6第三章液压执行元件.ppt

合集下载

液压传动课件 第三章.

液压传动课件 第三章.

第3章液压泵与液压马达液压泵与液压马达,是液压系统中的能量转换装置。

本章主要介绍几种典型的液压泵与液压马达的工作原理、结构特点、性能参数以及应用。

液压泵液压马达将原动机输出的机械能转换成压力能,属于动力元件,其功用是给液压系统提供足够的压力油以驱动系统工作。

因此,液压泵的输入参量为机械参量(转矩T和转速n),输出参量为液压参量(压力p和流量q)。

将输入的液体压力能转换成工作机构所需要的机械能,属于执行元件,常置于液压系统的输出端,直接或间接驱动负载连续回转而做功。

因此,液压马达的输入参量为液压参量(压力p和流量q),输出参量为机械参量(转矩T和转速n)。

目录▪ 3.1 液压泵与液压马达概述▪ 3.2 齿轮泵▪ 3.3 叶片泵▪ 3.4 柱塞泵▪ 3.5 液压泵的选用▪ 3.6 液压马达3.1 液压泵与液压马达概述液压泵的工作原理1—偏心轮2—柱塞3—缸体4—弹簧5—压油单向阀6—吸油单向阀a—密封油腔单柱塞容积式泵的工作原理图液压泵的性能参数主要有压力、转速、排量、流量、功率和效率。

液压泵的主要性能参数3.1 液压泵与液压马达概述压力np 额定压力 max p 最高允许压力 p 工作压力 吸入压力在正常工作条件下,按试验标准 规定连续运转所允许的最高压力泵短时间内所允许 超载使用的极限压力 实际工作时的输出压力, 即液压泵出口的压力 液压泵进口处的压力3.1 液压泵与液压马达概述转速n额定转速 maxn 最高转速 minn 最低转速 液压泵的主要性能参数在额定压力下,根据试验结果推荐能长 时间连续运行并保持较高运行效率的转速 在额定压力下,为保证使用寿命和性能所允许的短暂运行的最高转速为保证液压泵可靠工作或运行效率不致过 低所允许的最低转速3.1 液压泵与液压马达概述排量及流量液压泵的主要性能参数 tq 理论流量 q实际流量 排量V在不考虑泄漏的情况下,液压泵主轴每转一周, 所排出的液体的体积在不考虑泄漏的情况下,液压泵在单位时间内 所排出的液体的体积t q nV指实际运行时,在不同压力下液压泵所排出的流量流量不均匀系数q δ瞬时理论流量 tshq 额定流量 nq 3.1 液压泵与液压马达概述液压泵的主要性能参数 排量及流量在额定压力、额定转速下,按试验标准规定 必须保证的输出流量由于运动学机理,液压泵的流量往往具有脉 动性,液压泵某一瞬间所排的理论流量 在液压泵的转速一定时,因流量脉动造成的流量不均匀程度tsh max tsh min q t()()q q q δ-=3.1 液压泵与液压马达概述输入功率P i输出功率P o理论功率P t液压泵的主要性能参数 功率原动机的输出功率,即实际驱动泵轴所需 的机械功率 i2πP T nTω==输出功率(kW)用其实际流量q 和出口压力p的乘积表示O p pq =t t t2πP pq nT ==如果液压泵在能量转换过程中没有能量损失,则输入功率与输出功率相等,即为理论功率3.1 液压泵与液压马达概述液压泵的主要性能参数效率机械效率容积效率总效率tmTTη=l l Vt t11q qqq q nV η==-=-oV miPpηηη==3.1 液压泵与液压马达概述性能曲线液压泵的容积效率、机械效率、总效率、理论流量、实际流量和实际输入功率与工作压力的关系曲线如图所示。

