直线与圆及答案

9年全国高考文科数学试题分类汇编之专题九解析几何第二十四讲直线与圆及答案专题九 解析几何 第二十四讲 直线与圆一、选择题1.(2018全国卷Ⅲ)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是A.[2,6]B.[4,8]C.D.2.(2016年北京)圆22(1)2x y ++=的圆心到直线3y x =+的距离为3.(2016年山东)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是 A.内切 B.相交 C.外切 D.相离4.(2016年全国II 卷)圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =A.−43B.−345.(2015北京)圆心为(1,1)且过原点的圆的方程是A.22(1)(1)1x y -+-=B.22(1)(1)1x y +++= C.22(1)(1)2x y +++= D.22(1)(1)2x y -+-= 6.(2015安徽)直线34x y b +=与圆222210x y x y +--+=相切,则b 的值是 A.-2或12 B.2或-12 C.-2或-12 D.2或127.(2015新课标2)已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为A.35B.321C.352 D.348.(2014新课标2)设点0(,1)M x ,若在圆22:=1O x y +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是A.[]1,1-B.1122⎡⎤-⎢⎥⎣⎦,C.⎡⎣D.22⎡-⎢⎣⎦,9.(2014福建)已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是A.20x y +-=B.20x y -+=C.30x y +-=D.30x y -+= 10.(2014北京)已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为A.7B.6C.5D.411.(2014湖南)若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则m = A.21 B.19 C.9 D.11-12.(2014安徽)过点P )(1,3--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是A.]60π,(B.]30π,(C.]60[π,D.]30[π,13.(2014浙江)已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是A.-2B.-4C.-6D.-814.(2014四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是A.B.C.D.15.(2014江西)在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为A.45πB.34πC.(6π-D.54π16.(2013山东)过点(3,1)作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB的方程为A.230x y +-=B.230x y --=C.430x y --=D.430x y +-= 17.(2013重庆)已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN+的最小值为A.41C.6-18.(2013安徽)直线250x y +-=被圆22240x y x y +--=截得的弦长为A.1B.2C.4D. 19.(2013新课标2)已知点()1,0A -;()1,0B ;()0,1C ,直线y ax b =+(0)a >将△ABC 分割为面积相等的两部分,则b 的取值范围是A.(0,1)B.112⎛⎫- ⎪ ⎪⎝⎭C.113⎛⎤- ⎥ ⎦⎝D.11,32⎡⎫⎪⎢⎣⎭20.(2013陕西)已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是A.相切B.相交C.相离D.不确定21.(2013天津)已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =A.12-B.1C.2D.12 22.(2013广东)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是A.0x y +=B.10x y ++=C.10x y +-=D.0x y +=23.(2013新课标2)设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为A.1y x =-或1y x =-+B.1)3y x =-或1)3y x =--C.1)y x =-或1)y x =-D.(1)2y x =-或1)2y x =--24.(2012浙江)设a R ∈,则“1a =”是“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件25.(2012天津)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n的取值范围是A.[1B.(,1[1+3,+)-∞∞C.[2-D.(,2[2+22,+)-∞-∞26.(2012湖北)过点(1,1)P 的直线,将圆形区域{}22(,)|4x y xy +…分为两部分,使得这两部分的面积之差最大,则该直线的方程为A.20x y +-=B.10y -=C.0x y -=D.340x y +-=27.(2012天津)在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于,A B 两点,则弦AB 的长等于( )()A ()B ()C ()D 128.(2011北京)已知点A (0,2),B (2,0).若点C 在函数y x =的图像上,则使得ΔABC 的面积为2的点C 的个数为A.4B.3C.2D.129.(2011江西)若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A.(,) B.(,0)(0,)C.[,]D.(-∞,)(,+∞)30.(2010福建)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为 A.2220x y x ++= B.220x y x ++=C.220x y x +-=D.2220x y x +-=31.(2010广东)若圆心在x O 位于y 轴左侧,且与直线20x y += 相切,则圆O 的方程是A.22(5x y +=B.22(5x y +=C.22(5)5x y -+=D.22(5)5x y ++= 二、填空题32.(2018全国卷Ⅰ)直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB =__.33.(2018天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__. 34.(2018江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 .35.(2017天津)设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为 .36.(2017山东)若直线1(00)x ya b a b +=>,>过点(1,2),则2a b +的最小值为 .37.(2016江苏)在平面直角坐标系xOy 中,(12,0)A -,(0,6)B ,点P 在圆O :2250x y +=上,若20PA PB ⋅≤,则点P 的横坐标的取值范围是 .38.(2016年天津)已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -= 的距离为,则圆C 的方程为__________39.(2016年全国I 卷)设直线2y x a =+与圆C :22220x y ay +--=相交于,A B 两点,若||AB =C 的面积为 .40.