2021年江苏省盐城市中考数学总复习:二次函数(附答案解析)

合集下载

2021年中考数学 二次函数的图象及其性质 一轮复习(含答案)

2021年中考数学 二次函数的图象及其性质  一轮复习(含答案)

2021中考数学二次函数的图象及其性质一轮复习一、选择题1. 若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为()A. 0,5B. 0,1C. -4,5D. -4,12. 对于函数y=-2(x-m)2,下列说法不正确的是()A.其图象开口向下B.其图象的对称轴是直线x=mC.最大值为0D.其图象与y轴不相交3. 若抛物线y=x2-2x+3不动,将平面直角坐标系........xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为() A. y=(x-2)2+3 B. y=(x-2)2+5C. y=x2-1D. y=x2+44. (2020·深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示,以下结论错误..的是()A.abc>0 B.4ac-b2<0C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根5. 已知函数y=ax2-2ax-1(a是常数,a≠0),下列结论正确的是()A. 当a=1时,函数图象过点(-1,1)B. 当a=-2时,函数图象与x轴没有交点C. 若a>0,则当x≥1时,y随x的增大而减小D. 若a<0,则当x≤1时,y随x的增大而增大6. 点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y37. (2020·福建)10.已知()111,P x y ,()222,P x y 是抛物线22=-y ax ax 上的点,下列命题正确的是( )A.若12|1||1|->-x x ,则12>y yB.若12|1||1|->-x x ,则12<y yC.若12|1||1|-=-x x ,则12=y yD.若12=y y ,则12=x x二、填空题8. 将抛物线y =-(x +2)2向________平移________个单位长度,得到抛物线y =-(x -1)2.9. 如图,抛物线y=ax 2与直线y=bx+c 的两个交点坐标分别为A (-2,4),B (1,1),则方程ax 2=bx+c 的解是 .10. (2019•荆州)二次函数2245y x x =--+的最大值是__________.11. 已知二次函数y=-(x -1)2+2,当t<x<5时,y 随x 的增大而减小,则实数t 的取值范围是 .12. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.13. 抛物线y =ax 2+bx +c(a ,b ,c 为常数)的顶点为P ,且抛物线经过点A(-1,0),B(m ,0),C(-2,n)(1<m <3,n <0),有下列结论: ①abc >0; ②3a +c <0; ③a(m -1)+2b >0;④a =-1时,存在点P 使△PAB 为直角三角形. 其中正确结论的序号为________.14. 如图,抛物线y =-x 2+2x +3与y 轴交于点C ,点D (0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,则点P 的坐标为________.三、解答题15. 已知抛物线y =2x 2-4x +c 与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线y =2x 2-4x +c 经过点A(2,m)和点B(3,n),试比较m 与n 的大小,并说明理由.16. 如图,已知抛物线y =x 2-(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点. (1)求m 的值;(2)求A 、B 两点的坐标; (3)点P (a ,b )(-3<a <1)是抛物线上一点,当△P AB 的面积是△ABC 面积的2倍时,求a 、b 的值.17. (2019·山东滨州)如图①,抛物线211482y x x =-++与y 轴交于点A ,与x 轴交于点,B C ,将直线AB 绕点A 逆时针旋转90°,所得直线与x 轴交于点D . (1)求直线AD 的函数解析式;(2)如图②,若点P 是直线AD 上方抛物线上的一个动点 ①当点P 到直线AD 的距离最大时,求点P 的坐标和最大距离;②当点P到直线AD的距离为524时,求sin PAD的值.2021中考数学二次函数的图象及其性质一轮复习-答案一、选择题1. 【答案】D【解析】由y=(x-2)2+k知此二次函数的顶点坐标为(2,k),对称轴为x=2,由y=x2+bx+5知其对称轴为x=-b2,得-b2=2,所以b=-4;于是可以得到函数的解析式是y=x2-4x+5,把(2,k)代入其中即得k=1.2. 【答案】D3. 【答案】C【解析】由抛物线y=x2-2x+3得y=(x-1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y=(x-1+1)2+2-3=x2-1.4. 【答案】C【解析】根据抛物线开口向下,得到a<0,对称轴为直线x=-b2a=-1,知b=2a<0,抛物线与y轴交于正半轴,c>0,∴abc>0,故选项A正确;根据抛物线与x轴有两个交点,∴b2-4ac>0,即4ac-b2<0,故选项B正确;当x=1时,y=a+b+c<0,又∵b=2a,∴3a+c<0,∴选项C错误;∵抛物线开口向下,顶点为(-1,n),∴函数有最大值n,即抛物线y=ax2+bx+c与直线y =n+1无交点,一元二次方程ax2+bx+c=n+1无实数根,选项D正确;而要选择结论错误..的,因此本题选C.5. 【答案】D【解析】当a=1时,函数为y=x2-2x-1,当x=-1时,y=1+2-1=2,其图象经过点(-1,2),不过点(-1,1),所以A选项错误;当a=-2时,函数为y=-2x2+4x-1,b2-4ac=16-4×(-2)×(-1)=8>0,抛物线与x 轴有两个交点,故选项B 错误;当a >0时,抛物线的开口向上,它的对称轴是直线x =--2a2a =1,当x ≥1,在对称轴的右侧,y 随x 的增大而增大,所以C 选项错误;当a <0时,抛物线的开口向下,它的对称轴是直线x =--2a2a =1,当x ≤1,在对称轴的左侧,y 随x 的增大而增大,所以D 选项正确.6. 【答案】D 【解析】此类题利用图象法比较大小更直观简单.容易求出二次函数y =-x 2+2x +c 图象的对称轴为直线x =1,可画草图如解图:由解图知,P 1(-1,y 1),P 2(3,y 2)关于直线x =1对称,P 3(5,y 3)在图象的右下方部分上,因此,y 1=y 2>y 3.7. 【答案】C【解析】本题考查了二次函数的图象和性质,∵22=-y ax ax =a (x -1)2-a ,∴抛物线的对称轴为x =1,根据二次函数的对称性知若12|1||1|-=-x x ,则12=y y ,因此本题选C . 二、填空题8. 【答案】右 39. 【答案】x 1=-2,x 2=1[解析]∵抛物线y=ax 2与直线y=bx +c 的两个交点坐标分别为A (-2,4),B (1,1),∴的解为即方程ax 2=bx +c的解是x 1=-2,x 2=1.10. 【答案】7【解析】222452(1)7y x x x =--+=-++, 即二次函数245y x x =--+的最大值是7, 故答案为:7.11. 【答案】1≤t<5[解析]抛物线的对称轴为直线x=1,因为a=-1<0,所以抛物线开口向下,所以当x>1时,y 的值随x 值的增大而减小,因为t<x<5时,y 随x 的增大而减小,所以1≤t<5.12. 【答案】21(4)2yx =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠, 把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-,解得0b =(舍去)或4b =,所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.13. 【答案】②③ [解析] 由抛物线经过A(-1,0),B(m ,0),可知对称轴为x =m -12=-b 2a, ∴-ba =m -1.∵1<m <3,∴ab <0.画出二次函数y =ax 2+bc +c 的大致图象可知a <0, ∴b >0.把(-1,0)代入y =ax 2+bx +c ,可得a -b +c =0, ∴c =b -a >0.∴abc <0,故①错误. 当x =3时,y <0,∴9a +3b +c =9a +3(a +c)+c =12a +4c =4(3a +c)<0,∴3a +c<0,故②正确. ∴-ba =m -1,∴a(m -1)+2b =-b +2b =b >0,故③正确.当a =-1时,y =-x 2+bx +c ,∴P(b 2,b +1+b 24).若△PAB 为直角三角形,则△PAB 为等腰直角三角形, ∴b +1+b 24=b2+1,∴b =-2或b =0.∵b >0,∴不存在点P 使△PAB 为直角三角形, 故④错误. 故答案为②③.14. 【答案】(1+2,2)或(1-2,2) 【解析】抛物线y =-x 2+2x +3与y 轴交于点C ,则点C 坐标是(0,3),∵点D(0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,∴易得点P 的纵坐标是2,当y =2时,∴-x 2+2x+3=2,则x 2-2x -1=0,解得方程的两根是x =2±222=1±2,∴点P 的坐标是(1+2,2)或(1-2,2).三、解答题15. 【答案】解:(1)∵抛物线y =2x 2-4x +c 与x 轴有两个不同的交点, ∴Δ=b 2-4ac =16-8c >0,∴c <2.(2)m<n.理由:∵抛物线y =2x 2-4x +c 的对称轴为直线x =1, ∴点A(2,m)和点B(3,n)都在对称轴的右侧. 又∵当x≥1时,y 随x 的增大而增大, ∴m <n.16. 【答案】解:(1)∵抛物线y =x 2-(m +3)x +9的顶点在x 轴的正半轴上, ∴方程x 2-(m +3)x +9=0有两个相等的实数根, ∴b 2-4ac =[-(m +3)]2-4×9=0,解得m =3或m =-9, 又∵抛物线对称轴大于0,即m +3>0, ∴m =3.(3分)(2)由(1)可知抛物线解析式为y =x 2-6x +9,联立一次函数y =x +3,可得⎩⎨⎧y =x 2-6x +9y =x +3,解得⎩⎨⎧x =1y =4或⎩⎨⎧x =6y =9,∴A(1,4),B(6,9).(6分)(3)如解图,分别过A 、B 、P 三点作x 轴的垂线,垂足分别为R 、S 、T ,解图∵A(1,4),B(6,9),C(3,0),P(a ,b),∴AR =4,BS =9,RC =3-1=2,CS =6-3=3,RS =6-1=5,PT =b ,RT =1-a ,ST =6-a ,∴S △ABC =S 梯形ABSR -S △ARC -S △BCS =12×(4+9)×5-12×2×4-12×3×9=15,S △PAB =S 梯形PBST -S 梯形ARTP -S 梯形ARSB =12(9+b)(6-a)-12(b +4)(1-a)-12×(4+9)×5=12(5b -5a -15).(8分) 又∵S △PAB =2S △ABC , ∴12(5b -5a -15)=30,即b -a =15, ∴b =15+a ,∵P 点在抛物线上, ∴b =a 2-6a +9,∴15+a =a 2-6a +9,解得a =7±732, ∵-3<a<1, ∴a =7-732,∴b =15+7-732=37-732.(10分)17. 【答案】(1)当0x =时,4y =,则点A 的坐标为()0,4,当0y =时,2110482x x =-++,解得,124,8x x =-=,则点B 的坐标为()4,0-,点C 的坐标为()8,0,∴4OA OB ==,∴45OBA OAB ∠=∠=︒, ∵将直线AB 绕点A 逆时针旋转90︒得到直线AD , ∴90BAD ∠=︒,∴45OAD =︒,∴45ODA ∠=︒,∴OA OD =,∴点D 的坐标为()4,0, 设直线AD 的函数解析式为,y kx b =+440b k b =⎧⎨+=⎩,得14k b =-⎧⎨=⎩, 即直线AD 的函数解析式为4y x =-+;(2)作PN x ⊥轴交直线AD 于点N ,如图①所示,设点P 的坐标为211,482t t t ⎛⎫-++ ⎪⎝⎭,则点N 的坐标为(),4t t -+,∴2211134(4)8282PN t t t t t ⎛⎫=-++--+=-+ ⎪⎝⎭,∴PN x ⊥轴, ∴PN y ∥轴,∴45OAD PNH ∠=∠=︒,作PH AD ⊥于点H ,则90PHN ∠=︒, ∴22222132322926)2282164164PH PN t t t ⎫==-+=-+=--+⎪⎝⎭, ∴当6t =时,PH 92P 的坐标为(56,2),即当点P 到直线AD 的距离最大时,点P 的坐标是(56,2),最大距离是924;②当点P 到直线AD的距离为524时,如图②所示,则2232521644t t -+=,解得:122,10t t ==, 则1P 的坐标为(92,2),2P 的坐标为(10,)72-,当1P 的坐标为(92,2),则221917(20)42P A ⎛⎫=-+-= ⎪⎝⎭,∴125344sin 172P AD ∠==; 当2P 的坐标为(10,)72-,则222725(100)422P A ⎛⎫=-+--= ⎪⎝⎭,∴25224sin 252P AD ∠==;由上可得,sin PAD ∠的值是53434或210. 【名师点睛】本题是一道二次函数的综合性题目,关键在于设P 点的横坐标,最后将其转化成二次函数的最值问题,通过求解二次函数的最值问题来求解最短距离,难度系数较大,是一道特别好的题目,应当熟练的掌握.。