第三章 执行元件讲解

第三章 执行元件讲解

不相等,因此,活塞向右
运动。
特点:
差动连接时因回油腔的油液 利用两端面积差进行工作!
液压与气动技术
殷国栋 ygd@
6
液压缸的工作原理及设计计算
柱塞式液压缸
单活塞杆式液压缸
双活塞杆式液压缸
伸缩式液压缸
液压与气动技术
殷国栋 ygd@
7
液压缸的工作原理及设计计算
双活塞杆式液压缸
单活塞杆式液压缸
伸缩式液压缸
液压与气动技术
殷国栋 ygd@
8
液压缸的工作原理及设计计算
活塞式液压缸分类:
双杆
按伸出活塞杆不同 单杆
无杆
按固定方式不同
缸体固定 活塞杆固定
液压与气动技术
殷国栋 ygd@
9
液压缸的工作原理及设计计算
(1)双杆活塞缸
特点: 1) 两腔面积相等; 2) 压力相同时,推力相等,
流量相同时,速度相等。
即具有等推力等速度特性!
液压与气动技术
殷国栋 ygd@
13
液压缸的工作原理及设计计算
单杆活塞缸 由于只在活塞的一端有活塞杆,使两 腔的有效工作面积不相等,因此在两腔分别输入流 量相同的情况特下点,:活塞的往复运动速度不相等。 12) )压两力腔相面同积时不,等推,力A1不>单等A杆2 活塞缸的安装 流量相同时,速度不也等有缸筒固定和活 即不具有等推力等速度塞特杆性固!定两种,进、
d D v 1(5) v
由此可见,速比λv 越大,活塞杆直径d越大。
液压与气动技术
殷国栋 ygd@
18
液压缸的工作原理及设计计算
差动液压缸
单杆活塞缸的左右腔同时接 通压力油,如右图所示, 称为差动连接,此缸称为 差动液压缸。

第3章 液压动力元件

第3章 液压动力元件
欢 迎 使 用
《液压伺服与比例控制系统》
多媒体授课系统
燕 山 大 学 《液压伺服与比例控制系统》课程组
第3章 液压动力元件
本章摘要
液压动力元件(或称液压动力机构)是由液压放 大元件(液压控制元件)和液压执行元件组成。有四 种基本型式的液压动力元件:阀控液压缸、阀控 液压马达、泵控液压缸、泵控液压马达。 本章将建立几种基本的液压动力元件的传递函 数,分析它们的动态特性和主要性能参数。
忽略Bp后近似为:
K ce h Ap
e mt
Vt
2 h
K c mt 2 h Ap
标准传递函数形式:
K ps Ap 1 Vt X v 1 s FL K K 4 e K ce Xp s s 2 2 o 1 2 s 1 o r o
简化为:
s FL Xp 2 s 2 h K K ce K s 1 s 2 2 h h Kh Ap
Kq K ce Vt X v 2 1 Ap Ap 4 e K ce
综合固有频率:
o h
K 1 Kh
综合阻尼比:
Bp 1 4 e K ce o 2o Vt 1 K K h mt
或进一步简化为:
s FL Xp K ce K s 2 2 h s 1 s 2 2 Ap h h Kq K ce Vt X v 2 1 Ap Ap 4 e K ce
(三) 其它简化形式:
Xp Xv Kq Ap K ce mt s 2 s 1 Ap Kq Ap Kq Ap s s 1 1
根据阀控液压缸的拉氏变换方程式绘出系统方框图。

完整液压系统ppt课件

完整液压系统ppt课件
设计原则
设计流程
负载分析
负载分类
负载特点
负载计算
元件选择与计算
液压泵选择
根据系统流量和压力要 求,选择合适的液压泵
类型和规格
执行元件选择
根据负载特性和工艺要 求,选择合适的执行元 件(如液压缸、液压马
达)
控制元件选择
根据系统控制要求,选 择合适的控制元件(如
阀、传感器)
辅助元件选择
根据系统需要,选择合 适的辅助元件(如油箱、
液压缸根据其结构可分为单杆缸、双 杆缸、柱塞缸等。
工作原理
液压缸由活塞、缸筒、端盖等组成, 当液体压力作用于活塞上时,活塞在 压力的作用下产生运动,推动负载进 行直线运动。
液压阀
定义
工作原理 分类
液压油箱
定义
液压油箱是液压系统中的辅助元 件,它的作用是储存液压油,并
对液压油进行过滤和冷却。
工作原理
目 录
• 液压系统概述 • 液压系统元件 • 液压系统回路 • 液压系统设计 • 液压系统维护与保养 • 液压系统故障诊断与排除
contents
液压系统的定义与组成
总结词
详细描述
液压系统的特点与优势
总结词
液压系统的特性和优点
详细描述
液压系统具有功率密度高、响应速度快、输出力矩大、易于实现自动化控制等优 点,广泛应用于工程机械、农业机械、机床、航空航天等领域。
元件的检查与保养
总结词 详细描述
系统的调试与维护
总结词
详细描述
故障分类与原因分析
故障分类 原因分析
故障诊断方法与流程
诊断方法 诊断流程
故障排除技巧与实践
排除技巧
实践经验

