高三数学二轮复习课堂模式
直线与椭圆的位置关系+教案-2024届高三数学二轮复习

直线与椭圆的位置关系教案高三数学二轮复习专题教学目标:1.通过数形结合与代数运算弄清直线与椭圆位置关系的判断方法。
2.掌握直线与与椭圆相交、相离、相切时各自特点与相关题型。
3.掌握解决直线与椭圆综合问题的方法(联立设而不求用韦达定理解参数,重运算、巧设、巧算、巧解、特殊情况)高考中直线与圆锥曲线的综合应用压轴试题,具体表现为弦长与面积问题,最值与范围问题、定点与定值问题、存在性问题等。
教学方法:充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识,提升运算能力。
教学过程:一、复习回顾直线与椭圆的位置关系及其判断1.位置关系:相交、相切、相离2.判别方法(代数法)联立直线与椭圆的方程消元得到一元二次方程组(1)△>0直线与椭圆相交有两个公共点;(2)△=0直线与椭圆相切有且只有一个公共点;(3)△<0直线与椭圆相离无公共点.3.直线与椭圆相交时弦长公式设直线方程y =kx +m ,椭圆方程x 2a 2+y 2b 2=1 (a >b >0).直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2=x x kx m kx m ⎡⎤-++-+⎣⎦221212()()() =1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·(y 1+y 2)2-4y 1y 2. 4.对于中点弦问题,常用的解题方法是点差法,步骤为: ①设点:即设出弦的两端点坐标;②代入:即代入椭圆方程;③作差:即两式相减,再用平方差公式展开;④整理:即转化为斜率与中点坐标的关系式,然后求解. 二、题型设计及其讲解例 1.已知椭圆221259x y +=,直线l :45400x y -+=,椭圆上是否存在一点,到直线l 的距离最小?最小距离是多少?点拨分析:法一:数形结合、切线求解法二:椭圆上设点,运用点到直线的距离公式强调运算法三:运用椭圆的参数方程思考:最大距离为多少?例2 已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的离心率为63,短轴一个端点到右焦点的距离为 3 。
高三数学优质课堂教学的实践——圆锥曲线第二轮复习课例分析

投稿邮 sj v 3 o 箱: k i1 r x
教学 研究 > 反思 教学
一
个 顶 点 到 它 的 一 条 渐 近 线 的 距 离 为
'
法 的联 系 . 大 量 的 知识 点 或 习 题 “ 缩 ” 把 浓 到一 个 具 体 的题 目上 . 分 挖 掘 知 识 的 内 充
()A" F 1与切线有关 的题 目) 1ko 一 ( ;
( ) . = ( 韦达 定 理 联 系 的 题 2 o 与
目) ;
原到线 距为 c I 线 圆心 的轨 迹方 程. 点直f 离 _ ,双 的 罕 贝曲 J
的离 心 率 为一 解 通 过 上 面 几个 题 目的练 习 , 生 加 深 学
涵 和外 延 , 能 做 到 “ 题 多 变 ” 题 多 才 一 .一
㈤ 用点的 利
值范围 :
标 范 围 坐标 范 围 』
数 的 取
1
,
则m等 于 (
A. 1
)
C.3 D.4
)
( ) 目中 的 已知 条件 j 参 数 的 取 值 3题
范 围:
B.2
变 式2 若 动 圆过 定 点A( , ) 定 圆 O4和 C :2 (+ ) 外切 , 动 圆圆 心P 2 + 4 求 的轨 迹
时要 注意 引 导 学生 思 考 , 发 学 生 自己处 启
理 这 些 问题 的 大策 略 、 思 维.要 让 学 生 大
在对 各 章 节 知识 的理 解 和应 用 中 , 断渗 不
设 动 圆 圆 心 为 P. 径 为 r 则 半 。
Ic I8 I I2 r故 l 。 P = 船 = +,
1 n
l =
高三数学第二轮复习教案 第10讲 参数取值

高三数学第二轮复习教案第10讲 参数取值问题的题型与方法(一)求参数的取值范围的问题,在中学数学里比比皆是,这一讲,我们分四个方面来探讨。
一、若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。
例1:已知当x ∈R 时,不等式a +cos2x <5-4si nx +45-a 恒成立,求实数a 的取值范围。