江苏省盐城市2021年中考数学试题(解析版)

江苏省盐城市2021年中考数学试题(解析版)

盐城市二〇二一年初中毕业与升学考试数学试卷一、选择题1. 2021-的绝对值是( ) A. 12021 B. 12021- C. 2021- D. 2021【答案】D【解析】【分析】根据绝对值的意义进行计算,再进行判断即可【详解】解:2021-的绝对值是2021;故选:D【点睛】本题考查了绝对值的意义,熟练掌握绝对值的性质是解题的关键2. 计算:⋅2a a 的结果是( )A. 3aB. 2aC. aD. 22a【答案】A【解析】【分析】利用同底幂乘法的运算法则计算可得【详解】+==2213a a a a ⋅故选:A【点睛】本题考查同底幂的乘法,同底幂的乘法法则和乘方的运算法则容易混淆,需要注意3. 北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是( )A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义判断即可【详解】A,B,C都不是轴对称图形,故不符合题意;D是轴对称图形,故选D.【点睛】本题考查了轴对称图形的定义,准确理解定义是解题的关键.4. 如图是由4个小正方形体组合成的几何体,该几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的是主视图,由此可得答案. 【详解】解:观察图形可知,该几何体的主视图是 .故选:A .【点睛】本题考查了简单组合体的三视图,从正面看得到的是主视图.5. 2020年12月30日盐城至南通高速铁路开通运营,盐通高铁总投资约2628000万元,将数据2628000用科学记数法表示为( )A. 70.262810⨯B. 62.62810⨯C. 526.2810⨯D. 3262810⨯【答案】B【解析】【分析】将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,写成10n a ⨯即可【详解】∵2628000=62.62810⨯,故选B .【点睛】本题考查了绝对值大于10的大数的科学记数法,将小数点点在最左边第一个非零数字的后面确定a ,数出整数的整数位数,减去1确定n ,是解题的关键.6. 将一副三角板按如图方式重叠,则1∠的度数为( )A. 45︒B. 60︒C. 75︒D. 105︒【答案】C【解析】 【分析】直接利用一副三角板的内角度数,再结合三角形外角的性质得出答案.【详解】解:如图所示:由题意可得,∠2=30°,∠3=45°则∠1=∠2+∠3=45°+30°=75°.故选:C .【点睛】此题主要考查了三角形的外角以及三角尺的特征,正确利用三角形外角的性质是解题关键. 7. 若12,x x 是一元二次方程2230x x --=的两个根,则12x x +的值是( )A. 2B. -2C. 3D. -3【答案】A【解析】【分析】根据一元二次方程根与系数的关系解答即可.【详解】解:∵12,x x 是一元二次方程2230x x --=的两个根,∴12x x +=2.故选:A .【点睛】本题考查了一元二次方程根与系数的关系,属于基本题目,熟练掌握该知识是解题的关键. 8. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB ∠的两边OA 、OB 上分别在取OC OD =,移动角尺,使角尺两边相同的刻度分别与点C 、D 重合,这时过角尺顶点M 的射线OM 就是AOB ∠的平分线.这里构造全等三角形的依据是( )A. SASB. ASAC. AASD. SSS【答案】D【解析】 【分析】根据全等三角形的判定条件判断即可.【详解】解:由题意可知,OC OD MC MD ==在OCM ODM △和△中OC OD OM OM MC MD =⎧⎪=⎨⎪=⎩∴OCM ODM ≅△△(SSS )∴COM DOM ∠=∠∴OM 就是AOB ∠的平分线故选:D【点睛】本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.二、填空题9. 一组数据2,0,2,1,6的众数为________.【答案】2【解析】【分析】根据众数的定义进行求解即可得.【详解】解:数据2,0,2,1,6中数据2出现次数最多,所以这组数据的众数是2.故答案为2.【点睛】本题考查了众数,熟练掌握众数的定义以及求解方法是解题的关键.10. 分解因式:a 2+2a +1=_____.【答案】(a +1)2【解析】【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.11. 若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____. 【答案】9【解析】【详解】解:360÷40=9,即这个多边形的边数是912. 如图,在⊙O 内接四边形ABCD 中,若100ABC ∠=︒,则ADC ∠=________︒.【答案】80【解析】【分析】根据圆内接四边形的性质计算出18080ADC ABC ∠∠=︒-=︒即可.【详解】解:∵ABCD 是⊙O 的内接四边形,∠ABC =100°,∴∠ABC +∠ADC =180°,∴180********ADC ABC ∠∠=︒-=︒-︒=︒.故答案为80.【点睛】本题考查了圆内接四边形的性质、解题的关键是熟练掌握圆内接四边形的性质.13. 如图,在Rt ABC 中,CD 为斜边AB 上的中线,若2CD =,则AB =________.【答案】4【解析】【分析】根据直角三角形斜边中线等于斜边的一半即可解决问题;【详解】解:如图,∵△ABC 是直角三角形,CD 是斜边中线,∴CD 12=AB , ∵CD =2,∴AB =4,故答案为4.【点睛】本题考查直角三角形的性质,解题的关键是记住直角三角形斜边上的中线等于斜边的一半. 14. 一圆锥的底面半径为2,母线长为3,则这个圆锥的侧面积为_______.【答案】6π【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解. 【详解】解:该圆锥的侧面积=12×2π×2×3=6π. 故答案为6π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15. 劳动教育己纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为________.【答案】2300(1)363x +=【解析】【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),结合本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从300千克增加到363千克”,即可得出方程.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:300(1+x );第二年粮食的产量为:300(1+x )(1+x )=300(1+x )2;依题意,可列方程:300(1+x )2=363;故答案为:300(1+x )2=363.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .16. 如图,在矩形ABCD 中,3AB =,4=AD ,E 、F 分别是边BC 、CD 上一点,EF AE ⊥,将ECF △沿EF 翻折得EC F '△,连接AC ',当BE =________时,AEC '是以AE 为腰的等腰三角形. 【答案】78或43【解析】【分析】对AEC '是以AE 为腰的等腰三角形分类讨论,当=AE EC '时,设BE x =,可得到4EC x =-,再根据折叠可得到=4EC EC x '=-,然后在Rt △ABE 中利用勾股定理列方程计算即可;当=AE AC '时,过A 作AH 垂直于EC '于点H ,然后根据折叠可得到=C EF FEC '∠∠,在结合EF AE ⊥,利用互余性质可得到BEA AEH =∠∠,然后证得△ABE ≌△AHE ,进而得到BE HE =,然后再利用等腰三角形三线合一性质得到EH C H '=,然后在根据数量关系得到14=33BE BC =. 【详解】解:当=AE EC '时,设BE x =,则4EC x =-,∵ECF △沿EF 翻折得EC F '△,∴=4EC EC x '=-,在Rt △ABE 中由勾股定理可得:222AE BE AB =+即222(4)3x x -=+, 解得:7=8x ; 当=AE AC '时,如图所示,过A 作AH 垂直于EC '于点H ,∵AH ⊥EC ',=AE AC ',∴EH C H '=,∵EF AE ⊥,∴=90C EF AEC ''+︒∠∠,90BEA FEC +=︒∠∠∵ECF △沿EF 翻折得EC F '△,∴=C EF FEC '∠∠,∴BEA AEH =∠∠,在△ABE 和△AHE 中B AHE AEB AEH AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△AHE (AAS ),∴BE HE =,∴=BE HE HC '=, ∴12BE EC '= ∵EC EC '=, ∴12BE EC =, ∴14=33BE BC =, 综上所述,7483BE =或, 故答案为:7483或 【点睛】本题主要考查等腰三角形性质,勾股定理和折叠性质,解题的关键是分类讨论等腰三角形的腰,然后结合勾股定理计算即可.三、解答题17. 计算:1031(21)43-⎛⎫+- ⎪⎝⎭【答案】2.【解析】【分析】根据负整数指数幂、0指数幂的运算法则及算术平方根的定义计算即可得答案. 【详解】1031(21)43-⎛⎫+-- ⎪⎝⎭312=+-2=.【点睛】本题考查实数的运算,熟练掌握负整数指数幂、0指数幂的运算法则及算术平方根的定义是解题关键. 18. 解不等式组:311424x x x x -≥+⎧⎨-<+⎩【答案】1x 2≤<【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再找到解集的公共部分.【详解】311424x x x x -≥+⎧⎨-<+⎩①② 解:解不等式①得:1≥x解不等式②得:2x <在数轴上表示不等式①、②的解集(如图)∴不等式组的解集为12x ≤<.【点睛】本题考查了解一元一次不等式组,熟练解一元一次不等式是解题的关键,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).19. 先化简,再求值:21111m m m -⎛⎫+ ⎪-⎝⎭,其中2m =. 【答案】1m +,3【解析】【分析】先通分,再约分,将分式化成最简分式,再代入数值即可.【详解】解:原式11(1)(1)1m m m m m-+-+=⋅- (1)(1) 1m m m m m -+=⋅-1m =+.∵2m =∴原式213=+=.【点睛】本题考查分式的化简求值、分式的通分、约分,正确的因式分解将分式化简成最简分式是关键. 20. 已知抛物线2(1)y a x h =-+经过点(0,3)-和(3,0). (1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.【答案】(1)1a =,4h =-;(2)242y x x =-+【解析】【分析】(1)将点(0,3)-和(3,0),代入解析式求解即可;(2)将2(1)4y x =--,按题目要求平移即可.【详解】(1)将点(0,3)-和(3,0)代入抛物线2(1)y a x h =-+得:22(01)3(31)0a h a h ⎧-+=-⎨-+=⎩解得:14a h =⎧⎨=-⎩∴1a =,4h =-(2)原函数的表达式为:2(1)4y x =--,向上平移2个单位长度,再向右平移1个单位长度,得:∴平移后的新函数表达式为:22(11)42=42y x x x =---+-+即242y x x =-+【点睛】本题考查了待定系数法确定解析式,顶点式的函数平移,口诀:“左加右减,上加下减”,正确的计算和牢记口诀是解题的关键.21. 如图,点A 是数轴上表示实数a 的点.(1)用直尺和圆规在数轴上作出表示实数的2的点P;(保留作图痕迹,不写作法)(2)利用数轴比较2和a的大小,并说明理由.【答案】(1)见解析;(2)2a>,见解析【解析】【分析】(1)利用勾股定理构造直角三角形得出斜边为2,再利用圆规画圆弧即可得到点P.(2)在数轴上比较,越靠右边的数越大.【详解】解:(1)如图所示,点P即为所求.(2)如图所示,点A在点P的右侧,所以2a>【点睛】本题考查无理数与数轴上一一对应的关系、勾股定理、尺规作图法、熟练掌握无理数在数轴上的表示是关键.22. 圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.(1)从π的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)【答案】(1)110;(2)见解析,12【解析】【分析】(1)这个事件中有10种等可能性,其中是6的有一种可能性,根据概率公式计算即可;(2)画出树状图计算即可.【详解】(1)∵这个事件中有10种等可能性,其中是6的有一种可能性,∴数字是6的概率为1 10,故答案为:1 10;(2)解:画树状图如图所示:∵共有12种等可能的结果,其中有一幅是祖冲之的画像有6种情况.∴P(其中有一幅是祖冲之)61 122 ==.【点睛】本题考查了概率公式计算,画树状图或列表法计算概率,熟练掌握概率计算公式,准确画出树状图或列表是解题的关键.23. 如图,D、E、F分别是ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF 为平行四边形;(2)加上条件 后,能使得四边形ADEF 为菱形,请从①90BAC ∠=︒;②AE 平分BAC ∠;③AB AC =,这三个条件中选择条件填空(写序号),并加以证明.