第3章动力元件与执行元件
第3章动力元件

泵体内表面和齿顶径向间隙的泄漏: 10%-15%; 齿面啮合处间隙的泄漏:很少; 齿轮端面间隙的泄漏, 70%-75%。
减小端面泄漏是提高齿轮泵容积效率的主要途径。
2.液压径向不平衡力
• 原因:
在压油腔和吸油腔之间存 在着压差; 泵体内表面与齿轮齿顶之 间存在着径向间隙。 • 液体压力的合力作用在 齿轮和轴上,是一种径 向不平衡力。
⑵ 额定压力: 液压泵在正常工作条件下,按试 验标准规定连续长期运转的最高压力。额定压
力值的大小由液压泵零部件的结构强度和密封性来 决定。超过这个压力值,液压泵有可能发生机械或 密封方面的损坏。
液压泵在正常工作时,其工作压力应小 于或等于泵的额定压力。
⑶ 最高允许压力:在超过额定压力的条件下,根据
c) 在配油盘上开卸荷三角槽。
③定子工作表面(内)曲线 要求: a) 叶片不发生脱空 ; b) 获得尽量大的理论排量; c) 减小冲击,以降低噪声,减少磨损 d) 提高叶片泵流量的均匀性,减小流量脉动。 常用定子的过渡曲线有:阿基米德曲线、
等加速-等减速曲线、正弦曲线、高次曲线等。
④叶片倾角:
叶片在转子中的安放应当有利于叶 片的滑动,磨损要小。
压泵技术规格指标之一。
⑹瞬时流量qin:泵在每一瞬时的流量,一般指 泵瞬时理论(几何)流量。
3.功率:
液压泵的输入能量为机械能,其表现为转 矩和转速;液压泵的输出能量为液压能,表现 为压力和流量。
⑴理论功率Pt: 它用泵的理论流量与泵进出
口压差的乘积来表示,
Pt pqt
⑵输入功率Pi 实际驱动液压泵轴所需要的机械功 率,由电动机或柴油机给出,即 Pi T 2nT
q
[工学]第3章 液压动力元件
![[工学]第3章 液压动力元件](https://img.taocdn.com/s3/m/8c30b28ea26925c52dc5bf86.png)
QL
ApsX
p
Ctp PL
Vt
4e
sPL
ApPL mts2X p BpsX p KX p FL
根据阀控液压缸的拉氏变换方程式绘出系统方框图。
2021/8/26
7
由方框图求得液压缸输出位
移传递函数: X p
mtVt
4e Ap2
s3
Kq Ap
Xv
Kce Ap2
1
Vt
4 e K ce
s FL
思考题
• 10、阀控液压马达和泵控液压马达的特性有何不同,为什 么?
• 11、为什么把称为速度放大系数?速度放大系数的量纲是 什么?
• 12、何谓负载匹配?满足什么条件才算最佳匹配? • 13、如何根据最佳负载匹配确定动力元件参数? • 14、泵控液压马达系统有没有负载匹配问题?满足什么条
件才是泵控液压马达的最佳匹配? • 15、在长行程时,为什么不宜采用液压缸而采用液压马达?
2
2
x
x0
Ft (K
Bx
m2 )
x0
1
负载特性曲线:
2021/8/26
31
二、负载匹配
负载匹配定义:
根据负载轨迹来进行负载匹配时,只要使动力元件的输出持性曲 线能够包围负载轨迹,同时使输出特性曲线与负载轨迹之间的区域 尽量小,便认为液压动力元件与负载相匹配。
输出特性曲线:
2021/8/26
第二项:
是惯性力引起的泄漏流量所产生的
2021/8/26
mt Kce Ap2
s2活X p塞速度;
8
第三项: BpVt
4e Ap2
s2
X
是粘性力变化引起的压缩流量产生
机电一体化技术-第03章 执行器

(4)气动执行器应该是正立垂直安装于水平管道上。 特殊情况下需要水平或倾斜安装时,除小口径阀外, 一般应加支撑。即使正立垂直安装,当阀的自重较大 和有振动场合时,也应加支撑。
(5)通过控制阀的流体方向在阀体上有箭头标明, 不能装反。
控制阀的口径选择是由控制阀流量系数KV值决 定的。流量系数KV的定义为:当阀两端压差为 100kPa,流体密度为1g/cm3,阀全开时,流经控制 阀的流体流量。
7.气动执行器的安装和维护
(1)为便于维护检修,气动执行器应安装在靠近地面 或楼板的地方。
(2)气动执行器应安装在环境温度不高于+60℃和不 低于-40℃的地方,并应远离振动较大的设备。
快开特性的阀芯形式是平板形的,适用于迅速 启闭的切断阀或双位控制系统。
6.控制阀的选择
1)控制阀结构与特性的选择