(2016年全国III 卷)已知直线l :60x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD =_____________.41.(2015重庆)若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.42.(2015湖南)若直线3450x y -+=与圆()2220x y r r +=>相交于,A B 两点,且120o AOB ∠=(O 为坐标原点),则r =_____.43.(2015湖北)如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且||2AB =.(1)圆C 的标准方程为 .(2)圆C 在点B 处的切线在x 轴上的截距为 .44.(2015江苏)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线2mx y m ---10=()m ∈R 相切的所有圆中,半径最大的圆的标准方程为 .45.(2014江苏)在平面直角坐标系xOy中,直线32=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 .46.(2014重庆)已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC ∆为等边三角形,则实数=a _________.47.(2014湖北)直线1l :y x a =+和2l :y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.48.(2014山东)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为C 的标准方程为 .49.(2014陕西)若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为____.50.(2014重庆)已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BC AC ⊥,则实数a 的值为_________.51.(2014湖北)已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则(Ⅰ)b = ; (Ⅱ)λ= .52.(2013浙江)直线23y x =+被圆22680x y x y +--=所截得的弦长等于______. 53.(2013湖北)已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .54.(2012北京)直线y x =被圆22(2)4x y +-=截得的弦长为 . 55.(2011浙江)若直线250x y -+=与直线260x my +-=互相垂直,则实数m =___ 56.(2011辽宁)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为__. 57.(2010新课标)圆心在原点上与直线20x y +-=相切的圆的方程为 .58.(2010新课标)过点A (4,1)的圆C 与直线0x y -=相切于点B (2,1),则圆C 的方程为__ 三、解答题59.(2018全国卷Ⅰ)设抛物线C :22=y x ,点(2,0)A ,(2,0)-B ,过点A 的直线l 与C 交于M ,N两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.60.(2017新课标Ⅲ)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.61.(2016江苏)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点(2,4)A . (1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=求实数t 的取值范围.62.(2015新课标1)已知过点(0,1)A 且斜率为k 的直线l 与圆C :22(2)(3)1x y -+-=交于,M N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)若12OM ON ⋅=,其中O 为坐标原点,求MN.63.(2014江苏)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(I )求新桥BC 的长;(II )当OM 多长时,圆形保护区的面积最大?64.(2013江苏)如图,在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆C 的半径为1,圆心在l 上.x(I )若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (II )若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.65.(2013新课标2)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为 (I )求圆心P 的轨迹方程;(II )若P 点到直线y x =的距离为,求圆P 的方程。
文科数学2010-2019高考真题分类训练专题九解析几何第二十六讲双曲线

专题九 解析几何第二十六讲 双曲线2019年1.(2019全国III 文10)已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32B .52C .72D .922.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .3.(2019浙江2)渐近线方程为±y =0的双曲线的离心率是A B .1CD .24.(2019全国1文10)双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒5.(2019全国II 文12)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D6.(2019北京文5)已知双曲线2221x y a-=(a >0,则a =(A(B )4(C )2 (D )127.(2019天津文6)已知抛物线24y x =的焦点为F ,准线为l .若与双曲线22221(0,0)x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为(A(B(C )2(D2010-2018年一、选择题1.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)2.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .2=±y x D .=y x3.(2018全国卷Ⅲ)已知双曲线22221(00)x y C a b a b-=>>:,则点(4,0)到C 的渐近线的距离为AB .2C .2D .4.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .22139x y -= B .22193x y -= C .221412x y -= D .221124x y -=5.(2017新课标Ⅰ)已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ∆的面积为A .13 B .12 C .23 D .326.(2017新课标Ⅱ)若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)7.(2017天津)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为A .221412x y -= B .221124x y -= C .2213x y -= D .2213y x -= 8.(2016天津)已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为A .1422=-y xB .1422=-y x C .15320322=-y x D .12035322=-y x 9.(2015湖南)若双曲线22221x y a b-=的一条渐近线经过点(3,4)-,则此双曲线的离心率为A B .54 C .43D .53 10.