【答案】(1)见解析;(2)②或③,见解析【解析】【分析】(1)先证明//EF AB ,根据平行的传递性证明EF //AD ,即可证明四边形ADEF 为平行四边形. (2)选②AE 平分BAC ∠,先证明DAE FAE ∠=∠,由四边形ADEF 是平行四边形ADEF ,得出AF EF =,即可证明平行四边形ADEF 是菱形.选③AB AC =,由//DE AC 且12DE AC =,AB AC =得出EF DE =,即可证明平行四边形ADEF 是菱形.【详解】(1)证明:已知D 、E 是AB 、BC 中点∴//DE AC又∵E 、F 是BC 、AC 的中点∴//EF AB∵//DE AF∴EF //AD∴四边形ADEF 为平行四边形(2)证明:选②AE 平分BAC ∠∵AE 平分BAC ∠∴DAE FAE ∠=∠又∵平行四边形ADEF∴//EF DA∴=∠∠FAE AEF∴AF EF =∴平行四边形ADEF 是菱形选③AB AC =∵//EF AB 且12EF AB = //DE AC 且12DE AC =又∵AB AC =∴EF DE = ∴平行四边形ADEF菱形故答案为:②或③ 【点睛】本题考查菱形的判定、平行四边形的性质及判定,熟练进行角的转换是关键,熟悉菱形的判定是重点.24. 如图,O 为线段PB 上一点,以O 为圆心OB 长为半径的⊙O 交PB 于点A ,点C 在⊙O 上,连接PC ,满足2PC PA PB =⋅.(1)求证:PC 是⊙O 的切线;(2)若3AB PA =,求AC BC的值. 【答案】(1)见解析;(2)12 【解析】【分析】(1) 连接OC ,把2PC PA PB =⋅转化为比例式,利用三角形相似证明90PCO ∠=︒即可;(2)利用勾股定理和相似三角形的性质求解即可.【详解】(1)证明:连接OC∵2PC PA PB =⋅ ∴PC PB PA PC=, 又∵∠P =∠P ,∴PAC PCB ∽∴PAC PCB =∠∠,PCA PBC ∠=∠∵PCO PCB OCB ∠=∠-∠∴PCO PAC OCB ∠=∠-∠又∵OC OB =∴OCB OBC ∠=∠∴PCO PAC ABC ACB ∠=∠-∠=∠已知C 是O 上的点,AB 是直径,∴90ACB ∠=︒,∴90PCO ∠=︒∴AC PO ⊥,∴PC 是圆的切线;(2)设AP a =,则3AB a =, 1.5r a =∴ 1.5OC a =在Rt △PCO 中∵ 2.5OP a =, 1.5OC a =,∴2PC a =已知PAC PCB ∽,AC PA BC PC= ∴12AC BC =. 【点睛】本题考查了切线的判定,三角形相似的判定和性质,勾股定理,熟练掌握切线的判定方法,灵活运用三角形相似的判定证明相似,运用勾股定理计算是解题的关键.25. 某种落地灯如图1所示,AB 为立杆,其高为84cm ;BC 为支杆,它可绕点B 旋转,其中BC 长为54cm ;DE 为悬杆,滑动悬杆可调节CD 的长度.支杆BC 与悬杆DE 之间的夹角BCD ∠为60︒.(1)如图2,当支杆BC 与地面垂直,且CD 的长为50cm 时,求灯泡悬挂点D 距离地面的高度; (2)在图2所示的状态下,将支杆BC 绕点B 顺时针旋转20︒,同时调节CD 的长(如图3),此时测得灯泡悬挂点D 到地面的距离为90cm ,求CD 的长.(结果精确到1cm ,参考数据:sin 200.34︒≈,cos 200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈)【答案】(1)点D 距离地面113厘米;(2)CD 长为58厘米【解析】【分析】(1)过点D 作DF BC ⊥交BC 于F ,利用60°三角函数可求FC ,根据线段和差FA AB BC CF =+-求即可;(2)过点C 作CG 垂直于地面于点G ,过点B 作BN CG ⊥交CG 于点N ,过点D 作DM CG ⊥交CG 于点M ,可证四边形ABGN 为矩形,利用三角函数先求cos20CN BC =⨯︒50.76(cm)≈,利用MG 与CN 的重叠部分求6(cm)MN =,然后求出CM ,利用三角函数即可求出CD .【详解】解:(1)过点D 作DF BC ⊥交BC 于F ,∵60FCD ∠=︒,90CFD ∠=︒∴cos60FC CD =⨯︒,1502=⨯, 25(cm)=,∴845425113(cm)FA AB BC CF =+-=+-=,答:点D 距离地面113厘米;(2)过点C 作CG 垂直于地面于点G ,过点B 作BN CG ⊥交CG 于点N ,过点D 作DM CG ⊥交CG 于点M ,∴∠BAG =∠AGN =∠BNG =90°,∴四边形ABGN 矩形,∴AB =GN =84(cm),∵54(cm)BC =,将支杆BC 绕点B 顺时针旋转20︒,∴∠BCN =20°,∠MCD =∠BCD -∠BCN =40°,∴cos20CN BC =⨯︒,540.94=⨯,50.76(cm)=,∴CG =CN +NG =50.76+84=134.76(cm),∴50.7690134.766(cm)MN CN MG CG =+-=+-=,∵6(cm)MN =,∴44.76(cm)CM CN MN =-=,∵44.76(cm)CM =,∴cos40CD CM =÷︒,44.760.77=÷,58(cm)≈,答:CD 长为58厘米.【点睛】本题考查解直角三角形应用,矩形的判定与性质,掌握锐角三角函数的定义,矩形判定与性质是解题关键.26. 为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到如下图表:该地区每周接种疫苗人数统计表 周次 第1周 第2周 第3周第4周 第5周 第6周 第7周 第8周 接种人数(万人) 710 12 18 25 29 37 42该地区全民接种疫苗情况扇形统计图A :建议接种疫苗已接种人群B :建议接种疫苗尚未接种人群C :暂不建议接种疫苗人群根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点(3,12)、(8,42)作一条直线(如图所示,该直线的函数表达式为66y x =-),那么这条直线可近似反映该地区接种人数的变化趋势.请根据以上信息,解答下列问题:(1)这八周中每周接种人数的平均数为________万人:该地区的总人口约为________万人;(2)若从第9周开始,每周接种人数仍符合上述变化趋势.①估计第9周的接种人数约为________万人;②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少(0)a a >万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 1.8a =,那么该地区的建议接种人群最早将于第几周全部完成接种?【答案】(1)22.5,800;(2)①48;②最早到13周实现全面免疫;(3)25周时全部完成接种【解析】【分析】(1)根据前8周总数除以8即可得平均数,8周总数除以所占百分比即可;(2)①将9x =代入66y x =-即可;②设最早到第x 周,根据题意列不等式求解;(3)设第x 周接种人数y 不低于20万人,列不等式求解即可【详解】(1)1(710121825293742)8+++++++=22.5,18022.5%800÷=故答案为:22.5,800.(2)①把9x =代入66,y x =- 54648.y ∴=-=故答案为:48②∵疫苗接种率至少达到60%∴接种总人数至少80060%480⨯=万设最早到第x 周,达到实现全民免疫的标准则由题意得接种总人数为180(696)(6106)(66)x +⨯-+⨯-+⋅⋅⋅+-∴180(696)(6106)(66)480x +⨯-+⨯-+⋅⋅⋅⋅⋅+-≥化简得(7)(8)100x x +-≥当13x =时,(137)(138)205100+-=⨯=∴最早到13周实现全面免疫(3)由题意得,第9周接种人数为42 1.840.2-=万以此类推,设第x 周接种人数y 不低于20万人,即42 1.8(8) 1.856.4y x x =--=-+∴ 1.856.420x -+≥,即1829x ≤∴当20x 周时,不低于20万人;当21x =周时,低于20万人;从第9周开始当周接种人数为y , 1.856.4,(920)20(21)x x y x -+≤≤⎧=⎨≥⎩∴当21x ≥时总接种人数为:18056.4 1.8956.4 1.81056.4 1.82020(20)800(121%)x +-⨯+-⨯+⋅⋅⋅+-⨯+-≥⨯-解之得24.42x ≥∴当x 为25周时全部完成接种.【点睛】本题考查的是扇形统计图的综合运用,平均数的概念,一次函数的性质,列不等式解决实际问题,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.27. 学习了图形的旋转之后,小明知道,将点P 绕着某定点A 顺时针旋转一定的角度α,能得到一个新的点P '.经过进一步探究,小明发现,当上述点P 在某函数图像上运动时,点P '也随之运动,并且点P '的运动轨迹能形成一个新的图形.试根据下列各题中所给的定点A 的坐标和角度α的大小来解决相关问题.【初步感知】如图1,设(1,1)A ,90α=︒,点P 是一次函数y kx b =+图像上的动点,已知该一次函数的图像经过点1(1,1)P -.(1)点1P 旋转后,得到的点1P'的坐标为________; (2)若点P '的运动轨迹经过点2(2,1)P ',求原一次函数的表达式.深入感悟】(3)如图2,设(0,0)A ,45α=︒,点P 反比例函数1(0)y x x=-<的图像上的动点,过点P '作二、四象限角平分线的垂线,垂足为M ,求OMP '的面积.【灵活运用】(4)如图3,设A (1,,60α=︒,点P是二次函数2172y x =++图像上的动点,已知点(2,0)B 、(3,0)C ,试探究BCP '△的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.【答案】(1)(1,3);(2)1322y x =+;(3)12;(4)存在最小值,118 【解析】 【分析】(1)根据旋转的定义得112AP AP '==,观察点1P '和(1,1)A 在同一直线上即可直接得出结果. (2)根据题意得出2P 的坐标,再利用待定系数法求出原一次函数表达式即可.(3)先根据1(0)y x y x x =-⎧⎪⎨=-<⎪⎩计算出交点坐标,再分类讨论①当1x ≤-时,先证明()PQA P MA AAS '≌再计算OMP '面积.②当-10x <<时,证()PHO OP M AAS '≌,再计算122P MO PHO k SS '===即可.(4)先证明OAB 为等边三角形,再证明()C AO CAB SAS '≌,根据在Rt C GB '中,9030C GB C B C '''∠=︒-∠=︒,写出1,22C ⎛'⎝⎭,从而得出OC '的函数表达式,当直线l 与抛物线相切时取最小值,得出112y =+,由'B C T B C P S S '''=计算得出BCP '△的面积最小值.【详解】(1)由题意可得:112AP AP '== ∴1P '的坐标为(1,3) 故答案为:(1,3);(2)∵2(2,1)P ',由题意得2P 坐标为(1,2)∵1(1,1)P -,2(1,2)P 在原一次函数上,∴设原一次函数解析式为y kx b =+则12k b k b -+=⎧⎨+=⎩∴1232k b ⎧=⎪⎪⎨⎪=⎪⎩∴原一次函数表达式为1322y x =+; (3)设双曲线与二、四象限平分线交于N 点,则1(0)y x y x x =-⎧⎪⎨=-<⎪⎩解得(1,1)N -①当1x ≤-时作PQ x ⊥轴于Q∵45QAM POP '∠=∠=︒∴PAQ P AN '∠=∠∵PM AM ⊥∴90P MA PQA '∠=∠=︒∴在PQA △和P MA '中PQA P MA PAQ P AM AP AP ∠=∠⎧⎪∠=∠'='⎨'⎪⎩∴()PQA P MA AAS '≌122P MA PQA k S S'=== 即12OMP S '=;②当-10x <<时作PH ⊥于y 轴于点H∵45POP NOY '∠=∠=︒∴PON P OY '∠=∠∴90MP O MOY P OY ''∠=︒-∠-∠45P OY '=︒-∠∴POH POP P OY ''∠=∠-∠45P OY '=︒-∠∴POH OMP '∠=∠在POH 和OP M '中PHO OMP POH MP O PO P O ∠=∠⎧⎪∠=∠'='⎨'⎪⎩∴()PHO OP M AAS '≌ ∴122P MO PHO kS S '===;(4)连接AB ,AC ,将B ,C 绕A 逆时针旋转60︒得B ',C ',作AH x ⊥轴于H ∵(13)A ,(2,0)B∴1OH BH ==∴2OA AB OB ===∴OAB 为等边三角形,此时B '与O 重合,即(0,0)B '连接C O ',∵60CAC BAO ∠=∠='︒∴CAB C AB ''∠=∠∴在C AO '和CAB △中C A CA C AO CAB BA OA =⎧⎪∠=∠'⎨='⎪⎩∴()C AO CAB SAS '≌∴1C O CB '==,120C OA CBA ∠'=∠=︒∴作C G y '⊥轴于G在Rt C GB '中,9030C GB C B C '''∠=︒-∠=︒ ∴1sin 2C G OC C BG '''=⋅∠= ∴32OG =,即1322C ⎛' ⎝⎭,此时OC '的函数表达式为:3y x = 设过P 且与B C ''平行 的直线l 解析式为3y x b =+∵B P BC C P S S '''=∴当直线l 与抛物线相切时取最小值则2312372y x b y x x ⎧=+⎪⎨=++⎪⎩即2132372x b x x +=++ ∴213702x x b ++-= 当0∆=时,得112b =∴1132y x =+ 设l 与y 轴交于T 点∵'B C T B C P SS '''= ∴12B C P S B T CG '''=⨯⨯ 1111222=⨯⨯ 118=【点睛】本题考查旋转、全等三角形的判定和性质、一次函数的解析式、反比例函数的几何意义、两函数的交点问题,函数的最小值的问题,灵活进行角的转换是关键.。