第三章液压执行元件

第三章液压执行元件

p1
p2 )D2
p2d 2 ]
v1
q A1
4q
D 2
b)从有杆腔进油时,活塞上所产生的推力
F2和速度v2
F2
A2 p1
A1 p2
4 [( p1
p2 )D2
p1d 2 ]
q
4q
v2 A2 (D 2 d 2 )
C)速度比
v
v2 v1
1 1 (d / D)2
3.差动液压缸——单杆活塞缸的左右两腔同 时通压力油,称为差动液压缸。
(二)液压缸的组成 液压缸的结构基本上可以分为缸筒和
缸盖、活塞和活塞杆、密封装置、缓冲装 置和排气装置五个部分。
1、缸筒与缸盖
2、活塞和活塞杆
3、密封装置 用以防止油液的泄漏(液压缸一般不允许外泄 并要求内泄漏尽可能小)。
4.缓冲装置 目的:使活塞接近终端时,增达回油阻力, 减缓运动件的运动速度,避免冲击。
3.液压马达的转速和低速稳定性
1)转速
n
q V
v
2)爬行现象——当液压马达工作转速过低 时,往往保持不了均匀的速度,进入时动 时停的不稳定状态,这就是所谓爬行现象
• 和其低速摩擦阻力特性有关。
• 另外,液压马达排量本身及泄漏量也在 随转子转动的相位角变化作周期性波动, 这也会造成马达转速的波动
4.调速范围 液压马达的调速范围以允许的最大转速和 最低稳定转速之比表示,即
当E1=E2时,工作部件的机械能全部被缓冲 腔液体所吸收,由上两式得
pc
E2 Ac l c
节流口可调式则最大的缓冲压力即冲击压
力为
pc max
pc
mv02 2 Aclc
5.液压缸稳定性校核 当 l/d ≤15时 一般不用校核 当 l/d ≥15时 必须进行校核,即F<Fk F为活塞杆承受的负载力,Fk为保持工作稳 定的临界负载力

《液压控制课件》第三章 液压动力元件频率响应分析-

《液压控制课件》第三章 液压动力元件频率响应分析-

五、频率响应分析阀控液压缸对指令输入和对干扰输入的动态特性由相应的传递函数及其性能参数确定。

频率响应:以没有弹性负载为例,分析伯德图;1、幅频特性;系统对正弦信号的输入,输出的幅值比;2、相频特性;系统对正弦信号的输入,输出的相位差;稳定性;稳定性的判别方法.采用频率响应分析便于对系统的特性设计和调整.(一)没有弹性负载时的频率响应分析1、对指令输入Xv的频率响应系统传函结构对指令输入Xv的动态响应特性由传递函数式(3—20)表示,由比例、积分和二阶振荡环节组成;主要的性能参数:速度放大系数K q/A p;液压固有频率ωh;液压阻尼比ζh。

2、传函各分量伯德图绘制及特性采用对数和等比坐标,将复杂的系统性能的描述,简化成简单的图形表述和分析。

典型环节的伯德图及其物理意义:系统输入信号为正弦时,系统输出信号与输入信号的幅值比与输入频率之间的关系;比例环节,相当于杠杆放大;积分环节,相当于油缸位移对阀口输入的响应;惯性环节,相当于推动质量;二阶环节,相当于弹簧质量系统对输入的响应;3、对指令输入Xv系统伯德图的绘制和分析伯德图的绘制图3—3采用代数叠加法,纵坐标采用对数坐标,横坐标采用等比坐标,将曲线改成直线,便于绘制相应系统的伯德图伯德图的分析1)稳定性采用幅值裕量和相位裕量评判方法;2)速度放大系数K q/A p速度放大系数影响曲线的上下平移;3)穿越频率ωc穿越频率可以判断系统的快速性;4)转折频率ωh转折频率影响影响系统的稳定性。