分析:在不等式中含有两个变量a 及x ,其中x 的范围已知(x ∈R ),另一变量a 的范围即为所求,故可考虑将a 及x 分离。
解:原不等式即:4si nx +cos2x <45-a -a +5要使上式恒成立,只需45-a -a +5大于4si nx +cos2x 的最大值,故上述问题转化成求f (x )=4si nx +cos2x 的最值问题。
f (x )= 4si nx +cos2x =-2si n 2x +4si nx +1=-2(si nx -1)2+3≤3, ∴45-a -a +5>3即45-a >a +2上式等价于⎪⎩⎪⎨⎧->-≥-≥-2)2(4504502a a a a 或⎩⎨⎧≥-<-04502a a ,解得≤54a <8说明:注意到题目中出现了si nx 及cos2x ,而cos2x =1-2si n 2x ,故若把si nx 换元成t ,则可把原不等式转化成关于t 的二次函数类型。
另解:a +cos2x <5-4si nx +45-a 即a +1-2si n 2x <5-4si nx +45-a ,令si nx =t ,则t ∈[-1,1], 整理得2t 2-4t +4-a +45-a >0,(t ∈[-1,1])恒成立。
设f (t )= 2t 2-4t +4-a +45-a 则二次函数的对称轴为t =1,∴f (x )在[-1,1]内单调递减。
2024届高三数学二轮复习策略课件

1.离心率的计算 2.圆锥曲线与三角形内心、重心相关的 问题
3.圆锥曲线与内接三角形 4.圆锥曲线中常用的二级结论
专
1.函数的图像与性质 2.利用导数研究函数的性质
题 函数与导数 3.导数与恒成立问题
六
4.导数与不等关系 5.导数与函数的零点
1.抽象函数的性质 2.切线与公切线 3.以指数、对数为载体的情景题 3.导数中的构造问题 4.端点效应问题
【分析】当x 时0 , xf (x) ,f (x即) 0 [xf (x)] 0
构造函数 g(x) xf (x)
A 【例 1】(2020 新课标Ⅱ理11)若 2x 2y 3x 3y ,则 (
)
A. ln(y x 1) 0 B. ln(y x 1) 0
C. ln | x y | 0
二轮复习六大专题:
大专题
专 三角函数、 题 解三角形 一 和平面向量
专 题 数列 二
专 题 立体几何 三
子专题
微专题
1.三角恒等变换 2.三角函数的图像与性质 3.解三角形
1.平面向量数量积的求解策略 2.三角函数中与 相关的问题探究 3.三角形中的特殊线段 4.三角中的数学建模与情景题
1.数列的通项求法
【案例3】 微专题:同构式
【引例】(2015 年理12 改编)设函数 f (x) 是奇函数 f (x)(x R)的导
函数, f (1) 0 ,当 x 0 时,xf '(x) f (x) 0 ,则使得 xf (x) 0
成立的 x 的取值范围是(
)
A.,1 0,1
B.1,0 0,1
C.,1 1,0 D.0,1 1,
3.确定备考策略
(1)对数列的概念及表示方法的理解和应用; (2)等差数列、等比数列的性质、通项公式、递推公式、前项和公式中基本量的运算或者利用它们之 间的关系式通过多角度观察所给条件的结构,深入剖析其特征,利用其规律进行恰当变形与转化求解 数列的问题; (3)会利用等差、等比数列的定义判断或证明数列问题; (4)通过转化与化归思想利用错位相减、裂项相消、分组求和等方法求数列的前项和; (5)数列与不等式、函数等的交汇问题; (6)关注数学课本中有关数列的阅读与思考、探究与发现的学习材料,有意识地培养学生的阅读能力 和符号使用能力,也包括网络资料中与数列有关的数学文化问题,与实际生活有关的数列的应用问题; (7)关注结构不良试题、举例问题等创新题型。
高三数学组二轮复习计划及详细教学进度表

上石桥高中2015届高三二轮复习计划及教学进度理科数学一、指导思想高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。
第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。
强化高中数学主干知识的复习,形成良好知识网络。
整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。