2021年九年级中考数学第三轮压轴题:二次函数的综合 专题复习(含答案)

2021年九年级中考数学第三轮压轴题:二次函数的综合 专题复习(含答案)

2021年中考数学第三轮压轴题:二次函数的综合专题复习1、如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.2、如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.3、如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.4、如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.5、如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.6、如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B 的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P 运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.7、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.8、如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y 轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P 运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.9、如图,已知二次函数y=ax2−5√3x+c(a>0)的图象抛物线与x轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=√3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60∘,抛物线的对称轴l,连接AF,满与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+12a足∠ADB=∠AFE,求该二次函数的解析式.10、如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.11、如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.12、如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x 轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.13、如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q 的坐标.14、已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO =S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.参考答案1、如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).2、如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,=OB•DP=×3×(﹣x2+x)=﹣x2+x.∴S△PBC又∵S=1,△PBC∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).3、如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由题可知当y=0时,a(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,即A(1,0),B(3,0),∴OA=1,OB=3∵△OCA∽△OBC,∴OC:OB=OA:OC,∴OC2=OA•OB=3,则OC=;(2)∵C是BM的中点,即OC为斜边BM的中线,∴OC=BC,∴点C的横坐标为,又OC=,点C在x轴下方,∴C(,﹣),设直线BM的解析式为y=kx+b,把点B(3,0),C(,﹣)代入得:,解得:b=﹣,k=,∴y=x﹣,又∵点C(,﹣)在抛物线上,代入抛物线解析式,解得:a=,∴抛物线解析式为y=x2﹣x+2;(3)点P存在,设点P坐标为(x,x2﹣x+2),过点P作PQ⊥x轴交直线BM于点Q,则Q(x,x﹣),∴PQ=x﹣﹣(x2﹣x+2)=﹣x2+3x﹣3,当△BCP面积最大时,四边形ABPC的面积最大,=PQ(3﹣x)+PQ(x﹣)=PQ=﹣x2+x﹣,S△BCP有最大值,四边形ABPC的面积最大,此时点P的坐标为当x=﹣=时,S△BCP(,﹣).4、如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.【解答】解:(1)将A(1,0),B(3,0)代入函数解析式,得,解得,这个二次函数的表达式是y=x2﹣4x+3;(2)当x=0时,y=3,即点C(0,3),设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得,解这个方程组,得直线BC的解析是为y=﹣x+3,过点P作PE∥y轴,交直线BC于点E(t,﹣t+3),PE=﹣t+3﹣(t﹣4t+3)=﹣t2+3t,∴S△BCP =S△BPE+SCPE=(﹣t2+3t)×3=﹣(t﹣)2+.∵﹣<0,∴当t=时,S△BCP最大=(3)M(m,﹣m+3),N(m,m2﹣4m+3)MN=m2﹣3m,BM=|m﹣3|,当MN=BM时,①m2﹣3m=(m﹣3),解得m=,②m2﹣3m=﹣(m﹣3),解得m=﹣当BN=MN时,∠NBM=∠BMN=45°,m2﹣4m+3=0,解得m=1或m=3(舍)当BM=BN时,∠BMN=∠BNM=45°,﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),当△BMN是等腰三角形时,m的值为,﹣,1,2.5、如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.【解答】解:(1)设y=a(x﹣1)2+4(a≠0),把C(0,3)代入抛物线解析式得:a+4=3,即a=﹣1,则抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)由B(3,0),C(0,3),得到直线BC解析式为y=﹣x+3,∵S△OBC =S△QBC,∴PQ∥BC,①过P作PQ∥BC,交抛物线于点Q,如图1所示,∵P(1,4),∴直线PQ解析式为y=﹣x+5,联立得:,解得:或,即Q(2,3);②设G(1,2),∴PG=GH=2,过H作直线Q2Q3∥BC,交x轴于点H,则直线Q2Q3解析式为y=﹣x+1,联立得:,解得:或,∴Q2(,),Q3(,);(3)存在点M,N使四边形MNED为正方形,如图2所示,过M作MF∥y轴,过N作NF∥x轴,过N作NH∥y轴,则有△MNF 与△NEH都为等腰直角三角形,设M(x1,y1),N(x2,y2),设直线MN解析式为y=﹣x+b,联立得:,消去y得:x2﹣3x+b﹣3=0,∴NF2=|x1﹣x2|2=(x1+x2)2﹣4x1x2=21﹣4b,∵△MNF为等腰直角三角形,∴MN2=2NF2=42﹣8b,∵NH2=(b﹣3)2,∴NF2=(b﹣3)2,若四边形MNED为正方形,则有NE2=MN2,∴42﹣8b=(b2﹣6b+9),整理得:b2+10b﹣75=0,解得:b=﹣15或b=5,∵正方形边长为MN=,∴MN=9或.6、如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B 的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P 运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】解:(1)由抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,得A点坐标(﹣3,0),B点坐标(1,0);(2)设抛物线的解析式为y=a(x+3)(x﹣1),把C点坐标代入函数解析式,得a(0+3)(0﹣1)=3,解得a=﹣1,抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(3)EF+EG=8(或EF+EG是定值),理由如下:过点P作PQ∥y轴交x轴于Q,如图.设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,AQ=3+t,QB=1﹣t,∵PQ∥EF,∴△AEF∽△AQP,∴=,∴EF===×(﹣t2﹣2t+3)=2(1﹣t);又∵PQ∥EG,∴△BEG∽△BQP,∴=,∴EG===2(t+3),∴EF+EG=2(1﹣t)+2(t+3)=8.7、如图,在平面直角坐标系中,抛物线y=x2﹣x﹣4与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从A点出发,在线段AB上以每秒2个单位长度的速度向B点运动,同时,点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动.设运动时间为t秒,求运动时间t为多少秒时,△PBQ的面积S最大,并求出其最大面积;(3)在(2)的条件下,当△PBQ面积最大时,在BC下方的抛物线上是否存在点M,使△BMC的面积是△PBQ面积的1.6倍?若存在,求点M的坐标;若不存在,请说明理由.【解答】解:(1)当x=0时,y=x2﹣x﹣4=﹣4,∴点C的坐标为(0,﹣4);当y=0时,有x2﹣x﹣4=0,解得:x1=﹣2,x2=3,∴点A的坐标为(﹣2,0),点B的坐标为(3,0).(2)设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,﹣4)代入y=kx+b,,解得:,∴直线BC的解析式为y=x﹣4.过点Q作QE∥y轴,交x轴于点E,如图1所示,当运动时间为t秒时,点P的坐标为(2t﹣2,0),点Q的坐标为(3﹣t,﹣t),∴PB=3﹣(2t﹣2)=5﹣2t,QE=t,∴S△PBQ=PB•QE=﹣t2+2t=﹣(t﹣)2+.∵﹣<0,∴当t=时,△PBQ的面积取最大值,最大值为.(3)当△PBQ面积最大时,t=,此时点P的坐标为(,0),点Q的坐标为(,﹣1).假设存在,设点M的坐标为(m,m2﹣m﹣4),则点F的坐标为(m,m﹣4),∴MF=m﹣4﹣(m2﹣m﹣4)=﹣m2+2m,∴S△BMC=MF•OB=﹣m2+3m.∵△BMC的面积是△PBQ面积的1.6倍,∴﹣m2+3m=×1.6,即m2﹣3m+2=0,解得:m1=1,m2=2.