(2015四川)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB =A .3B .C .6D .11.(2015重庆)设双曲线22221(0,0)x y a b a b-=>>的右焦点是F ,左、右顶点分别是12,A A ,过F 做12A A 的垂线与双曲线交于,B C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为A .12±B .2±C .1±D .12.(2014新课标1)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C的一条渐近线的距离为A B .3 C D .3m13.(2014广东)若实数满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等14.(2014天津)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为 A .221520x y -= B .221205x y -= C .2233125100x y -= D .2233110025x y -= 15.(2014重庆)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A .34 B .35 C .49D .316.(2013新课标1)已知双曲线C :22221x y a b-=(0,0a b >>C的渐近线方程为 A .14y x =±B .13y x =±C .12y x =± D .y x =±17.(2013湖北)已知04πθ<<,则双曲线 22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的A .实轴长相等B .虚轴长相等C .焦距相等D . 离心率相等18.(2013重庆)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A .(2]3 B .[2)3 C .(,)3+∞ D .[)3+∞ 19.(2012福建)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .14B .4 C .32D .4320.(2012湖南)已知双曲线C :22x a 22y b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为A .220x 25y =1B .25x 220y =1C .280x 220y =1 D .220x 280y =121.(2011安徽)双曲线x y 222-=8的实轴长是A .2B .C .4D .22.(2011山东)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆C :22x y +-650x +=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 23.(2011湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3 C .2 D .124.(2011天津)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1),则双曲线的焦距为A .B .C .D .25.(2010新课标)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y -= 26.(2010新课标)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2)-,则它的离心率为A B C D 27.(2010福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP u u u r u u u rg 的最大值为A .2B .3C .6D .8 二、填空题28.(2018北京)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________.29.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c ,则其离心率的值是 . 30.(2017新课标Ⅲ)双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = . 31.(2017山东)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .32.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .33.(2016年北京)已知双曲线22221x y a b-= (0,0)a b >>的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.34.(2016年山东)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 35.(2015新课标1)已知双曲线过点)3,4(,且渐近线方程为x y 21±=,则该双曲线的标准方程为 .36.(2015山东)过双曲线()2222:10,0x y C a b a b-=>> 的右焦点作一条与其渐近线平行的直线,交C 于点P ,若点P 的横坐标为2a ,则C 的离心率为 .37.(2015新课标1)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,A ,当APF ∆ 周长最小时,该三角形的面积为 .38.(2014山东)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 .39.(2014浙江)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是____.40.(2014北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.41.(2014湖南)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.42.(2013辽宁)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为 .43.(2012辽宁)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为 .44.(2012天津)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b = .45.(2012江苏)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 .46.(2011山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .47.(2011北京)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .三、解答题48.(2014江西)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点). (1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y a xx l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF 恒为定值,并求此定值.49.(2011广东)设圆C 与两圆2222(5)4,(5)4x y x y +=+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点M 3545(5,0)55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.。
十年高考分类解析与应试策略数学09--第九章 直线、平面、简单几何体(A)

3
面 ABCD 是边长为 3 的正方形,EF∥AB,EF= ,EF 与面 AC 的距离
2
为 2,则该多面体的体积是( )
图 9—6
9
A.
B.5
2
—259—
15
C.6
D.