第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说.“二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试说明》、《考纲》理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法.二、时间安排:1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月28——4月30日。
2.第二阶段是进行选择填空解答三种题型的解题方法和技能专项训练,时间为5月1日——5月8日。
3.第三阶段进行二轮复习备考,学生进行模拟训练,时间为5月8日——5月28日。
三、怎样上好第二轮复习课的几点建议:(一).明确“主体”,突出重点。
第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究2010--2014年全国一卷或二卷卷高考试题.第二轮复习的形式和内容分专题的形式,具体而言有以下八个专题。
高三数学第二轮复习方略

图形结 合起来 : 寻求解 题 的切人 点 ; 简化解 题过程 ; ① ② ③转换 命
题 ; 验 证 结 论 的正 确 与完 整 。 形 结 合 的 思 想 就 是 利 用 图 形 进 行 ④ 数
生成过程与用法 ; 回顾 已 往 做 错 的 题 目的正 确解 法 以 及 典 型 题 目 ,
以达 到 内化 基 础 知 识 和 基 本 联 系 的 目的 。系 统 地 对 数 学 知 识 进 行 整 理 、 纳 、 通 知识 间 的 内在 联 系 , 成 纵 向 、 向 知 识 链 , 造 归 沟 形 横 构 知 识 网络 , 知 识 的联 系 和整 体 上 把 握 基 础 知识 。 如 以 函数 为 主 从 例 线 的知 识 链 . 如 直 线 与 平 面 的 位 置 关 系 中 “ 行 ” “ 直 ” 知 又 平 与 垂 的 识链 。
化方法有 : 直接 转 化 法 、 元 转 化 法 、 形 结合 转 化 法 、 换 数 构造 模 型 转 化 法 、 数 转化 法 、 比转化 法 。 4数 形 结 合 思 想 : 形 结 合 思 想 是 参 类 ( ) 数 应 用 客 观 事 物 中数 与 形 的 对应 关 系 .把 抽 象 的数 学 语 言 与 直 观 的
思 维 简 缩 , 选 择 、 空 题 的求 解 住 住 能 大 大 简 化 思 维 过 程 , 取 对 填 争
来 的不 适 应 , 过 专 题 复 习 , 漏 补 缺 , 一 步 完 善 强 化 知 识 体 系 。 通 查 进
在 知 识 的深 化 过 程 中 , 忌 孤 立 对 待 知 识 、 法 , 是 自觉 地 将 其 切 方 而 前后联 系 . 横 比较 、 合 , 纵 综 自觉 地 将 新 知 识 及 时 纳 入 已 有 的 知 识 系 统 中去 , 汇 代 数 、 角 、 几 、 几 于 一 体 , 而 形 成 一 个 条 理 融 三 立 解 进 化 、 序化 、 络 化 的 高 效 的 有 机认 知 结 构 。 面 对 代 数 中 的 “ 个 有 网 如 四
高三数学第二轮专题讲座复习:综合运用等价转化、分类讨论、数形结合等思想解决函数综合问题

张喜林制[选取日期]高三数学第二轮专题讲座复习:综合运用等价转化、分类讨论、数形结合等思想解决函数综合问题 高考要求函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样 本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力 重难点归纳在解决函数综合问题时,要认真分析、处理好各种关系,把握问题的主线,运用相关的知识和方法逐步化归为基本问题来解决,尤其是注意等价转化、分类讨论、数形结合等思想的综合运用 综合问题的求解往往需要应用多种知识和技能 因此,必须全面掌握有关的函数知识,并且严谨审题,弄清题目的已知条件,尤其要挖掘题目中的隐含条件 学法指导 怎样学好函数 学习函数要重点解决好四个问题 准确深刻地理解函数的有关概念;揭示并认识函数与其他数学知识的内在联系;把握数形结合的特征和方法;认识函数思想的实质,强化应用意识(一)准确、深刻理解函数的有关概念概念是数学的基础,而函数是数学中最主要的概念之一,函数概念贯穿在中学代数的始终 数、式、方程、函数、排列组合、数列极限等是以函数为中心的代数 近十年来,高考试题中始终贯穿着函数及其性质这条主线(二)揭示并认识函数与其他数学知识的内在联系 