结构形式选择 主要根据工艺条件,如温度、压力及介质的物
理、化学特性(如腐蚀性、黏度等)来选择。 特性选择
先按控制系统的特点来选择阀的希望流量特性,然 后再考虑工艺配管情况来选择相应的理想流量特性。
第三章 执行器
3.1 概述
1.执行器作用
接收控制器输出的控制信号,改变操 纵变量,使生产过程按预定要求正常 进行。
控制信号 执行器
操纵变量
蒸汽加热反应器工艺控制图
温度给定
﹢ ‐
温度控制器 TC
干扰 蒸汽流量
控制阀
反应器
出料温度
温度传感与变送器 TT
反应器温度控制系统方框图
2.执行器组成
电流4~20mA
气关阀
例2:加热炉炉温的控制
TT
TC
最全液压系统学习资料图解版(共116张PPT)

齿轮泵特点;它供油压力大,对油质要求 低。低压,<2.5mpa 。可靠,故障少。 廉价。低档机械,要求低的油压系统。
第二节:执行元件
执行元件(如液压缸和液压马达)的作用是将 液体的压力能转换为机械能,驱动负载作 直线往复运动或回转运动。
位—用方格表示,几位即几个方格
通—↑
不通— ┴ 、┬
箭头首尾和堵截符号与一个方格有几个交点即 为几通. p.A.B.T有固定方位,p—进油口,T—回油口
A.B—与执行元件连接的工作油口
弹簧—W、M,画在方格两侧。
常态位置:
(原理图中,油路应该连接在常态位置)
二位阀,靠弹簧的一格。
三位阀,中间一格。
液压系统的组成
一个完整的液压系统由五个局部组成 动力元件〔如:油泵 〕 执行元件〔如:液压油缸和液压马达 〕 控制元件〔如:液压阀 〕 辅助元件〔如:油箱、滤油器 等〕 液压油 〔如:乳化液和合成型液压油 〕
动力元件 执行元件 控制元件 辅助元件 液压油
液压系统图
第一节:动力元件
液:p → A ,B → T 右YA通电:电:p → B → 液动阀右腔,液动阀左腔 → A →T
液:p → B,A → T
电液比例换向阀
比例电磁铁替代普通电磁换向阀中的普通电磁铁即可。 工作原理:输入一I,得到一个运动方向,并且还可改变输出流量的
大小;改变电流信号极性,即可改变运动方向。
图形符号含义
单向顺序阀等复合阀。
• 安装在执行元件的回油路上,使回油具有一 定背压。作背压阀的单向阀应更换刚度较大 的弹簧,其正向开启压力为〔 0.3~0.5〕 MPa。
液压伺服控制液压动力元件

K ps
Kq K ce
ωr——惯性环节的转折频率
r
K ce k
Ap
2
1
k kh
K ce
Ap 2
1 k
1 kh
稳态时阀输入位移所引起的液压缸活塞的输出位移
外负载力作用所引起的活塞输出位移的减小量
k 1 时 kh
xp
Kq Ap
xv
K ce Ap 2
4
Vt
eK
ce
s 1FL
s
K ce k Ap 2
s2
总流量 = 推动活塞运动所需流量 + 经过活塞密封的内泄漏流量 + 经过活塞杆密封处的外泄漏流量 + 油液压缩和腔体变形所需的流量
4
流入液压缸进油腔的流量:
Q1
Ap
dx p dt
V1
e
dp1 dt
Ci ( p1
p2 ) Ce p1
从液压缸回油腔流出的流量:
Ap
Q2
Ap
dx p dt
V2
e
dp2 dt
V1 Ap
比例,其作用相当于一个线性液压弹簧,
V
总液压弹簧刚度为:
V2
F
kh
e
Ap
2
1 V1
1 V2
压力P
V左
总液压弹簧刚度是液压缸两腔液压弹簧刚度的并联。
18
当活塞处在中间位置时,液压弹簧刚度最小,当在两端时,V1 或V2为零,液压弹簧刚度最大。 液压弹簧与负载质量相互作用所构成系统的固有频率,中间位
QL Kq xv Kc pL
QL
Apsx p
( Vt
4e
s Ct ) pL
Ap pL (M t s2 Bps k )x p FL
《液压传动》习题与答案解析

第一章绪论1-1 液压系统中的压力取决于(),执行元件的运动速度取决于()。
1-2 液压传动装置由()、()、()和()四部分组成,其中()和()为能量转换装置。
1—3 设有一液压千斤顶,如图1—3所示。
小活塞3直径d=10mm,行程h=20mm,大活塞8直径D=40mm,重物w=50000N,杠杆l=25mm,L=500mm。