2
26.(1998 全国,7)已知圆锥的全面积是底面积的 3 倍,那么该圆锥的侧面展开图扇形
的圆心角为( )
A.120°
B.150°
A.V 甲>V 乙且 S 甲>S 乙
B.V 甲<V 乙且 S 甲<S 乙
C.V 甲=V 乙且 S 甲>S 乙
D.V 甲=V 乙且 S 甲=S 乙
10.(2002 北京理,10)设命题甲:“直四棱柱 ABCD-A1B1C1D1 中,平面 ACB1 与对
角面 BB1D1D 垂直”;命题乙:“直四棱柱 ABCD-A1B1C1D1 是正方体”.那么,甲是乙的
1
1
A.
B.
32
2
图 9—5
1
C.
2
1
D.
42
22.(2000 全国理,9)一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧 面积的比是( )
1 2 A. 2
1 4 B. 4
1 2 C.
1 4 D. 2
23.(1999 全国,7)若干毫升水倒入底面半径为 2 cm 的圆柱形器皿中,量得水面的高 度为 6 cm.若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )
12.(2001 上海,15)已知 a、b 为两条不同的直线,α、β为两个不同的平面,且 a⊥
α,
b⊥β,则下列命题中的假命题是( )
A.若 a∥b,则α∥β
2010-2019高考真题分类训练文数专题九 解析几何第二十四讲 直线与圆

专题九 解析几何第二十四讲 直线与圆2019年1.(2019北京文8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为(A )4β+4cos β (B )4β+4sin β (C )2β+2cos β (D )2β+2sin β 2.(2019北京文11)设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.3.(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.4.(2019浙江12)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C相切于点(2,1)A --,则m =_____,r =______.5(2019全国1文21)已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.2010-2018年一、选择题1.(2018全国卷Ⅲ)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是A .[2,6]B .[4,8]C .D . 2.(2016年北京)圆22(1)2x y ++=的圆心到直线3y x =+的距离为A .1B .2CD .3.(2016年山东)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N :22(1)1x y +-=(-1)的位置关系是 A .内切 B .相交 C .外切 D .相离4.(2016年全国II 卷)圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =A .−43B .−34C D .2 5.(2015北京)圆心为(1,1)且过原点的圆的方程是 A .22(1)(1)1x y -+-= B .22(1)(1)1x y +++=C .22(1)(1)2x y +++=D .22(1)(1)2x y -+-=6.(2015安徽)直线34x y b +=与圆222210x y x y +--+=相切,则b 的值是A .-2或12B .2或-12C .-2或-12D .2或127.(2015新课标2)已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为A .35B .321C .352D .34 8.(2014新课标2)设点0(,1)M x ,若在圆22:=1O x y +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是A .[]1,1-B .1122⎡⎤-⎢⎥⎣⎦,C .⎡⎣D .⎡⎢⎣⎦ 9.(2014福建)已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+=10.(2014北京)已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=o,则m 的最大值为A .7B .6C .5D .411.(2014湖南)若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则m = A .21 B .19 C .9 D .11-12.(2014安徽)过点P )(1,3--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是A .]60π,(B .]30π,(C .]60[π,D .]30[π, 13.(2014浙江)已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是A .-2B .-4C .-6D .-814.(2014四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是A .B .C .D .15.(2014江西)在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为A .45πB .34πC .(6π-D .54π16.(2013山东)过点(3,1)作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=17.(2013重庆)已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为A .4B 1C .6- D18.(2013安徽)直线250x y +-+=被圆22240x y x y +--=截得的弦长为A .1B .2C .4D .19.(2013新课标2)已知点()1,0A -;()1,0B ;()0,1C ,直线y ax b =+(0)a >将△ABC 分割为面积相等的两部分,则b 的取值范围是A .(0,1)B .112⎛⎫ ⎪ ⎪⎝⎭ C .113⎛⎤-⎥ ⎦⎝ D .11,32⎡⎫⎪⎢⎣⎭20.