函数是研究变量及相互联系的数学概念,是变量数学的基础,利用函数观点可以从较高的角度处理式、方程、不等式、数列、曲线与方程等内容 在利用函数和方程的思想进行思维中,动与静、变量与常量如此生动的辩证统一,函数思维实际上是辩证思维的一种特殊表现形式所谓函数观点,实质是将问题放到动态背景上去加以考虑 高考试题涉及5个方面 (1)原始意义上的函数问题;(2)方程、不等式作为函数性质解决;(3)数列作为特殊的函数成为高考热点;(4)辅助函数法;(5)集合与映射,作为基本语言和工具出现在试题中 (三)把握数形结合的特征和方法函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换 (四)认识函数思想的实质,强化应用意识函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决 纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识典型题例示范讲解 例1设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0(1)求f (21)、f (41); (2)证明f (x )是周期函数; (3)记a n =f (2n +n21),求).(ln lim n n a ∞→ 命题意图本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力 知识依托认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2) 错解分析不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形 技巧与方法 由f (x 1+x 2)=f (x 1)·f (x 2)变形为()()()()2222x xx x f x f f f =+=⋅是解决问题的关键解 因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=()()()02222x x x x f f f +=≥, x ∈[0,1]又因为f (1)=f (21+21)=f (21)·f (21)=[f (21)]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0 ∴f (21)=a 21, f (41)=a 41 (2)证明 依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即 f (x )=f (2-x ),x ∈R 又由f (x )是偶函数知 f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R 将上式中-x 以x 代换得f (x )=f (x +2),这表明f (x )是R 上的周期函数,且2是它的一个周期(3)解 由(1)知f (x )≥0,x ∈[0,1]∵f (21)=f (n ·n 21)=f (n 21+(n -1) n 21)=f (n 21)·f ((n -1)·n21)=…… =f (n 21)·f (n 21)·……·f (n 21)=[f (n 21)]n =a 21∴f (n21)=a n 21 又∵f (x )的一个周期是2 ∴f (2n +n 21)=f (n 21), ∴a n =f (2n +n 21)=f (n 21)=a n 21因此a n =a n 21∴.0)ln 21(lim )(ln lim ==∞→∞→a na n n n 例2甲、乙两地相距S 千米,汽车从甲地匀速驶到乙地,速度不得超过c 千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v (km/h)的平方成正比,比例系数为b ,固定部分为a 元(1)把全程运输成本y (元)表示为v (km/h)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶? 