∵0<m<3,∴在BC下方的抛物线上存在点M,使△BMC的面积是△PBQ面积的1.6倍,点M 的坐标为(1,﹣4)或(2,﹣).8、如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y 轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P 运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.解:(1)∵OA=1,OB=4∴A(1,0),B(﹣4,0)设抛物线的解析式为y=a(x+4)(x﹣1)∵点C(0,﹣)在抛物线上∴﹣解得a=∴抛物线的解析式为y=(2)存在t,使得△ADC与△PQA相似.理由:①在Rt△AOC中,OA=1,OC=则tan∠ACO=∵tan∠OAD=∴∠OAD=∠ACO∵直线l的解析式为y=∴D(0,﹣)∵点C(0,﹣)∴CD=由AC2=OC2+OA2,得AC=在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t由∠PAQ=∠ACD,要使△ADC与△PQA相似只需或则有或解得t1=,t2=∵t1<2.5,t2<2.5∴存在t=或t=,使得△ADC与△PQA相似②存在t,使得△APQ与△CAQ的面积之和最大理由:作PF⊥AQ于点F,CN⊥AQ于N在△APF中,PF=AP•sin∠PAF=在△AOD中,由AD2=OD2+OA2,得AD=在△ADC中,由S△ADC=∴CN=∴S△AQP +S△AQC==﹣∴当t=时,△APQ与△CAQ的面积之和最大9、如图,已知二次函数y=ax2−5√3x+c(a>0)的图象抛物线与x轴相交于不同的两点A(x1,0),B(x2,0),且x1<x2,(1)若抛物线的对称轴为x=√3求的a值;(2)若a=15,求c的取值范围;(3)若该抛物线与y轴相交于点D,连接BD,且∠OBD=60∘,抛物线的对称轴l 与x轴相交点E,点F是直线l上的一点,点F的纵坐标为3+12a,连接AF,满足∠ADB=∠AFE,求该二次函数的解析式.【答案】解:(1)抛物线的对称轴是:x=−b2a =−−5√32a=√3,解得:a=52;(2)由题意得二次函数解析式为:y=15x2−5√3x+c,∵二次函数与x轴有两个交点,∴△>0,∴△=b2−4ac=(−5√3)2−4×15c,∴c<54;(3)∵∠BOD=90∘,∠DBO=60∘,∴tan60∘=ODOB =cOB=√3,∴OB=√33c,∴B(√33c,0),把B(√33c,0)代入y =ax 2−5√3x +c 中得:ac 23−5√3⋅√3c 3+c =0,ac 23−5c +c =0,∵c ≠0, ∴ac =12, ∴c =12a,把c =12a代入y =ax 2−5√3x +c 中得: y =a(x 2−5√3x a+12a 2)=a(x −4√3a)(x −√3a), ∴x 1=4√3a,x 2=√3a, ∴A(√3a ,0),B(4√3a ,0),D(0,12a), ∴AB =4√3a−√3a=3√3a ,AE =3√32a, ∵F 的纵坐标为3+12a , ∴F(5√32a ,6a+12a), 过点A 作AG ⊥DB 于G , ∴BG =12AB =AE =3√32a,AG =92a ,DG =DB −BG =8√3a−3√32a=13√32a, ∵∠ADB =∠AFE ,∠AGD =∠FEA =90∘, ∴△ADG ∽△AFE , ∴AE AG =FEDG , ∴3√32a 92a=6a+12a 13√32a,∴a =2,c =6, ∴y =2x 2−5√3x +6.10、如图1,已知抛物线y=﹣x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于C 点,点P 是抛物线上在第一象限内的一个动点,且点P 的横坐标为t .(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=﹣x2+bx+c,,解得:,∴抛物线的表达式为y=﹣x2+2x+3.(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴抛物线的对称轴为直线x=1.当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形.∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2.又∵t≠2,∴不存在.(3)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(3,0)、C(0,3)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x+3.∵点P的坐标为(t,﹣t2+2t+3),∴点F的坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+.②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(3,0),点C的坐标为(0,3),∴线段BC==3,∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).11、如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)把x=0代入y=﹣x+3,得:y=3,∴C(0,3).把y=0代入y=﹣x+3得:x=3,∴B(3,0),A(﹣1,0)将C(0,3)、B(3,0)代入y=﹣x2+bx+c得:,解得b=2,c=3.∴抛物线的解析式为y=﹣x2+2x+3.(2)如图所示:作点O关于BC的对称点O′,则O′(3,3).∵O′与O关于BC对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A==5.(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,3,B(3,0),∴CD=,BC=3,DB=2.∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,3),∴OA=1,CO=3.∴==.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图所示:连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴=,即=,解得:AQ=10.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.12、如图1,经过原点O的抛物线y=ax2+bx(a、b为常数,a≠0)与x轴相交于另一点A(3,0).直线l:y=x在第一象限内和此抛物线相交于点B(5,t),与抛物线的对称轴相交于点C.(1)求抛物线的解析式;(2)在x轴上找一点P,使以点P、O、C为顶点的三角形与以点A、O、B为顶点的三角形相似,求满足条件的点P的坐标;(3)直线l沿着x轴向右平移得到直线l′,l′与线段OA相交于点M,与x 轴下方的抛物线相交于点N,过点N作NE⊥x轴于点E.把△MEN沿直线l′折叠,当点E恰好落在抛物线上时(图2),求直线l′的解析式;(4)在(3)问的条件下(图3),直线l′与y轴相交于点K,把△MOK绕点O 顺时针旋转90°得到△M′OK′,点F为直线l′上的动点.当△M'FK′为等腰三角形时,求满足条件的点F的坐标.【解答】解:(1)由已知点B坐标为(5,5)把点B(5,5),A(3,0)代入y=ax2+bx,得解得∴抛物线的解析式为:y=(2)由(1)抛物线对称轴为直线x=,则点C坐标为(,)∴OC=,OB=5当△OBA∽△OCP时,∴∴OP=当△OBA∽△OPC时,∴∴OP=5∴点P坐标为(5,0)或(,0)(3)设点N坐标为(a,b),直线l′解析式为:y=x+c ∵直线l′y=x+c与x轴夹角为45°∴△MEN为等腰直角三角形.当把△MEN沿直线l′折叠时,四边形ENE′M为正方形∴点′E坐标为(a﹣b,b)∵EE′平行于x轴∴E、E′关于抛物线对称轴对称∵∴b=2a﹣3则点N坐标可化为(a,2a﹣3)把点N坐标带入y=得:2a﹣3=解得a1=1,a2=6∵a=6时,b=2a﹣3=﹣9<0∴a=6舍去则点N坐标为(1,﹣1)把N坐标带入y=x+c则c=﹣2∴直线l′的解析式为:y=x﹣2(4)由(3)K点坐标为(0,﹣2)则△MOK为等腰直角三角形∴△M′OK′为等腰直角三角形,M′K′⊥直线l′∴当M′K′=M′F时,△M'FK′为等腰直角三角形∴F坐标为(1,0)或(﹣1,﹣2)13、如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q 的坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD =S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).14、已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO =S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣4;(2)当y=0时,x2﹣x﹣4=0,解得:x=﹣2或4,∴C(4,0),如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,∵S△PBO =S△PBC,∴,∴OE=CF,易得△OEG≌△CFG,∴OG=CG=2,设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,tan∠PBM===,∴BM=2PM,∴4+x2﹣x﹣4=2x,x2﹣6x=0,x 1=0(舍),x2=6,∴P(6,8),易得AP的解析式为:y=x+2,BC的解析式为:y=x﹣4,∴AP∥BC;(3)以A,B,C,E中的三点为顶点的三角形有△ABC、△ABE、△ACE、△BCE,四种,其中△ABE重合,不符合条件,△ACE不能构成三角形,∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,∵∠BAE=∠BAC,∠ABE≠∠ABC,∴∠ABE=∠ACB=45°,∴△ABE∽△ACB,∴,∴,∴AE=,∴E(,0),∵B(0,﹣4),易得BE:y=,则x2﹣x﹣4=x﹣4,x 1=0(舍),x2=,∴D(,);②当△ABE与以B,C、E中的三点为顶点的三角形相似,如图3,∵∠BEA=∠BEC,∴当∠ABE=∠BCE时,△ABE∽△BCE,∴==,设BE=2m,CE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2﹣8m+8=0,(m﹣2)(3m﹣2)=0,m 1=2,m2=,∴OE=4m﹣4=12或,∵OE=<2,∠AEB是钝角,此时△ABE与以B,C、E中的三点为顶点的三角形不相似,如图4,∴E(﹣12,0);同理得BE的解析式为:y=﹣x﹣4,﹣x﹣4=x2﹣x﹣4,x=或0(舍)∴D(,﹣);综上,点D的坐标为(,)或(,﹣).。