4、动力元件各参数对系统的影响1)速度放大系数K q/A p液压缸活塞的输出速度与阀的输入位移成比例,比例系数K q/A p即为速度放大系数(速度增益)。

表示阀对液压缸活塞控制的灵敏度。

速度放大系数直接影响系统的稳定性、响应速度和精度。

提高速度放大系数:提高系统的响应速度和精度,但使系统的稳定性变坏。

放大系数随阀的流量增益变化而变化。

在零位工作点,阀的流量增益Kq最大,而流量—压力系数Kc最小,所以系统的稳定性最差。

液压执行元件

液压执行元件

图4-20 液压马达图形符号 a)单向定量马达;b) 单向变量马达; c) 双向定量马达;d) 双向变量马达
1)轴向柱塞式液压马达 如图4-21是轴向柱塞式液压马达的工作原理图。当压力油经配 油盘通入柱塞底部孔时,柱塞受压力油作用向外伸出,并紧压在斜
盘上,这时斜盘对柱塞产生一反作用力F。 由于斜盘倾斜角为γ, 所以F可分解为两个分力:一个轴向分力FX,它和作用在柱塞上的 液压作用力相平衡;另一个分力FY,它使缸体产生转矩。
机电一体化
液压式执行元件是先将电能变化成液体压力,并用电磁阀控制 压力油的流向,从而使液压执行元件驱动执行机构运动。液压式执 行元件有直线式油缸、回转式油缸、液压马达等。
液压执行元件的特点是输出功率大、速度快、动作平稳、可实 现定位伺服、响应特性好和过载能力强。缺点是体积庞大、介质要 求高、易泄露和环境污染。
图 4-15双杆活塞式液压缸 (a) 缸体固定; (b) 活塞杆固定
图4-16 (a) 无杆腔进油;;活塞缸两腔同时通入压力油时,由于无杆腔有效作用面 积大于有杆腔的有效作用面积,使得活塞向右的作用力大于向左的 作用力,因此,活塞向右运动,活塞杆向外伸出;与此同时,又将 有杆腔的油液挤出,使其流进无杆腔,从而加快了活塞杆的伸出速 度,单杆活塞液压缸的这种连接方式被称为差动连接。如图4-16 (c)差动连接时,液压缸的有效作用面积是活塞杆的横截面积,工 作台运动速度比无杆腔进油时的速度大,而输出力则减小。差动连 接是在不增加液压泵容量和功率的条件下,实现快速运动的有效办 法。
l
1)活塞式液压缸 活塞式液压缸可分为双杆式和单杆式两种结构形式,其安装又 有缸筒固定和活塞杆固定两种方式。 ∫ 双杆活塞液压缸的活塞两端都带有活塞杆,分为缸体固定和活 塞杆固定两种安装形式,如图4-15所示。前者工作台移动范围约等 于活塞有效行程 的三倍, 常用于中小型设备。后者工作台的移动范围只约等于液压缸行 程 的两倍,常用于大型设备。单杆活塞液压缸的活塞仅一端带有 活塞杆,活塞双向运动可以获得不同的速度和输出力。其简图 及油路连接方式如图4-16所示。