(2013陕西)已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是A .相切B .相交C .相离D .不确定21.(2013天津)已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直, 则a =A .12-B .1C .2D .1222.(2013广东)垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是A .0x y +-=B .10x y ++=C .10x y +-=D .0x y ++=23.(2013新课标2)设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为A .1y x =-或1y x =-+B .1)3y x =-或1)3y x =--C .1)y x =-或1)y x =-D .(1)2y x =-或(1)2y x =-- 24.(2012浙江)设a R ∈,则“1a =”是“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件25.(2012天津)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是A .[1B .(,1)-∞-∞UC .[2-D .(,2)-∞-∞U26.(2012湖北)过点(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +…分为两部分,使得这两部分的面积之差最大,则该直线的方程为A .20x y +-=B .10y -=C .0x y -=D .340x y +-=27.(2012天津)在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于,A B 两点,则弦AB 的长等于( )()A ()B ()C ()D 128.(2011北京)已知点A (0,2),B (2,0).若点C 在函数y x =的图像上,则使得ΔABC 的面积为2的点C 的个数为A .4B .3C .2D .1 29.(2011江西)若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .(33-,33)B .(33-,0)U (0,33) C .[33-,33] D .(-∞,33-)U (33,+∞) 30.(2010福建)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为A .2220x y x ++=B .220x y x ++= C .220x y x +-= D .2220x y x +-= 31.(2010广东)若圆心在x 5O 位于y 轴左侧,且与直线20x y +=相切,则圆O 的方程是A .22(5)5x y +=B .22(5)5x y ++=C .22(5)5x y -+=D .22(5)5x y ++= 二、填空题32.(2018全国卷Ⅰ)直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB =__. 33.(2018天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__.34.(2018江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r ,则点A 的横坐标为 .35.(2017天津)设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为 .36.(2017山东)若直线1(00)x y a b a b+=>,>过点(1,2),则2a b +的最小值为 . 37.(2016江苏)在平面直角坐标系xOy 中,(12,0)A -,(0,6)B ,点P 在圆O :2250x y +=上,若20PA PB ⋅u u u r u u u r ≤,则点P 的横坐标的取值范围是 .38.(2016年天津)已知圆C 的圆心在x 轴的正半轴上,点5)M 在圆C 上,且圆心到直线20x y -= 的距离为45,则圆C 的方程为__________ 39.(2016年全国I 卷)设直线2y x a =+与圆C :22220x y ay +--=相交于,A B 两点,若||23AB =,则圆C 的面积为 .40.(2016年全国III 卷)已知直线l :360x y -+=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD =_____________.41.(2015重庆)若点(1,2)P 在以坐标原点为圆心的圆上,则该圆在点P 处的切线方程为________.42.(2015湖南)若直线3450x y -+=与圆()2220x y r r +=>相交于,A B 两点,且120o AOB ∠=(O 为坐标原点),则r =_____.43.(2015湖北)如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B在A 的上方),且||2AB =.(1)圆C 的标准方程为 .(2)圆C 在点B 处的切线在x 轴上的截距为 .44.(2015江苏)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线2mx y m ---10=()m ∈R 相切的所有圆中,半径最大的圆的标准方程为 .45.(2014江苏)在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 .46.(2014重庆)已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC ∆为等边三角形,则实数=a _________.47.(2014湖北)直线1l :y x a =+和2l :y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.48.(2014山东)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为C 的标准方程为 .49.(2014陕西)若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为____.50.