2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)

2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)

2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)1.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.2.如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.7.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.8.已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.9.如图,在平面直角坐标系中,抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0)、C两点(点B在点C的左侧),抛物线的顶点为D.(1)求抛物线的表达式;(2)用配方法求点D的坐标;(3)点P是线段OB上的动点.①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是射线OA上的动点,且始终满足OQ=OP,连接AP,DQ,请直接写出AP+DQ的最小值.10.如图1,已知:抛物线y=a(x+1)(x﹣3)交x轴于A,C两点,交y轴于点B,且OB =2CO.(1)求二次函数解析式;(2)在二次函数图象(如图2)位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案1.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.2.解:(1)∵点B(3,0),点C(0,3)在抛物线y=﹣x2+bx+c图象上,∴,解得:,∴抛物线解析式为:y=﹣x2+2x+3;(2)∵点B(3,0),点C(0,3),∴直线BC解析式为:y=﹣x+3,如图,过点P作PH⊥x轴于H,交BC于点G,设点P(m,﹣m2+2m+3),则点G(m,﹣m+3),∴PG=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,=×PG×OB=×3×(﹣m2+3m)=﹣(m﹣)2+,∵S△PBC有最大值,∴当m=时,S△PBC∴点P(,);(3)存在N满足条件,理由如下:∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,∴点A(﹣1,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M为(1,4),∵点M为(1,4),点C(0,3),∴直线MC的解析式为:y=x+3,如图,设直线MC与x轴交于点E,过点N作NQ⊥MC于Q,∴DE=4=MD,∴∠NMQ=45°,∵NQ⊥MC,∴∠NMQ=∠MNQ=45°,∴MQ=NQ,∴MQ=NQ=MN,设点N(1,n),∵点N到直线MC的距离等于点N到点A的距离,∴NQ=AN,∴NQ2=AN2,∴(MN)2=AN2,∴(|4﹣n|)2=4+n2,∴n2+8n﹣8=0,∴n=﹣4±2,∴存在点N满足要求,点N坐标为(1,﹣4+2)或(1,﹣4﹣2).3.解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∵S =S 四边形ADCP =S △APO +S △CPO ﹣S △ODC =×AO ×y P +×OC ×|x P |﹣×CO ×OD =4,∴×3×(﹣x 2﹣x +2)+×2×(﹣x )﹣×1×2=4,∴x 1=﹣1,x 2=﹣2, ∴点P (﹣1,)或(﹣2,2);(3)①如图2,若点M 在CD 左侧,连接AM ,∵∠MDC =90°,∴∠MDA +∠CDO =90°,且∠CDO +∠DCO =90°, ∴∠MDA =∠DCO ,且AD =CO =2,MD =CD , ∴△MAD ≌△DOC (SAS )∴AM =DO ,∠MAD =∠DOC =90°, ∴点M 坐标(﹣3,1),若点M 在CD 右侧,同理可求点M '(1,﹣1); ②如图3,∵抛物线的表达式为:y =﹣x 2﹣x +2=﹣(x +1)2+;∴对称轴为:直线x =﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为:(﹣1,)或(﹣1,﹣)或(﹣1,5).4.解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).5.解:(1)∵直线x=1是抛物线的对称轴,且点C的坐标为(0,3),∴c=3,﹣=1,∴b=2,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M(1,4),∵抛物线的解析式为:y=﹣x2+2x+3与x轴相交于A,B两点(点A位于点B的左侧),∴0=﹣x2+2x+3∴x1=3,x2=﹣1,∴点A(﹣1,0),点B(3,0),∵点M(1,4),点B(3,0)∴直线BM解析式为y=﹣2x+6,∵点P在直线BM上,且PD⊥x轴于点D,PD=m,∴点P(3﹣,m),∴S△PCD=×PD×OD=m×(3﹣)=﹣m2+m,∵点P在线段BM上,且点M(1,4),点B(3,0),∴0<m≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,∴直线AC的解析式为y=﹣3x+3,又∵抛物线对称轴为直线x=﹣=2,∴x=2时,y=﹣3×2+3=﹣3,故,点M的坐标为(2,﹣3);(3))∵OB=OC=3,OB⊥OC,∴△BOC是等腰直角三角形,∵EF∥y轴,直线BC的解析式为y=﹣x+3,∴△DEF只要是直角三角形即可与△BOC相似,∵D(2,1),A(1,0),B(3,0),∴点D垂直平分AB且到点AB的距离等于AB,∴△ABD是等腰直角三角形,∴∠ADB =90°,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2﹣4x +3=1,整理得x 2﹣4x +2=0,解得x =2±, 当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣), ②点D 是直角顶点时,易求直线AD 的解析式为y =x ﹣1,联立,解得,,当x =1时,y =﹣1+3=2,当x =4时,y =﹣4+3=﹣1,∴点E 3(1,2),E 4(4,﹣1),综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.7.解:(1)∵抛物线y =x 2+bx +c 交x 轴于点A (1,0),与y 轴交于点C (0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,=AE×OC=AC×EF,∵S△AEC∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AP与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,﹣),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).8.解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),∴设二次函数的解析式为y=a(x+2)(x﹣4),∵二次函数图象过点C(0,4),∴4=a(0+2)(0﹣4),∴a=﹣,∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)存在,理由如下:如图1,取BC中点Q,连接MQ,∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,∴P(﹣1,2),点Q(2,2),BC==4,设直线BP解析式为:y=kx+b,由题意可得:,解得:∴直线BP的解析式为:y=﹣x+,∵∠BMC=90°∴点M在以BC为直径的圆上,∴设点M(c,﹣c+),∵点Q是Rt△BCM的中点,∴MQ=BC=2,∴MQ2=8,∴(c﹣2)2+(﹣c+﹣2)2=8,∴c=4或﹣,当c=4时,点B,点M重合,即c=4,不合题意舍去,∴c=﹣,则点M坐标(﹣,),故线段PB上存在点M(﹣,),使得∠BMC=90°;(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,∴点D(1,0),OB=OC=4,AB=6,BD=3,∴∠OBC=45°,∵DE⊥BC,∴∠EDB=∠EBD=45°,∴DE=BE==,∵点B(4,0),C(0,4),∴直线BC解析式为:y=﹣x+4,设点E(n,﹣n+4),∴﹣n+4=,∴n=,∴点E(,),在Rt△DNE中,NE===,①若DK与射线EC交于点N(m,4﹣m),∵NE=BN﹣BE,∴=(4﹣m)﹣,∴m=,∴点N(,),∴直线DK解析式为:y=4x﹣4,联立方程组可得:,解得:或,∴点K坐标为(2,4)或(﹣8,﹣36);②若DK与射线EB交于N(m,4﹣m),∵NE=BE﹣BN,∴=﹣(4﹣m),∴m=,∴点N(,),∴直线DK解析式为:y=x﹣,联立方程组可得:,解得:或,∴点K坐标为(,)或(,),综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).9.解:(1)∵抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0),∴∴∴抛物线解析式为:y=x2﹣x+2;(2)∵y=x2﹣x+2=﹣(x+1)2+,∴顶点D坐标(﹣1,);(3)①∵抛物线y=x2﹣x+2与x轴交于B(﹣3,0)、C两点,∴点C(1,0)设点E(m,m2﹣m+2),则点P(m,0),∵PE=PC,∴m2﹣m+2=1﹣m,∴m=1(舍去),m=﹣,∴点E(﹣,)②如图,连接AE交对称轴于点N,连接DE,作EH⊥DN于H,交y轴于点F,∵点A(0,2),点E(﹣,),∴直线AE解析式为y=﹣x+2,∴点N坐标(﹣1,)∴DH==,HN==,∴DH=NH,且EH⊥DN,∴∠DEH=∠NEH,∴点F到AE,DE的距离相等,∴DN∥y轴,EH⊥DN,∴EH⊥y轴,∴EF=;③在x轴正半轴取点H,使OH=OA=2,∵OH=OA,∠AOP=∠QOH=90°,OP=OQ,∴△AOP≌△HOQ(SAS)∴AP=QH,∴AP+DQ=DQ+QH≥DH,∴点Q在DH上时,DQ+AP有最小值,最小值为DH的长,∴AP+DQ的最小值==.10.解:(1)对于抛物线y=a(x+1)(x﹣3),令y=0,得到a(x+1)(x﹣3)=0,解得x=﹣1或3,∴C(﹣1,0),A(3,0),∴OC=1,∵OB=2OC=2,∴B(0,2),把B(0,2)代入y=a(x+1)(x﹣3)中得:2=﹣3a,a=﹣∴二次函数解析式为=;(2)设点M的坐标为(m,),则点N的坐标为(2﹣m,),MN=m﹣2+m=2m﹣2,GM=矩形MNHG的周长C=2MN+2GM=2(2m﹣2)+2()==∴当时,C有最大值,最大值为;(3)∵A(3,0),B(0,2),∴OA=3,OB=2,由对称得:抛物线的对称轴是:x=1,∴AE=3﹣1=2,设抛物线的对称轴与x轴相交于点E,当△ABP为直角三角形时,存在以下三种情况:①如图1,当∠BAP=90°时,点P在AB的下方,∵∠PAE+∠BAO=∠BAO+∠ABO=90°,∴∠PAE=∠ABO,∵∠AOB=∠AEP,∴△ABO∽△PAE,∴,即,∴PE=3,∴P(1,﹣3);②如图2,当∠PBA=90°时,点P在AB的上方,过P作PF⊥y轴于F,同理得:△PFB∽△BOA,∴,即,∴BF=,∴OF=2+=,∴P(1,);③如图3,以AB为直径作圆与对称轴交于P1、P2,则∠AP1B=∠AP2B=90°,设P1(1,y),∵AB2=22+32=13,由勾股定理得:AB2=P1B2+P1A2,∴12+(y﹣2)2+(3﹣1)2+y2=13,解得:y=1±,∴P(1,1+)或(1,1﹣),综上所述,点P的坐标为(1,﹣3)或(1,)或(1,1+)或(1,1﹣)。