求:①顶起重物w时,在杠杆端所施加的力F;②此时密闭容积中的液体压力p;⑧杠杆上下动作一次,重物的上升量H;④如果小活塞上有摩擦力f l=200N,大活塞上有摩擦力f2=1000 N, 杠杆每上下动作一次,密闭容积中液体外泄0.2cm3至油箱,重新完成①、②、③。
图题1—3第二章液压油液2-1 什么是液体的粘性?2-2 粘度的表式方法有几种?动力粘度及运动粘度的法定计量单位是什么?2-3 压力和温度对粘度的影响如何?2—4 我国油液牌号与50℃时的平均粘度有关系,如油的密度ρ=900kg/m3,试回答以下几个问题:1) 30号机油的平均运动粘度为( )m2/s;2)30号机油的平均动力粘度为( )Pa .s;3) 在液体静止时,40号机油与30号机油所呈现的粘性哪个大?2—5 20℃时水的运动粘度为l ×10—6m2/s,密度ρ=1000kg/m3;20℃时空气的运动粘度为15×10—6m2/s,密度ρ=1.2kg/m3;试比较水和空气的粘度( )(A)水的粘性比空气大;(B)空气的粘性比水大。
2—6 粘度指数高的油,表示该油 ( )(A) 粘度较大; (B) 粘度因压力变化而改变较大;(C) 粘度因温度变化而改变较小; (D) 粘度因温度变化而改变较大。
2—7 图示液压缸直径D=12cm,活塞直径d=11.96cm,活塞宽度L=14cm,间隙中充以动力粘度η= 0.065Pa·s 的油液,活塞回程要求的稳定速度为v=0.5 m/s,试求不计油液压力时拉回活塞所需的力F等于多少?图题2-7第三章液压流体力学基础§ 3-1 静止流体力学3—1什么是液体的静压力?压力的表示方法有几种?压力的单位是什么?3—2在图示各盛水圆筒活塞上的作用力F=3000 N。
机电一体化系统设计 第3章 执行元器件

第 3 章 执行元件的选择与设计
§3-3 交流伺服电机及驱动器
伺服系统的有哪几部分组成 ➢ 机构-结构:接受执行器输出的力、力矩或功率产生机构 运动,完成最终目标。结构部分把各组成部分联成一体, 起支持与定位作用。 ➢ 能源:主要作用是给机械运动提供足够的动力,同时也 向传感器、信息处理器提供所需的能量。 ➢ 伺服电机:(M)驱动信号控制转换电路 电力电子驱动放 大模块, 电流调解单元,速度调解单元 检测装置
6)电机测试方式
通过键盘操作,伺服电机按照参数设定的脉冲频率转动。用于测试位置控制方式。
第 3 章 执行元件的选择与设计
§3-3 交流伺服电机及驱动器
交流伺服系统 PSDD驱动器驱动方式简介
电子齿轮
第 3 章 执行元件的选择与设计
§3-3 交流伺服电机及驱动器
交流伺服系统 PSDD驱动器
(1)电源输入端子:
§3-3 交流伺服电机及驱动器
交流伺服系统 PSDD驱动器驱动方式简介
4)JOG控制方式
通过按键操作控制电机点动。按下按键,电机按设定的参数转动,松开按键, 停止转动。用于手动移动机械装置到某一固定位置。
5)电机零点调试方式
长期使用后,编码器的零点可能偏移。该操作重新将编码器调零。该操作只能 在空载下进行,否则影响精度。
第 3 章 执行元件的选择与设计
§3-1 执行元件的种类、特点及基本要求
一、执行元件的种类及特点
电磁式是将电能变成电磁力,并用该电磁力驱动运行机构运动。 液压式是先将电能变换为液压能并用电磁阀改变压力油的流向,
从而使液压执行元件驱动运行机构运动。 气压式与液压式的原理相同,只是将介质由油改为气体而已。 其他执行元件与使用材料有关,如使用双金属片、形状记忆合金
《液压与气压传动》(第3版)习题答案刘建明

《液压与气压传动》教材(第3版)习题参考答案第1章习题P4 小节习题:(1)机械能、液压能。
(2)动力元件、执行元件、控制调节元件、辅助元件和工作介质。
(3)动力元件。
(4)机械能、机械能。
(5)压力、流量和流动方向。
(6)1.液压传动的优点1)能方便地实现无级调速,且调速范围大。
2)容易实现较大的力和转矩的传递。
液压传动装置的体积小、重量轻、运动惯性小。
3)液压传动装置工作平稳,反应速度快,换向冲击小,便于实现频繁换向。
4)易于实现过载保护,而且工作油液能实现自行润滑,从而提高元件的使用寿命。
5)操作简单,易于实现自动化。
6)液压元件易于实现标准化、系列化和通用化。
2.液压传动的缺点1)液体的泄漏和可压缩性使液压传动难以保证严格的传动比。