(2014重庆)已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BC AC ⊥,则实数a 的值为_________.51.(2014湖北)已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则(Ⅰ)b = ;(Ⅱ)λ= .52.(2013浙江)直线23y x =+被圆22680x y x y +--=所截得的弦长等于______.53.(2013湖北)已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .54.(2012北京)直线y x =被圆22(2)4x y +-=截得的弦长为 .55.(2011浙江)若直线250x y -+=与直线260x my +-=互相垂直,则实数m =___56.(2011辽宁)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为__.57.(2010新课标)圆心在原点上与直线20x y +-=相切的圆的方程为 .58.(2010新课标)过点A (4,1)的圆C 与直线0x y -=相切于点B (2,1),则圆C 的方程为__三、解答题59.(2018全国卷Ⅰ)设抛物线C :22=y x ,点(2,0)A ,(2,0)-B ,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN =∠∠.60.(2017新课标Ⅲ)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.61.(2016江苏)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点(2,4)A .(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;(3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=u u r u u r u u u r 求实数t 的取值范围.62.(2015新课标1)已知过点(0,1)A 且斜率为k 的直线l 与圆C :22(2)(3)1x y -+-=交于,M N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)若12OM ON ⋅=u u u u r u u u r ,其中O 为坐标原点,求MN .63.(2014江苏)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m . 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO . (I )求新桥BC 的长;(II )当OM 多长时,圆形保护区的面积最大?64.(2013江苏)如图,在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆C的半径为1,圆心在l 上. ylO A(I )若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程;(II )若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.65.(2013新课标2)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22在y 轴上截得线段长为23(I )求圆心P 的轨迹方程;(II )若P 点到直线y x =2,求圆P 的方程。
(完整版)2019高考全国各地数学卷文科解答题分类汇编-解析几何,推荐文档

(a - c )2 + b 2 ⎛ 8 5 c ⎪ + c + 3c⎫2 ⎛ 3 3 ⎫ 2 ⎝ ⎭ ⎝ 5 ⎭5 5 y + 2019 高考全国各地数学卷文科解答题分类汇编-解析几何1. 〔天津文〕18、〔本小题总分值 13 分〕2 2 设椭圆 a 2 b 2 = 1(a > b >0) 的左、右焦点分别为 F 1,F 2。
点 P (a , b ) 满足| PF 2 |=| F 1 F 2 | .〔Ⅰ〕求椭圆的离心率e ;〔Ⅱ〕设直线 PF 2 与椭圆相交于 A ,B 两点,假设直线 PF 2 与圆(x + 1)2 + ( y -5 交于 M ,N 两点,且| MN |=| AB | ,求椭圆的方程。
83)2 = 16 相【解析】〔18〕本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公式、点到直线的距离公式、直线与圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力,总分值 13 分。
〔Ⅰ〕解:设 F 1 (-c , 0), F 2 (c , 0)(c > 0) ,因为| PF 2 |=| F 1 F 2 |,⎛ c ⎫2所以 = 2c ,整理得2 ⎪+ c- 1 = 0, 得 c = -1〔舍〕或 c =1, 所以e = 1 . ⎝ a ⎭ a a a 2 2〔Ⅱ〕解:由〔Ⅰ〕知 a = 2c , b = 3c ,可得椭圆方程为3x 2 + 4 y 2 = 12c 2 ,直线 FF 2 的方程为 y = 3(x - c ).⎪3x 2 + 4 y 2 = 12c 2,A ,B 两点的坐标满足方程组⎨ ⎩ y = 3(x - c ).消去 y 并整理,得5x 2 - 8cx = 0 。
⎧x = 8 c ,解得 x = 0, x = 8c ,得方程组的解⎨ ⎪x 1 = 0, ⎪ 2 5 1 2 5y = - 3c , ⎨ 3 ⎪ 1⎪ y = 3 c .⎛ 8 3 3 ⎫不妨设 A c , c , B (0, -3c ) , ⎝ ⎭所以| AB |= 5于是| MN |= | AB |= 2c .8= 16 c . 5 ⎩ 2 5x3-3 a cy 圆心(-1, 3 )到直线 PF | - - 的距离 d = 3c | = 3 | 2 + c | .22 2⎛ | MN | ⎫23 因为 d 2 + ⎪ = 42 ,所以 ⎝ 2 ⎭4 (2 + c )2 + c 2= 16.整理得7c 2 + 12c - 52 = 0 ,得c = - 26〔舍〕,或c = 2.7所以椭圆方程为 x 2+ y 2= 1.16 122. 〔北京文〕19、〔本小题共 14 分〕x 22椭圆G : 2 + b 2 = 1(a > b > 0) 的离心率为 6 ,右焦点为〔2 3,0〕,斜率为 I 的 直线l 与椭圆 G 交与 A 、B 两点,以 AB 为底边作等腰三角形,顶点为 P 〔-3,2〕. 