2023年江苏省盐城市中考数学专题练——4二次函数

2023年江苏省盐城市中考数学专题练——4二次函数

2023年江苏省盐城市中考数学专题练——4二次函数一.选择题(共6小题)1.(2022•东台市模拟)已知抛物线y=ax2+bx+c上的部分点的横坐标x与纵坐标y的对应值如表:x…﹣10123…y…30﹣1m3…以下结论:①抛物线y=ax2+bx+c的开口向下;②当x<3时,y随x增大而增大;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是0<x<2,正确的个数有()A.1个B.2个C.3个D.4个2.(2022•建湖县一模)如图,游乐园里的原子滑车是很多人喜欢的项目,惊险刺激,原子滑车在轨道上运行的过程中有一段路线可以看作是抛物线的一部分,原子滑车运行的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了原子滑车在该路段运行的x与y的三组数据A(x1,y1)、B(x2,y2)、C(x3,y3),根据上述函数模型和数据,可推断出,此原子滑车运行到最低点时,所对应的水平距离x满足()A.x<x1B.x1<x<x2C.x=x2D.x2<x<x3 3.(2021•射阳县二模)已知抛物线y=ax2+bx+3(a<0)过A(2,y1),B(﹣1,y2),C(3,y2),D(−√5,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1 4.(2021•建湖县二模)如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=14x2﹣x+9:②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<5.5时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④5.(2021•射阳县三模)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°6.(2021•盐都区二模)下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x1 1.2 1.3 1.4y﹣10.040.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1B.1.1C.1.2D.1.3二.填空题(共5小题)7.(2022•东台市模拟)如图,抛物线y=﹣x2+4x+1与y轴交于点P,其顶点是A,点P'的坐标是(3,﹣2),将该抛物线沿PP'方向平移,使点P平移到点P',则平移过程中该抛物线上P、A两点间的部分所扫过的面积是.8.(2022•盐城一模)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=﹣0.3x2+1.5x﹣1,则最佳加工时间为min.9.(2022•亭湖区校级三模)二次函数y=x2﹣1的图象与y轴的交点坐标是.10.(2022•滨海县模拟)已知y是x的二次函数,如表给出了y与x的几对对应值:x…﹣2﹣101234…y…11a323611…由此判断,表中a=.11.(2021•东台市模拟)如图,抛物线y=14x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连接OQ.则线段OQ的最大值是.三.解答题(共14小题)12.(2022•亭湖区校级三模)已知抛物线y=(k﹣1)x2﹣2kx+3k,其中k为实数.(1)若抛物线经过点(1,3),求k的值;(2)若抛物线经过点(1,a),(3,b),试说明ab>﹣3;(3)当2≤x≤4时:二次函数的函数值y≥0恒成立,求k的取值范围.13.(2022•亭湖区校级三模)阅读感悟:“数形结合”是一种重要的数学思想方法,同一个问题有“数”、“形”两方面的特性,解决数学问题,有的从“数”入手简单,有的从“形”入手简单,因此,可能“数”→“形”或“形”→“数”,有的问题需要经过几次转化.这对于初、高中数学的解题都很有效,应用广泛. 解决问题:已知,点M 为二次函数y =﹣x 2+2bx ﹣b 2+4b +1图象的顶点,直线y =mx +5分别交x 轴正半轴和y 轴于点A ,B .(1)判断顶点M 是否在直线y =4x +1上,并说明理由;(2)如图1,若二次函数图象也经过点A ,B ,且mx +5>﹣x 2+2bx ﹣b 2+4b +1,结合图象,求x 的取值范围;(3)如图2,点A 坐标为(5,0),点M 在△AOB 内,若点C (14,y 1),D (34,y 2)都在二次函数图象上,试比较y 1与y 2的大小.14.(2022•滨海县模拟)如图1,直线l :y =kx +b (k <0,b >0)与x 、y 轴分别相交于A 、B 两点,将△AOB 绕点O 逆时针旋转90°得到△COD ,过点A 、B 、D 的抛物线W 叫做直线l 的关联抛物线,而直线l 叫做抛物线W 的关联直线.(1)已知直线l 1:y =﹣3x +3,求直线l 1的关联抛物线W 1的表达式; (2)若抛物线W 2:y =−x 2−x +2,求它的关联直线l 2的表达式;(3)如图2,若直线l 3:y =kx +4(k <0),G 为AB 中点,H 为CD 中点,连接GH ,M 为GH 中点,连接OM .若OM =√102,求直线l 3的关联抛物线W 3的表达式;(4)在(3)的条件下,将直线CD 绕着C 点旋转得到新的直线l 4:y =mx +n ,若点P (x 1,y 1)与点Q (x 2,y 2)分别是抛物线W 3与直线l 4上的点,当0≤x ≤2时,|y 1﹣y 2|≤4,请直接写出m 的取值范围.15.(2022•盐城一模)如图,抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),与x轴负半轴交于点C,点D是抛物线上的动点.(1)求抛物线的解析式;(2)过点D作DE⊥AB于点E,连接BF,当点D在第一象限且S△BEF=2S△AEF时,求点D的坐标.16.(2022•亭湖区校级一模)已知抛物线y=ax2﹣(3a﹣1)x﹣2(a为常数且a≠0)与y 轴交于点A.(1)点A的坐标为;对称轴为(用含a的代数式表示);(2)无论a取何值,抛物线都过定点B(与点A不重合),则点B的坐标为;(3)若a<0,且自变量x满足﹣1≤x≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A与点B之间的函数图象记作图象M(包含点A、B),若将M在直线y=﹣2下方的部分保持不变,上方的部分沿直线y=﹣2进行翻折,可以得到新的函数图象M1,若图象M1上仅存在两个点到直线y=﹣6的距离为2,求a的值.17.(2022•盐城二模)若二次函数y=ax2+bx+a+2的图象经过点A(1,0),其中a、b为常数.(1)用含有字母a的代数式表示抛物线顶点的横坐标;(2)点B(−12,1)、C(2,1)为坐标平面内的两点,连接B、C两点.①若抛物线的顶点在线段BC上,求a的值;②若抛物线与线段BC有且只有一个公共点,求a的取值范围.18.(2022•滨海县一模)如图1,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,连接BC,直线BM:y=2x+m 交y轴于点M.P为直线BC上方抛物线上一动点,过点P作x轴的垂线,分别交直线BC、BM于点E、F.(1)求抛物线的表达式:(2)当点P落在抛物线的对称轴上时,求△PBC的面积:(3)①若点N为y轴上一动点,当四边形BENF为矩形时,求点N的坐标;②在①的条件下,第四象限内有一点Q,满足QN=QM,当△QNB的周长最小时,求点Q的坐标.19.(2022•射阳县一模)新冠疫情爆发后,某超市发现使用湿巾纸量变大,其中A种湿巾纸售价为每包18元;B种湿巾纸售价为每包12元.该超市决定购进一批这两种湿巾纸,经市场调查得知,购进2包A种湿巾纸与购进3包B种湿巾纸的费用相同,购进10包A 种湿巾纸和购进6包B种湿巾纸共需168元.(1)求A、B两种湿巾纸的进价.(2)该超市平均每天可售出40包A种湿巾纸,后来经过市场调查发现,A种湿巾纸单价每降低1元,则平均每天的销量可增加8包.为了尽量让顾客得到更多的优惠,该超市将A种湿巾纸调整售价后,当天销售A种湿巾纸获利224元,那么A种湿巾纸的单价降了多少元?(3)该超市准备购进A、B两种湿巾纸共600包,其中B种湿巾纸的数量不少于A种湿巾纸数量的两倍.请为该超市设计获利最大的进货方案,并求出最大利润.20.(2022•射阳县一模)在平面直角坐标系xOy中,已知抛物线y=﹣x2+2mx﹣m2+1与y 轴的交点为A,过点A作直线l垂直于y轴.(1)当m=1时,求抛物线的顶点坐标;(2)若点(m﹣3,y1),(m,y2),(m+1,y3)都在抛物线y=﹣x2+2mx﹣m2+1上,则y1,y2,y3的大小关系为;(3)将抛物线在y轴左侧的部分沿直线l翻折,其余部分保持不变,组成图形G.点M (x1,y1),N(x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m+3,x2=m﹣3,都有y1<y2,求m的取值范围.21.(2022•建湖县二模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A、B两点,直线y=x+4恰好经过B、C两点.(1)求二次函数的表达式;(2)点D为第三象限抛物线上一点,连接BD,过点O作OE⊥BD,垂足为E,若OE =2BE,求点D的坐标;(3)设F是抛物线上的一个动点,连结AC、AF,若∠BAF=2∠ACB,求点F的坐标.22.(2022•盐城一模)已知抛物线y=x2﹣x﹣6与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)①点B的坐标为;直线AC的解析式为;②如图1,若点D是直线AC下方抛物线上的一个动点(点D不与点A、C重合),求△DAC面积的最大值;(2)如图2,若点M是线段AC上一动点(不与A、C重合),点N是线段AB上一点,设AN=t,当t在何范围取值时,点M总存在两个不同的位置使∠BMN=∠BAM;(3)如图3,点G是x轴上方的抛物线上一点,若∠AGB+2∠BAG=90°,请直接写出点G的横坐标为.23.(2022•建湖县一模)在平面直角坐标系中,二次函数y=x2+bx+c的图象过点C(0,﹣4)和点D(2,﹣6),与x轴交于点A、B(点A在点B的左边),且点D与点G关于坐标原点对称.(1)求该二次函数解析式,并判断点G是否在此函数的图象上,并说明理由;(2)若点P为此抛物线上一点,它关于x轴,y轴的对称点分别为M,N,问是否存在这样的P点使得M,N恰好都在直线DG上?如存在,求出点P的坐标,如不存在,请说明理由;(3)若第四象限有一动点E,满足BE=OB,过E作EF⊥x轴于点F,设F坐标为(t,0),0<t<4,△BEF的内心为I,连接CI,直接写出CI的最小值.24.(2021•盐都区三模)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.25.(2021•盐都区校级模拟)已知:平面直角坐标系内一直线l1:y=﹣x+3分别与x轴、y 轴交于B、C两点,抛物线y=﹣x2+bx+c经过A、B两点,抛物线在x轴上方部分上有一动点D,连结AC;(1)求抛物线解析式;(2)当D在第一象限,求D到l1的最大距离;(3)是否存在D点某一位置,使∠DBC=∠ACO?