2)在工作过程中能量损失较大,传动效率较低。
3)对油温变化比较敏感,不宜在很高或很低的温度下工作。
4)液压传动出现故障时,不易诊断。
P7 小节习题:(1)由于液体内磨擦力的作用,而产生阻止液层间的相对滑动。
(2)动力黏度、运动黏度、相对黏度。
(3)运动黏度,υ,m2/s,mm2/s。
(4)黏度较低。
(5) 40℃运动黏度,mm2/s。
(6)石油型、乳化型和合成型。
(7)水分、空气、微小固体颗粒、胶质状生成物。
(8)a.堵塞过滤器,使液压泵吸油困难,产生噪声,堵塞阀类元件小孔或缝隙,使阀动作失灵。
微小固体颗粒还会加剧零件磨损,擦伤密封件,使泄漏增加。
b.水分和空气混入会降低液压油的润滑能力,加速氧化变质,产生气蚀;还会使液压液压系统出现振动、爬行等现象。
(9)a.严格清洗元件和系统。
b.尽量减少外来污染物。
c.控制液压油的温度。
d.定期检查、清洗和更换滤芯。
e.定期检查和更换液压油。
本章习题1.填空题(1)法向力,N/㎡即pa 。
(2)压力和流量。
(3)绝对压力和相对压力,相对压力。
(4)输入流量。
(5)沿程压力损失和局部压力损失。
(6)功率损失、油液发热、泄漏增加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章动力元件与执行元件3.1㊀液㊀压㊀泵液压泵是液压传动系统中的能量转换元件.液压泵属于动力装置,它由原动机(如电动机㊁内燃机等)驱动,把机械能转换成液压能,以液体的压力和流量的形式输入到系统中去.3.1.1㊀液压泵的基本工作原理1.液压泵的工作原理㊀㊀图3G1所示为单柱塞液压泵的工作原理图.柱塞2装在泵体3中,和单向阀5㊁6共同图3G1㊀单柱塞液压泵工作原理图1 偏心轮;2 柱塞;3 泵体;4 弹簧;5㊁6 单向阀;7 油箱形成密封工作腔a ,柱塞2在弹簧4的作用下始终紧压在偏心轮1上.原动机驱动偏心轮1旋转,柱塞2在偏心轮1和弹簧4的作用下在泵体3中作往复运动.当柱塞2伸出时,密封工作腔a 的容积由小变大,形成局部真空,油箱7中的油液在大气压作用下,经过进油管顶开单向阀6进入密封工作腔a ,单向阀5在系统压力和弹簧力的作用下关闭,该过程为吸油过程;当柱塞2缩回时,密封工作腔a 的容积由大变小,其中的油液受到挤压,压力升高,单向阀6在密封工作腔a 压力油和弹簧力的作用下关闭,密封工作腔a 压力油顶开单向阀5进入系统,该过程为排油过程.原动机驱动偏心轮1不断旋转,液压泵不断地吸油和排油,这样就将原动机输入的机械能转换成液压能.由此可见,液压泵是依靠密封容积变化进行工作的,所以把液压泵称为容积式泵.单柱塞液压泵只有一个工作腔,输出的压力油是不连续的.工程上,为了使液压系统的执行元件运行平稳,希望液压泵的流量连续且脉动量小,因此要用均匀排列的三缸以上的柱塞泵或其他结构形式的液压泵.2.液压泵的特点从上述单柱塞液压泵的工作过程,可以得出液压泵的基本特点:26㊀汽车液压与液力传动(1)具有周期性变化的密封工作容腔.容积式液压泵中的密封工作容腔处于吸油时称为吸油腔,吸油腔体积增大吸入油液,完成吸油过程;密封工作容腔处于排油时称为排油腔,排油腔体积缩小排出油液,完成排油过程.(2)具有相应的配流机构.配流机构使吸油腔和排油腔严格分开,保证液压泵连续工作.图3G1所示的单向阀5㊁6就是配流机构.吸油时,单向阀5关闭,将单向阀5后面的排油管路(排油腔)与吸油腔隔开;排油时,单向阀6关闭,使吸油管路(吸油腔)与排油腔隔开.液压泵的结构原理不同,其配流机构也不相同.(3)具有一定自吸能力.液压泵能够借助大气压力自行吸油而正常工作的能力称为泵的自吸能力.3.1.2㊀液压泵的主要性能参数1.压力㊀㊀1)工作压力p液压泵实际工作时的压力称为液压泵的工作压力.在工作过程中,液压泵的工作压力取决于负载,与液压泵的流量无关.2)额定压力p n液压泵在正常工作条件下,按试验标准规定,能连续运转的最高压力称为液压泵的额定压力.实际工作中,液压泵的工作压力应小于或等于额定压力.3)最高允许压力p m a x按试验标准规定,超过额定压力允许短暂运行的最高压力称为液压泵的最高允许压力.2.