命题意图 本题考查建立函数的模型、不等式性质、最值等知识,还考查学生综合运用所学数学知识解决实际问题的能力 知识依托运用建模、函数、数形结合、分类讨论等思想方法 错解分析不会将实际问题抽象转化为具体的函数问题,易忽略对参变量的限制条件 技巧与方法 四步法 (1)读题;(2)建模;(3)求解;(4)评价 解法一 (1)依题意知,汽车从甲地匀速行驶到乙地所用时间为vS ,全程运输成本为y =a ·v S +bv 2·v S =S (v a +bv ) ∴所求函数及其定义域为y =S (va +bv ),v ∈(0,c ] (2)依题意知,S 、a 、b 、v 均为正数 ∴S (va +bv )≥2S ab ① 当且仅当v a =bv ,即v =b a 时,①式中等号成立若b a ≤c 则当v =b a 时,有y min =2S ab ;若b a >c ,则当v ∈(0,c ]时,有S (v a +bv )-S (ca +bc ) =S [(v a -c a )+(bv -bc )]=vcS (c -v )(a -bcv )∵c -v ≥0,且c >bc 2, ∴a -bcv ≥a -bc 2>0 ∴S (v a +bv )≥S (c a +bc ),当且仅当v =c 时等号成立,也即当v =c 时,有y min =S (ca +bc ); 综上,为使y 最小,当b ab ≤c 时,行驶速度应为v =b ab , 当b ab >c 时速度应为v =c 解法二 (2)∵函数y =S (v a +bv ), v ∈(0,+∞),当x ∈(0, ba )时,y 单调减小,当x ∈(b a ,+∞)时y 单调增加,当x =b a 时y 取得最小值,而全程运输成本函数为y =Sb (v +vb a), v ∈(0,c ∴当b a ≤c 时,则当v =b a 时,y 最小,若ba >c 时,则当v =c 时,y 最小例3 设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4(1)求证 f (x )为奇函数;(2)在区间[-9,9]上,求f (x )的最值(1)证明 令x =y =0,得f (0)=0令y =-x ,得f (0)=f (x )+f (-x ),即f (-x )=-f (x )∴f (x )是奇函数(2)解 1°,任取实数x 1、x 2∈[-9,9]且x 1<x 2,这时,x 2-x 1>0,f (x 1)-f (x 2)=f [(x 1-x 2)+x 2]-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 1)=-f (x 2-x 1)因为x >0时f (x )<0,∴f (x 1)-f (x 2)>0∴f (x )在[-9,9]上是减函数 故f (x )的最大值为f (-9),最小值为f (9)而f (9)=f (3+3+3)=3f (3)=-12,f (-9)=-f (9)=12∴f (x )在区间[-9,9]上的最大值为12,最小值为-12 学生巩固练习1 函数y =x +a 与y =log a x 的图象可能是( )2定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b)③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)其中成立的是( )A①与④B②与③C①与③D②与④3若关于x的方程22x+2x a+a+1=0有实根,则实数a的取值范围是____4设a为实数,函数f(x)=x2+|x-a|+1,x∈R(1)讨论f(x)的奇偶性;(2)求f(x)的最小值参考答案:1解析分类讨论当a>1时和当0<a<1时答案 C2解析用特值法,根据题意,可设f(x)=x,g(x)=|x|,又设a=2,b=1,则f(a)=a,g(a)=|a|,f(b)=b,g(b)=|b|,f(a)-f(b)=f(2)-f(-1)=2+1=3g(b)-g(-a)=g(1)-g(-2)=1-2=-1∴f(a)-f(-b)>g(1)-g(-2)=1-2=-1又f(b)-f(-a)=f(1)-f(-2)=1+2=3g(a)-g(-b)=g(2)-g(1)=2-1=1,∴f(b)-f(-a)=g(a)-g(-b)即①与③成立答案 C3解析设2x=t>0,则原方程可变为t2+at+a+1=0 ①方程①有两个正实根,则⎪⎩⎪⎨⎧>+=⋅>-=+≥+-=∆1)1(421212attattaa解得a∈(-1,2-22]4解(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数;当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a)此时函数f(x)既不是奇函数也不是偶函数(2)①当x≤a时,函数f(x)=x2-x+a+1=(x-21)2+a+43,若a≤21,则函数f(x)在(-∞,a]上单调递减,从而,函数f(x)在(-∞,a]上的最小值为f(a)=a2+1若a>21,则函数f(x)在(-∞,a]上的最小值为f(21)=43+a,且f(21)≤f(a)②当x≥a时,函数f(x)=x2+x-a+1=(x+21)2-a+43;当a≤-21时,则函数f(x)在[a,+∞)上的最小值为f(-21)=43-a,且f(-21)≤f(a)若a>-21,f(x)在[a,+∞)上单调递增,f(x)在[a,+∞]上的最小值为f(a)=a2+1综上,当a≤-21时,函数f(x)的最小值是43-a,当-21<a≤21时,函数f(x)的最小值是a2+1;当a>21时,函数f(x)的最小值是a43。
圆锥曲线与方程说课稿高三数学二轮复习(1)

《圆锥曲线与方程》说课稿单元教学有利于整体规划学生核心素养的发展,有利于借助于大背景、大问题、大思路、大框架进行高观点统领、思想性驾驭、结构化关联,能有效规避传统的课时教学整体感不强、知识分解过度、学习碎片化、教学效益低下的现象。
但数学单元教学同时也要求课时教学,它应该在核心素养和课程目标的指引下,设计单元教学目标和课时教学目标,使之成为一个前后联系、相互支撑的整体,今天,我就“圆锥曲线与方程”的二轮复习进行单元设计与课时实施的说课。
1 单元教学的整体设计圆锥曲线包含椭圆、双曲线、抛物线,从知识技能角度看,三者的知识结构相近,知识间存在内在的必然联系,具有统一性,一轮复习我们采用了“总——分—总”的方式,把三者整合在一起,即先通过曲线与方程部分总体建构几何与代数的轨迹关系,引出大单元的学习内容。
然后分三个小单元进行学习,每个单元的研究结构是一致的,均从定义、标准方程和几何性质三个方面展开研究。
最后在知识学习的基础上,进行直线与圆锥曲线的位置关系的整体教学,形成圆锥曲线学习与研究的大框架。
经过一轮复习,学生掌握了圆锥曲线基础知识,学生初步建立了利用圆锥曲线知识解决解问题的基本思路及模式,但是在解题过程中,学生往往急于求成或者套用现成的模式,分析解决问题的能力较弱;主动把题目与相关概念建立联系的意识比较淡薄,表现在选填题目不能深入挖掘已知条件,将已知和所学知识建立联系的能力不足;而对于圆锥曲线的学习,知识的内在统一性是一条明线,内隐的用代数的方法研究几何,深刻认识数和形的辩证统一是一条暗线。
所以在二轮复习时,我们从思想方法视角对传统的知识单元进行重整,更为上位地认识学科知识。
重整后的三个小单元的做法和目标各不相同,如果说一轮复习进行的是横向到边的广度学习,那么二轮复习我希望以核心素养为立意,以整体设计为入口,进行纵向到底的深度学习。
“核心素养一课程标准一单元设计—课时计划”是环环相扣的教师教育活动的基本环节,单元设计下的课时教学不同于传统的以知识传授为主的学习,强调将教学内容置于整体内容中去把控,更多地关注教学内容的本质及其蕴含的数学思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学二轮复习课堂模式
为提高二轮复习课堂效率,按校长室要求,高三数学组商定了如下二轮复习课堂模式:
1、课前预习
课前学生自主完成真题赏析:题量要确保学生可以完成,如:三角函数部分的真题赏析要全部做、导数部分的真题赏析只做第1小问,对学生来说可起到热身的作用;
2、检查作业
每节课前提前两分钟到班级并在班级巡视检查整个班级学生的做作业情况(每个班级课前每天要收1—2组上来进行抽查,此外每个学生还要有一个练习本,用来做校本教材中的大题,每天一题);
3、知识梳理
以提问式、提纲式的形式简带而过,时间大约3分钟;
4、评讲真题
利用5分钟评讲真题赏析(对于较难的题目,如函数与导数中的综合应用部分可只讲第1小问);
5、评讲典例
利用20分钟评讲典例,注意灌输相应思想、方法及答题规范性,即要在上课时选择一题进行完整的板书,并根据所带班级实际情况对典例中的部分例题做好删减、补充工作;
6、当堂练习
给学生10分钟时间上黑板做练习(注意其答题规范性);
7、自主整理
留3分钟左右时间让学生自主整理。
备注:为了充分发挥老师的讲解功能,一节课中由老师讲的部分大约需要25—30分钟。
有时也要根据所上内容特点对讲解时间要持续更长,那么,此时练习部分可直接和学生对答案。
高三数学备课组
2016-2-24。