液压马达的结构类型及工作原理

液压马达的结构类型及工作原理

第三章 执行元件
图叶3片-3式1所气示动为马叶达片一式般气在动中马、达小结容构量原,理 图高,速其旋主转要的由范转围子使1用、,定其子输2、出叶功片率3为及 壳0.体1~构20成kW。,转速为500~25000r/min。 压叶缩片空式气气从动输马入达口起A动进及入低,速作时用的在特工性作 腔不两好侧,的在叶转片速上50。0r由/m于in转以子下偏场心合安使装用, 气时压,作必用须在要两用侧减叶速片机上构产。生叶转片矩式差气,动使 转马子达按主逆要时用针于方矿向山旋机转械。和做气功动后工的具气中体。 从输出口B排出。若改变压缩空气输入 方向,即可改变转子的转向。
液压与气压传动 Part 3.4 气动马达
第三章 执行元件
气动马达是将压缩空气的能量转换为旋转或摆动运动的执行元 件。
液压与气压传动
Part 3.4.1 气动马达的分类
气动马达分类如表3-2所示 :
第三章 执行元件
表3-2 气动马达的分类
液压与气压传动
Part 3.4.2 叶片式气动马达
1. 工作原理
T b 2
R22 R12
( p1 p2 )m
(3-30)
2q b( R22
R12 ) V
(3-31)
图3-30 摆动液压马达 a)单叶片式
1—叶片 2—分隔片 3—缸筒
液压与气压传动
Part 3.3.4 摆动液压马达
第三章 执行元件
图3-30b所示为双叶片式摆动液压马达。 它有两个进、出油口,其摆动角度小于 150°。在相同的条件下,它的输出转矩 是单叶片式的两倍,角速度是单叶片式的 一半 。
1. 工作压力和额定压力
工作压力 是指液压马达实际工作时进口处的压力; 额定压力 是指液压马达在正常工作条件下,按试验标准规定能连 续运转的最高压力 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

径 向 柱 塞 油 马 达
图形符号
一、液压马达的分类及特点
❖ 按结构类型来分 齿轮式

叶片式

按额定转速分:
柱塞式
高速——额定转速高于500 r/min
低速——额定转速低于500 r/min
齿轮式 螺杆式 叶片式 轴向柱塞式 径向柱塞油马达
•高速液压马达的主要特点—— •转速高,转动惯量小,便于启动和制动, 灵敏度高等。
❖ Tt -液压马达输出的理论转矩 ❖ ω-角速度(ω=2πn),如果不计损失,
❖ 所以,马达的理论转矩为
TMt
pV 2
(理论转矩与压力差和排量 的关系)
❖ 2、液压马达的机械效率
❖ 液压马达的实际输出转矩TM总要比理论转矩 TMt小些——效率。
❖ 机械效率 运行机械效率

起动机械效率,低于运行效率
轴向柱塞马达的特点
❖ 转矩较小, ❖ 转速较高, ❖ 可以反转, ❖ 多用于高转速小转矩的工作场合。
4、齿轮马达
❖ 结构特点:
❖ 进出油口相等、对称——齿轮马达在结构
上为了适应正反转要求
❖ 有单独外泄油口将轴承部分的泄漏油引 出壳体外;
❖ 采用滚动轴承——减少启动摩擦力矩; ❖ 齿轮液压马达的齿数比泵的齿数要多 ❖——为了减少转矩脉动, 。
连杆式径向 柱塞马达
❖ 曲线定子 式
定子有多段曲线,转子每转一转柱塞来回往复多次, 排量大,所以转矩大。 定子内表面采用正弦曲线,(或等加速曲线、阿基米德
曲线),保证在低转速下也能稳定工作。 为增大转矩,也有做成多排转子,各排错开可减小脉动。
❖ 多作用指定子的内曲面可以多达十几段(多次行程)。转子每 转一转,每个柱塞经过每一段时都要吸排油各一次,柱塞要进 行多次进退,对输出轴产生多次渐增转矩,并通过输出轴带动 负载旋转,因此称为多作用马达。
❖ 运行机械效率:TM
pV Mm 2
❖ 式中, TM—实际运行输出转矩

ηMm —马达的运行机械效率
❖ 起动机械效率——液压马达的启动性能,
❖ 用ηm0表示
Mm 0
TM 0 T Mt
❖ 式中, TM0—为液压马达的起动转矩

TMt—为液压马达的理论转矩

ηMm0 —马达的起动机械效率
❖ 启动转矩降低的原因—— ❖ 在静止状态下的摩擦系数最大,在摩擦表面
2、径向柱塞式液压马达
❖ 结构:
工作原理:
定子与缸体存在一偏心距e,
在柱塞与定子接触处,定子对
柱塞的反作用力为FN 可分解

FF FT ——切向力产生转矩
由于在压油区作用有好几个柱
塞,在这些柱塞上所产生的转
矩都使缸体旋转,并输出转矩。
径向柱塞马达的特点
❖ 优点:
❖ 转速低(低于500r/min,有的可达每分钟

决定转速
❖ 流量——每分钟输入的理论流量
❖ 压力—— 输入的油压(油泵输出压力-总损失)