排量与流量液压泵的流量为单位时间内排出液压泵的油液体积.1)排量V液压泵轴每旋转一周,按其密封容腔几何尺寸变化而计算得到的排出(或输入)的油液体积,称为液压泵的排量.2)理论流量q t根据液压泵的密封容腔几何尺寸变化而计算得到的单位时间内排出(或输入)的油液体积,称为液压泵的理论流量,一般指平均理论流量.对于液压泵,有q t p=V p n p(3G1)式中㊀q t p 泵的理论流量;V p 泵的排量;n p 泵的转速.第3章 动力元件与执行元件27㊀㊀㊀3)实际流量q实际情况下,液压泵不可避免地存在泄漏,液压泵工作时实际排出的流量,称为液压泵的实际流量q p.它等于液压泵的理论流量q t p减去因泄漏㊁油液压缩等损失的流量Δq p,即q p=q t p-Δq p(3G2)㊀㊀需要注意的是,泵的泄漏和油液的压缩量是受工作压力影响的,压力越高则泄漏量与压缩量越大,因此,液压泵的实际流量随着工作压力的升高而略有降低.工程实践中,常把空载情况下液压泵的输出流量视为液压泵的理论流量.4)额定流量q n在正常工作条件下,按试验标准规定(如在额定压力和额定转速下),液压泵必须保证的输出(或输入)流量.3.功率与效率1)理论功率P t液压泵理论上所产生(或需要)的液压功率,即P t=Δp q t(3G3)式中㊀P t 液压泵理论功率;Δp 液压泵的进㊁排油口压力差.2)输入功率P i p液压泵的输入功率P i p为实际驱动液压泵轴的机械功率,即P i p=2πn p T p(3G4)式中㊀P i p 泵的输入功率;n p 泵的转速;T p 泵的实际输入转矩.3)输出功率P o p液压泵的输出功率P o p为实际输出液压泵的液压功率,即P o p=Δp p q p(3G5)式中㊀P o p 泵的输出功率;Δp p 泵的进㊁排油口压力差;q p 泵的实际流量.在实际的计算中,若油箱通大气,液压泵的进㊁排油口压力差用液压泵出口压力p p代入.4)容积损失与容积效率ηv p因油液的泄漏㊁压缩等损失的流量称为容积损失.液压泵的容积损失用容积效率来表示.液压泵的容积效率ηv p等于泵的实际流量q p与理论流量q t p之比,即ηv p=q p q t p(3G6)㊀㊀因此,液压泵的实际流量q p为q p=q t pηv p=V p n pηv p(3G7)㊀㊀容积效率表示液压泵抵抗泄漏的能力.它与工作压力㊁液压泵工作腔中的摩擦副间隙28㊀汽车液压与液力传动大小㊁油液的黏度以及转速等有关.当工作压力较高,或间隙较大,或油液黏度较低时,因泄漏较大,故容积效率较低;当转速较低时,因理论流量较小,泄漏量比例增加,也使得液压泵的容积效率降低.5)机械损失与机械效率因运动部件之间和运动部件与流体之间摩擦而损失的能量称为机械损失.液压泵的机械损失用机械效率表示.液压泵的机械效率ηm p 等于泵的理论转矩与实际输入转矩之比,即ηm p =T t p T p (3G8)㊀㊀因摩擦而造成的转矩损失ΔT p ,使得驱动泵的实际转矩T p 大于其理论驱动转矩T t p ,即T p =T t p +ΔT p (3G9)㊀㊀机械效率与摩擦损失有关,当摩擦损失加大时,对于液压泵,同样大小的理论输出功率需要较大的输入功率,对于液压马达,同样大小的实际输出功率需要较大的理论输出功率,故机械效率下降;当油液的黏度加大或间隙减小时,因液体摩擦或运动部件间的摩擦增大,机械效率也会降低.6)总效率液压泵的实际输出功率与输入功率之比,称为液压泵的总效率ηp ,即ηp =P o p P i p =Δp p q p 2πn p T p =Δp p q t p ηv p 2πn p T t p ηm p =ηv p ηm p (3G10)㊀㊀因此,液压泵的总效率等于液压泵的容积效率与机械效率之积.液压泵的输入功率即原动机的驱动功率,也可写成P i p =Δp p q p ηp (3G11)3.1.3㊀液压泵的分类与图形符号1.液压泵的分类㊀㊀液压泵的种类较多,液压泵按排量是否可以调节而分为定量式和变量式两类;按结构形式可分为齿轮式㊁叶片式㊁柱塞式等.图3G2㊀液压泵的图形符号(1)单向定量液压泵;(2)单向变量液压泵;(3)双向定量液压泵;(4)双向变量液压泵按齿轮啮合形式不同,齿轮泵分为外啮合齿轮泵㊁内啮合齿轮泵.叶片泵分为单作用叶片泵㊁双作用叶片泵;柱塞泵分为轴向柱塞泵和径向柱塞泵.