〔I 〕求椭圆 G 的方程;〔II 〕求∆PAB 的面积. 【解析】〔19〕〔共 14 分〕解:〔Ⅰ〕由得c = 2 2, =6 . a3解 得 a = 2 3. 又 b 2 = a 2 - c 2 = 4.所以椭圆 G 的方程为 x 2 + y 2 = 1. 12 4〔Ⅱ〕设直线 l 的方程为 y = x + m .⎧ y = x + m ⎪由⎨ x 2 + y 2⎩124= 1得 4x 2 + 6mx + 3m 2 - 12 = 0.设 A 、B 的坐标分别为(x 1 , y 1 ), (x 2 , y 2 )(x 1 < x 2 ), AB 中点为 E (x 0 , y 0 ) ,=x 1 + x 2 = - 3m ,那么 x 0 2 4y 0 = x 0+ m = m 422 2 2x 2 - 62 + 6| AB | ⋅d = . 2y 2y 因为 AB 是等腰△PAB 的底边, 所以 PE⊥AB.2 - m所以 PE 的斜率 k =4 = -1. - 3 + 3m4解得 m=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题九 解析几何 第二十四讲 直线与圆
2019年
1.(2019北京文8)如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为
(A )4β+4cos β (B )4β+4sin β (C )2β+2cos β (D )2β+2sin β 2.(2019北京文11)设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.
3.(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点
A 、
B 到直线l 的距离分别为A
C 和B
D (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).
(1)若道路PB 与桥AB 垂直,求道路PB 的长;
(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;
(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.
4.(2019浙江12)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C
相切于点(2,1)A --,则m =_____,r =______.
5(2019全国1文21)已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.
(1)若A 在直线x +y =0上,求⊙M 的半径;
(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.
2010-2018年
一、选择题
1.(2018全国卷Ⅲ)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆
22(2)2x y -+=上,则ABP △面积的取值范围是
A .[2,6]
B .[4,8]
C .
D . 2.(2016年北京)圆22(1)2x y ++=的圆心到直线3y x =+的距离为
A .1
B .2
C
D .
3.(2016年山东)已知圆M :2
220(0)x y ay a 截直线0x y 所得线段的长度是
M 与圆N :22(1)1x y (-1)的位置关系是
A .内切
B .相交
C .外切
D .相离
4.(2016年全国II 卷)圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =
A .−43
B .−34
C D .2 5.(2015北京)圆心为(1,1)且过原点的圆的方程是 A .22(1)(1)1x y -+-= B .22(1)(1)1x y +++=
C .22(1)(1)2x y +++=
D .22
(1)(1)2x y -+-=
6.(2015安徽)直线34x y b +=与圆222210x y x y +--+=相切,则b 的值是
A .-2或12
B .2或-12
C .-2或-12
D .2或12
7.(2015新课标2)已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原
点的距离为
A .35
B .321
C .352
D .3
4 8.(2014新课标2)设点0(,1)M x ,若在圆22:=1O x y +上存在点N ,使得°45OMN ∠=,
则0x 的取值范围是
A .[]1,1-
B .1122⎡⎤-⎢⎥⎣⎦,
C .⎡⎣
D .⎡⎢⎣
⎦ 9.(2014福建)已知直线l 过圆()2
234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是
A .20x y +-=
B .20x y -+=
C .30x y +-=
D .30x y -+=
10.(2014北京)已知圆()()22
:341C x y -+-=和两点(),0A m -,()(),00B m m >,
若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为
A .7
B .6
C .5
D .4
11.(2014湖南)若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则m = A .21 B .19 C .9 D .11-
12.(2014安徽)过点P )(1,3--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的
取值范围是
A .]60π,(
B .]30π,(
C .]60[π,
D .]3
0[π
, 13.(2014浙江)已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则
实数a 的值是
A .-2
B .-4
C .-6
D .-8
14.(2014四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线
30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是
A .
B .
C .
D .。