输出油压
❖ 压力差——输入油压-输出油压
❖ 排量和输入输出压差决定转矩
❖ 1、液压马达的排(流)量与转矩的关系
pqTMt2TMtn
❖ Δp-液压马达进、出油口之间的压力差
❖ q-液压马达的输入流量(q=Vn)

几转甚至零点几转)
❖ 输出转矩大(可达几千牛米到几万牛米)

——排量大,
❖ 体积大,
❖ 属于低速大扭矩液压马达。 径向柱塞液压马达多用于低速大转矩的情况下。
❖ 连杆——偏心定子式 ❖ 该马达有五个柱塞,壳体上有五个缸,。连杆通过球铰与活塞联接,另
一端为圆弧表面,圆弧半径与偏心轮半径一致,两个圆环套在连杆的圆 弧外表面,而连杆既能沿着偏心轮的圆弧表面滑动而又不能脱开,输出 轴左端通过联轴器使配流轴同步旋转。
齿轮马达的特点及应用
❖ 缺点: ❖ 不能产生较大转矩——密封性差,容积效率
较低,输入油压力不能过高, ❖ 瞬间转速和转矩随着啮合点的位置变化而变
化 ❖ 适合于——高速小转矩的场合。 ❖ 一般用于工程机械、农业机械以及对转矩均
匀性要求不高的机械设备上。
三、液压马达的基本参数和基本性能
❖ 基本参数
❖ 排量——每转的输入流量(理论流量),
二、液压马达的工作原理
1、叶片式液压马达
叶片式液压马达工作原理
• 原理——由于压力油作用,受力不平衡使转 子产生转矩。
• 输出转矩T——与液压马达的排量VM和液压马
达进出油口之间的压力差有关,
• 转速n——输入液压马达的流量qM大小来决定。
❖ 转动特性——能正反转(压、回油互换) ❖ 结构特点: ❖ 叶片要径向放置---适应正反转
❖ 在回、压油腔通入叶片根部的通路上应设置 单向阀---使叶片根部始终通压力油
❖ 在叶片根部应设置预紧弹簧---使叶片在启动 前能伸出
叶片式液压马达的使用特点 体积小,转动惯量小,动作灵敏—— 允许高频换向,且角速度和输出转矩脉动小; 缺点: 泄漏量较大,低速工作时不稳定(爬行); 因此叶片式液压马达一般用于转速高、 转矩小和动作要求灵敏的场合。
通常高速液压马达输出转矩不大(仅几十 牛·米到几百牛·米), 所以又称为高速小转 矩马达。
❖ 低速液压马达的主要特点——
❖ 输入压力高,排量大,体积大,
❖ 转速低(几转甚至零点几转每分钟可在

每分钟10转以下平稳运转),
❖ 输出转矩大(可达几千牛·米到几万

牛·米),
❖ 又称为低速大转矩液压马达。
3、轴向柱塞马达
❖轴向柱塞泵除阀式配流外,其它 形式原则上都可以作为液压马达 用,即轴向柱塞泵和轴向柱塞马 达是可逆的。
❖ 直轴或斜轴式液压泵都可以作液压马达用。 ❖ 原理:
❖ 在配流盘的一侧槽中通入压力油,另一侧回油,将使柱 塞球头压在斜盘上,其反作用力的分力将使缸体带动轴 转动从而输出力矩和转速。
第三章 液压执行元件
第一节 液压马达
将液压能转换为机械能
输入——压力、流量 输出——转动:力矩T、角速度ω(转速 n)
❖ 学习目标:
❖ 1、学会根据使用条件,选择液压马达的实际 输出转矩、实际转速,液压马达的调速范围, 启动性能;
❖ 2、学会根据液压马达选择液压泵的输出压力、 流量及配套电机功率、转速。
出现相对滑动后摩擦系数明显减小,在同样 的压力下,液压马达由静止到开始转动的启 动状态的输出转矩要比运转中的转矩小。
❖ 意义——给液压马达带载启动造成了困难
❖ 不同类型的液压马达,内部受力部件的力平 衡情况不同,摩擦力的大小不同,所以ηMm 也不尽相同,同一类液压马达,摩擦副的力 平衡设计不同,其ηMm也有高低之分。
相关文档
最新文档