齿轮泵㊁双作用叶片泵和螺杆泵是定量式液压泵;单作用叶片泵㊁径向柱塞泵和轴向柱塞泵是变量式液压泵.2.液压泵的图形符号液压泵的图形符号如图3G2所示.第3章 动力元件与执行元件29㊀3.1.4㊀齿轮泵齿轮泵是一种常用的液压泵.它的主要优点是结构简单㊁制造方便㊁外形尺寸小㊁重量轻㊁造价低㊁自吸性能好㊁对油液的污染不敏感㊁工作可靠.由于齿轮泵中的啮合齿轮是轴对称的旋转体,因此允许转速较高.其缺点是流量和压力脉动大㊁噪声高,排量不能调节.低压齿轮泵的工作压力为2.5M P a ;中高压齿轮泵的工作压力为7~21M P a;某些高压齿轮泵的工作压力已达到31.5M P a .齿轮泵的最高转速一般可达3000r /m i n 左右,在个别情况下(如飞机用齿轮泵)最高转速可达8000r /m i n .齿轮泵的低速性能较差,当其转速低于200~300r /m i n 时,容积效率过低,泵不能正常工作.1.外啮合齿轮泵外啮合齿轮泵的工作原理如图3G3所示,装在泵体中的一对参数相同的渐开线齿轮互相啮合.这对齿轮与前后端盖(图中未示出)和泵体形成密封工作腔,当传动轴带动齿轮按图示方向旋转时,泵的吸油腔的轮齿逐渐退出啮合,使吸油腔容积增大而吸油,油液进入齿间被带到排油腔.在泵的排油腔,轮齿逐渐进入啮合,使排油腔容积减小,将油液压出.齿轮泵齿轮啮合线分隔吸㊁排油腔,起到配油作用,因此外啮合齿轮泵不需要专门的配油机构,这是这种泵与其他类型泵的不同之处.图3G3㊀外啮合齿轮泵工作原理图1 泵体;2 主动齿轮;3 从动齿轮1)外啮合齿轮泵的排量与流量根据齿轮泵的结构尺寸可计算其排量.外啮合齿轮泵排量的精确计算应依啮合原理来进行.在工程实践中,通常采用以下近似计算公式.可以认为泵的排量等于两个齿轮的齿间工作容积之和,假设齿间的工作容积与轮齿的有效体积相等,则齿轮泵的排量等于一个齿轮的所有齿间工作容积和轮齿有效体积的总和,即等于齿轮齿顶圆与基圆之间环形圆柱的体积,因此外啮合齿轮泵的排量为V p =πD h B =2πz m 2B (3G12)式中㊀D 齿轮分度圆直径D =m z ,m ;h 有效齿高h =2m ,m ;B 齿宽,m ;m 齿轮模数,m ;z 齿轮齿数.上述公式所表示的是齿轮泵的平均流量.实际上随着啮合点位置的不断改变,齿轮泵每一瞬时的容积变化率是不均匀的,即齿轮泵的瞬时流量是变化的.2)流量脉动为了评价液压泵瞬时流量的品质,即液压泵的流量脉动,引入流量不均匀系数δq 和流30㊀汽车液压与液力传动量脉动频率f q.流量不均匀系数δq可定义为瞬时流量最大值和最小值之差与理论流量的比值.设q s h m a x㊁q s h m i n分别表示最大㊁最小瞬时流量,则流量不均匀系数δq可表示为δq=q s h m a x-q s h m i nq t pˑ100%(3G13)㊀㊀流量脉动频率f q是指单位时间内流量脉动的次数.对于齿轮泵来说,每转过一个齿时,流量脉动一次,所以流量脉动频率f q(单位H z)可表示为f q=z n p60(3G14)㊀㊀3)外啮合齿轮泵结构存在的问题及解决办法(1)泄漏.齿轮泵存在三个间隙泄漏途径:一是齿轮端面与端盖间的轴向间隙(占总泄漏量的75%~80%);二是齿轮外圆与泵体内表面之间的径向间隙(占总泄漏量的15%~20%);三是轮齿啮合处的间隙.其中,轴向间隙由于泄漏途径短㊁泄漏面积大而使泄漏量最大.如果轴向间隙过大,泄漏增加,会使齿轮泵的容积效率下降.如果轴向间隙过小,则齿轮端面和端盖间的机械摩擦损失增大,会使齿轮泵的机械效率下降.因此,应严格控制齿轮泵的轴向间隙.(2)困油现象.为了保证齿轮传动的平稳性及供油的连续性,吸㊁排油腔应严格地隔开,齿轮泵齿轮啮合的重合度ε必须大于1(一般ε=1.05~1.3),即在前一对轮齿尚未脱开啮合之前,后一对轮齿已经进入啮合.当两对轮齿同时啮合时,在两对轮齿的啮合线之间形成一个密闭容腔,该密闭容积与泵的吸㊁排压油腔均不相通,且随齿轮的转动而变化,如图3G4所示.从图3G4(a)~(b),密闭容腔逐渐减小,直到两啮合点C㊁D处于节点P两侧的对称位置,如图3G4(b)所示,密闭容腔为最小;从图3G4(b)~(c),密闭容腔逐渐增大.图3G4㊀齿轮泵的困油现象和困油卸荷槽第3章 动力元件与执行元件31㊀当密闭容腔由大变小时,密闭容腔中的油液受挤压,压力急剧上升,齿轮泵轴承受周期性压力冲击,同时压力油从缝隙中挤出,造成功率损失,使油液发热;当密闭容腔由小变大时,又因无油液补充而形成局部真空和空穴,出现气蚀现象,引起振动和噪声.这种因密闭容腔大小发生变化而导致压力冲击和产生气蚀的现象称为困油现象.困油现象对齿轮泵的正常工作十分有害,必须予以消除.消除困油现象的常用办法,通常是在齿轮泵的前后端盖或浮动轴套等零件上开困油卸荷槽,如图3G4(d)虚线所示.当密闭容腔减小时,使其与排油腔相通,当密闭容腔增大时,使其与吸油腔相通.一般的齿轮泵两卸荷槽是非对称布置的,使其向吸油腔侧偏移了一定距离,使V a在压缩到最小值的过程中始终与排油腔相通.但两卸荷槽的距离必须保证任何时候都不能使吸油腔和排油腔互通.(3)径向不平衡力.齿轮泵工作时,齿轮承受圆周油液压力所产生的径向力的作用.假设所有油液压力都作用在齿顶圆上,齿轮圆周压力的近似分布如图3G5所示,在吸油腔和排油腔的齿轮分别承受吸油压力p o和工作压力p p,在齿轮和泵体内表面的径向间隙中,可以认为油液压力从吸油腔压力逐渐过渡到排油腔压力.因此,油液压力产生的径向力是不平衡的.工作压力越高,径向不平衡力越大,其结果不仅加速了轴承的磨损,降低了轴承的寿命,而且使轴变形,造成齿顶和泵体内表面的摩擦等,使齿轮泵压力的提高受到限制.将齿轮圆周的压力分布曲线展开,可得齿轮圆周油液压力p随夹角φ的变化值,如图3G6所示.图3G5㊀齿轮的圆周压力近似分布图图3G6㊀齿轮的圆周压力近似分布展开图4)提高外啮合齿轮泵压力的措施低压齿轮泵的轴向间隙和径向间隙都是定值,当工作压力提高后,其间隙泄漏量大大增加,容积效率下降到不能允许的程度(如低于80%~85%);另外,随着压力的提高,原来并不平衡的径向力随之增大,导致轴承失效.高压齿轮泵主要是针对上述两个问题,在结构上采取了一些措施,如尽量减小径向不平衡力和提高轴的刚度与轴承的承载能力;对泄漏量最大处的间隙泄漏采用自动补偿装置等.由于外啮合齿轮泵的泄漏主要是轴向间隙泄漏,因此下面对此间隙的补偿原理作简单介绍.在中高压和高压齿轮泵中,轴向间隙自动补偿一般是采用浮动轴套㊁浮动侧板或弹性侧板,使之在液压力的作用下压紧齿轮端面,使轴向间隙减小,从而减少泄漏.图3G7所示表示浮动轴套式的间隙补偿原理.两个互相啮合的齿轮由前后轴套中的滑动轴承(或滚动轴32㊀汽车液压与液力传动承)支承,轴套可在泵体内作轴向浮动.由排油腔引至轴套外端面的压力油,作用在一定形状和大小的面积A1上,产生液压力F1,使轴套紧贴齿轮的侧面,因而可以消除间隙并可补偿齿轮侧面和轴套间的磨损量.在泵起动时,浮动轴套在弹性元件橡胶密封圈的弹力F t的作用下,紧贴齿轮端面以保证密封.齿轮端面的液压力作用在轴套内端面,形成反推力F f,设计时应使压紧力F y(F1+F t)大于反推力,一般取F y/F t=1~1.2.此外,还必须保证压紧力和反推力的作用线重合,否则会产生力偶,致使轴套倾斜而增加泄漏.图3G7㊀浮动轴套式间隙补偿原理图为了满足液压系统对不同流量的要求,外啮合齿轮泵结构上还有双联泵和多联泵可供选择.2.内啮合齿轮泵内啮合齿轮泵主要有渐开线齿轮泵和摆线转子泵两种类型.内啮合渐开线齿轮泵的工作原理如图3G8(a)所示.相互啮合的内转子和外转子之间有月牙形隔板,月牙板将吸油腔与排油腔隔开.当传动轴带动内转子按图示方向旋转时,外转子以相同方向旋转,图中左半部轮齿脱开啮合,齿间容积逐渐增大,从端盖上的吸油窗口A 吸油;右半部轮齿进入啮合,齿间容积逐渐减小,将油液从排油窗口B排出.内啮合渐开线齿轮泵与外啮合齿轮泵相比具有流量脉动小㊁结构紧凑㊁重量轻㊁噪声低㊁效率高以及没有困油现象等优点.它的缺点是齿形复杂,需专门的高精度加工设备.渐开线内啮合齿轮泵结构上也有单泵和双联泵,工程上应用也较多.摆线转子泵是以摆线成形㊁外转子比内转子多一个齿的内啮合齿轮泵.图3G8(b)所示为摆线转子泵的工作原理图.在工作时,所有内转子的齿都进入啮合,相邻两齿的啮合线与泵体和前后端盖形成密封容腔.内㊁外转子存在偏心,分别以各自的轴心旋转,内转子为主动轴,当内转子围绕轴心以图示方向旋转时,带动外转子绕外转子轴心作同向旋转.左侧油腔密封容积不断增加,通过端盖上的吸油窗口A吸油;右侧密封容积不断减小从排油窗口B排油.内转子每转一周,由内转子齿顶和外转子齿谷所构成的每个密封容积,完成吸㊁排油各一次.内啮合摆线转子泵的优点是结构紧凑㊁体积小㊁零件数少㊁转速高㊁运动平稳㊁噪声低等;缺点是啮合处间隙泄漏大,容积效率低,转子的制造工艺复杂等.内啮合齿轮泵可正㊁反转,也可作液压马达用.第3章 动力元件与执行元件33㊀图3G8㊀内啮合齿轮泵工作原理图(a)渐开线齿轮泵;(b)摆线转子泵1 内转子;2 外转子;A 吸油窗口;B 排油窗口3.1.5㊀叶片泵叶片泵具有流量均匀㊁运转平稳㊁噪声低㊁体积小㊁重量轻㊁易实现变量等优点,在机床㊁工程机械㊁船舶和冶金设备中得到广泛应用.一般叶片泵的工作压力为7M P a,高压叶片泵的工作压力可达25~31.5M P a.叶片泵的缺点是:对油液的污染较齿轮泵敏感;泵的转速不能过高,也不宜过低,一般可在600~2500r/m i n范围内使用;叶片泵的结构比齿轮泵复杂;自吸性能没有齿轮泵好.叶片泵主要分为单作用(转子旋转一周完成吸㊁排油各一次)和双作用(转子旋转一周完成吸㊁排油各两次)两种形式.单作用叶片泵多为变量泵,双作用叶片泵均为定量泵.1.单作用叶片泵单作用叶片泵的工作原理如图3G9所示,泵由转子1㊁定子2㊁叶片3㊁配油盘和端盖等组成.定子具有圆柱形内表面,定子和转子间有偏心量e,叶片装在转子槽中,并可在槽内滑动,当转子转动时,由于离心力的作用,使叶片紧靠在定子内表面,配油盘上各有一个腰形的吸油窗口和排油窗口.这样在定子㊁转子㊁叶片和两侧配油盘间就形成若干个密封的工作腔,当转子按图示的方向旋转时,在右半部分,叶片逐渐伸出,叶片间的工作腔逐渐增大,通过吸油口从配油盘上的吸油窗口吸油.在左半部分,叶片被定子内表面逐渐压进槽内,密封工作腔逐渐缩小,将油液经配油盘排油窗口从排油口排出.在吸油腔和排油腔之间有一段封油区,把吸油腔和排油腔隔开,这种叶片泵转子每转一周,每个密封工作腔完成一次吸油和排油,因此称为单作用叶片泵.单作用叶片泵的排量为各工作容积在泵轴旋转一周时所排出的油液的总和,如图3G10所示,两个叶片形成的一个工作容积V0近似地等于扇形体积V1和V2之差,即V0=V1-V2=12Bβ[(R+e)2-(R-e)2]=4πz R B e(3G15)式中㊀R 定子的内径,m;34㊀汽车液压与液力传动e 转子与定子之间的偏心距,m ;B 定子的宽度,m ;β 相邻两个叶片间的夹角,β=2π/z ;z叶片的个数.图3G9㊀单作用叶片泵的工作原理图1 转子;2 定子;3 叶片㊀图3G10㊀单作用叶片泵排量计算简图因此,单作用叶片泵的排量V p 为V p =z V 0=4πR B e (3G16)㊀㊀当单作用叶片泵转速为n p ,泵的容积效率为ηv p 时,泵的理论流量q t p 和实际流量q p分别为:q t p =V p n p =4πR B e n p (3G17)q p =q t p ηv p =4πR B e n p ηv p (3G18)㊀㊀单作用叶片泵的流量也是有脉动的,理论分析表明,泵内叶片数越多,流量脉动越小.此外,泵具有奇数叶片时的脉动比偶数叶片时小,所以单作用叶片泵的叶片数均为奇数,一般为13片或15片.单作用叶片泵的排量可调,因此常用来作为变量泵使用.变量泵可以根据液压系统中执行元件的运行速度提供相匹配的流量,尤其是运动速度变化时,避免了能量损失及系统发热,功率利用率高.按改变偏心距方式的不同,变量叶片泵的变量形式分为手动变量㊁压力补偿变量㊁功率匹配变量㊁恒压力变量以及恒流量变量等.下面介绍的是目前应用最广泛的变量叶片泵限压式变量叶片泵.限压式变量叶片泵(也称压力补偿或压力反馈式叶片泵)是利用泵出口压力控制偏心量来自动实现变量的,根据控制油的作用方式分为外反馈和内反馈式两种,下面分别说明它们的工作原理和特点.1)外反馈限压式变量叶片泵图3G11所示为外反馈限压式变量叶片泵工作原理图.转子1中心O 1固定,定子2可以左右移动,配油盘上的吸油窗口和排油窗口沿定子与转子的中心连线对称布置,泵出口油压p 经泵内通道引入柱塞缸作用于柱塞4上.在泵未运转时,定子2在调压弹簧5的作用下,紧靠柱塞4,柱塞4靠在最大流量调节螺钉3上.这时,定子2与转子1之间有一初始偏心量e o .调节最大流量调节螺钉3的位置,可以改变偏心量e 的大小.。