若存在,求D点坐标;若不存在,请说明理由.2023年江苏省盐城市中考数学专题练——4二次函数参考答案与试题解析一.选择题(共6小题)1.(2022•东台市模拟)已知抛物线y =ax 2+bx +c 上的部分点的横坐标x 与纵坐标y 的对应值如表:x … ﹣1 0 1 2 3 … y…3﹣1m3…以下结论:①抛物线y =ax 2+bx +c 的开口向下;②当x <3时,y 随x 增大而增大;③方程ax 2+bx +c =0的根为0和2;④当y >0时,x 的取值范围是0<x <2,正确的个数有( ) A .1个B .2个C .3个D .4个【解答】解:将(﹣1,3),(0,0),(1,﹣1)代入y =ax 2+bx +c 得: {3=a −b +c 0=c −1=a +b +c, 解得{a =1b =−2c =0,∴y =x 2﹣2x . ①∵a =1, ∴抛物线开口向上, 故①错误,不符合题意.②∵图象对称轴为直线x =1,且开口向上, ∴x >1时,y 随x 增大而增大, 故②错误,不符合题意. ③∵y =x 2﹣2x =x (x ﹣2), ∴当x =0或x =2时y =0, 故③正确,符合题意.④∵抛物线开口向上,与x 轴交点坐标为(0,0),(2,0), ∴x <0或x >2时,y >0, 故④错误,不符合题意. 故选:A .2.(2022•建湖县一模)如图,游乐园里的原子滑车是很多人喜欢的项目,惊险刺激,原子滑车在轨道上运行的过程中有一段路线可以看作是抛物线的一部分,原子滑车运行的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系y =ax 2+bx +c (a ≠0).如图记录了原子滑车在该路段运行的x 与y 的三组数据A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),根据上述函数模型和数据,可推断出,此原子滑车运行到最低点时,所对应的水平距离x 满足( )A .x <x 1B .x 1<x <x 2C .x =x 2D .x 2<x <x 3【解答】解:解法一:根据题意知,抛物线y =ax 2+bx +c (a ≠0)经过点A (0,2)、B (2,1)、C (4,4), 则{c =24a +2b +c =116a +4b +c =4, 解得:{ a =12b =−32c =2,所以x =−b 2a =−−322×12=32.∴此原子滑车运行到最低点时,所对应的水平距离x 满足x 1<x <x 2.解法二:从图象上看,抛物线开口向上,有最低点,x 的值越离对称轴越近,函数y 的值就越小,若对称轴是直线x =x 2时,A 、C 两点应该要一样高(即y 值相等),但是很明显A 点比C 点低,说明A 点离对称轴更近,所以对称轴在A 、B 之间,即x 1<x <x 2. 故选:B .3.(2021•射阳县二模)已知抛物线y =ax 2+bx +3(a <0)过A (2,y 1),B (﹣1,y 2),C (3,y 2),D (−√5,y 3)四点,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 3>y 2>y 1【解答】解:抛物线y =ax 2+bx +3(a <0)过A (2,y 1),B (﹣1,y 2),C (3,y 2),D (−√5,y 3)四点,∴抛物线开口向下,对称轴为x =−1+32=1. ∵D (−√5,y 3)离对称轴最远,A (2,y 1)离对称轴最近, ∴y 1>y 2>y 3,故选:A.4.(2021•建湖县二模)如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=14x2﹣x+9:②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<5.5时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:①由图象顶点(2,9)可得y=a(x﹣2)2+9,将(8,0)代入y=a(x﹣2)2+9得0=36a+9,解得a=−1 4,∴y=−14(x﹣2)2+9=y=−14x2+x+8,故①错误.②∵5.5﹣2>2﹣(﹣1),点A距离对称轴距离大于点B距离对称轴距离,∴m<n,故②正确.③∵图象对称轴为直线x=2,且抛物线与x轴一个交点为(8,0),∴图象与x轴的另一交点横坐标为2×2﹣8=﹣4,故③正确.④由图象可得当x=0时y=8,x=5.5时y=m,x=2时y=9,∴0<x<5.5时,m<y≤9.故④错误.故选:C.5.(2021•射阳县三模)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.18°B.36°C.41°D.58°【解答】解:由题意可知函数图象为开口向上的抛物线,由图表数据描点连线,补全图可得如图,∴抛物线对称轴在36和54之间,约为41°,∴旋钮的旋转角度x在36°和54°之间,约为41°时,燃气灶烧开一壶水最节省燃气.故选:C.6.(2021•盐都区二模)下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x1 1.2 1.3 1.4y﹣10.040.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1B.1.1C.1.2D.1.3【解答】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选:C.二.填空题(共5小题)7.(2022•东台市模拟)如图,抛物线y=﹣x2+4x+1与y轴交于点P,其顶点是A,点P'的坐标是(3,﹣2),将该抛物线沿PP'方向平移,使点P平移到点P',则平移过程中该抛物线上P、A两点间的部分所扫过的面积是18.【解答】解:令x =0,则y =1, 所以,点P 的坐标为(0,1), ∵y =﹣x 2+4x +1=﹣(x ﹣2)2+5, ∴顶点A (2,5),设直线AP ′的解析式为y =kx +b , 则{2k +b =53k +b =−2, 解得{k =−7b =19,所以,直线AP ′的解析式为y =﹣7x +19, 当y =1时,﹣7x +19=1, 解得x =187, ∴点M 的坐标为(187,1),PM =187, S △AP ′P =S △PP ′M +S △APM =12×187×(5+2)=9, 根据平移的性质,P A 扫过的面积是以P A 、PP ′为邻边的平行四边形, 所扫过的面积=2S △AP ′P =2×9=18. 故答案为:18.8.(2022•盐城一模)加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式y =﹣0.3x 2+1.5x ﹣1,则最佳加工时间为 2.5min.【解答】解:根据题意:y=﹣0.3x2+1.5x﹣1=﹣0.3(x﹣2.5)2+5.25,∵﹣0.3<0,∴当x=2.5时,y最大,∴最佳加工时间为2.5min,故答案为:2.5.9.(2022•亭湖区校级三模)二次函数y=x2﹣1的图象与y轴的交点坐标是(0,﹣1).【解答】解:∵二次函数y=x2﹣1,∴当x=0时,y=﹣1,即二次函数y=x2﹣1的图象与y轴的交点坐标是(0,﹣1),故答案为:(0,﹣1).10.(2022•滨海县模拟)已知y是x的二次函数,如表给出了y与x的几对对应值:x…﹣2﹣101234…y…11a323611…由此判断,表中a=6.【解答】解:由上表可知函数图象经过点(0,3)和点(2,3),∴对称轴为x=0+22=1,∴x=﹣1时的函数值等于x=3时的函数值,∵当x=3时,y=6,∴当x=﹣1时,a=6.故答案为:6.11.(2021•东台市模拟)如图,抛物线y=14x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连接OQ.则线段OQ的最大值是 3.5.【解答】解:令y=14x2﹣4=0,则x=±4,故点B (4,0),设圆的半径为r ,则r =2,连接PB ,而点Q 、O 分别为AP 、AB 的中点,故OQ 是△ABP 的中位线, 当B 、C 、P 三点共线,且点C 在PB 之间时,PB 最大,此时OQ 最大, 则OQ =12BP =12(BC +r )=12(√42+32+2)=3.5,故答案为3.5. 三.解答题(共14小题)12.(2022•亭湖区校级三模)已知抛物线y =(k ﹣1)x 2﹣2kx +3k ,其中k 为实数. (1)若抛物线经过点(1,3),求k 的值;(2)若抛物线经过点(1,a ),(3,b ),试说明ab >﹣3;(3)当2≤x ≤4时:二次函数的函数值y ≥0恒成立,求k 的取值范围. 【解答】解:(1)将点(1,3)代入y =(k ﹣1)x 2﹣2kx +3k 中, 得:3=k ﹣1﹣2k +3k , 解得:k =2;(2)∵抛物线经过点(1,a ),(3,b ),∴a =k ﹣1﹣2k +3k =2k ﹣1,b =9k ﹣9﹣6k +3k =6k ﹣9, ∴ab =(2k ﹣1)(6k ﹣9)=12k 2﹣24k +9=12(k ﹣1)2﹣3, ∵12(k ﹣1)2≥0, ∴12(k ﹣1)2﹣3≥﹣3,∵二次函数二次项系数不为0,即k ﹣1≠1,即k ≠1, ∴12(k ﹣1)2﹣3>﹣3, 即ab >﹣3;(3)二次函数为y =(k ﹣1)x 2﹣2kx +3k ,对称轴x =2k2(k−1),当x =2时,y =3k ﹣4, 当x =4时,y =11k ﹣16,①若k ﹣1<0,当2≤x ≤4时,二次函数y =(k ﹣1)x 2﹣2kx +3k 的函数值y ≥0恒成立,只需{3k −4≥011k −16≥0,此时无解;②若k ﹣1>0,当2≤x ≤4时,二次函数y =(k ﹣1)x 2﹣2kx +3k 的函数值y ≥0恒成立,分以下三种情况:(一)对称轴x =2k2(k−1)在直线x =2或其左侧时,即2k 2(k−1)≤2,只需3k ﹣4≥0,解得k ≥2,(二)当2<2k2(k−1)≤4时,只需顶点纵坐标为正,即4(k−1)⋅3k−4k 24(k−1)≥0,解得32≤k <2,(三)当2k2(k−1)>4时,只需11k ﹣16≥0,此时无解,综上所述,当2≤x ≤4时,二次函数y =(k ﹣1)x 2﹣2kx +3k 的函数值y ≥0恒成立,k 的取值范围为k ≥32.13.(2022•亭湖区校级三模)阅读感悟:“数形结合”是一种重要的数学思想方法,同一个问题有“数”、“形”两方面的特性,解决数学问题,有的从“数”入手简单,有的从“形”入手简单,因此,可能“数”→“形”或“形”→“数”,有的问题需要经过几次转化.这对于初、高中数学的解题都很有效,应用广泛. 解决问题:已知,点M 为二次函数y =﹣x 2+2bx ﹣b 2+4b +1图象的顶点,直线y =mx +5分别交x 轴正半轴和y 轴于点A ,B .(1)判断顶点M 是否在直线y =4x +1上,并说明理由;(2)如图1,若二次函数图象也经过点A ,B ,且mx +5>﹣x 2+2bx ﹣b 2+4b +1,结合图象,求x 的取值范围;(3)如图2,点A 坐标为(5,0),点M 在△AOB 内,若点C (14,y 1),D (34,y 2)都在二次函数图象上,试比较y 1与y 2的大小.【解答】解:(1)点M 在直线y =4x +1上,理由如下: ∵y =﹣x 2+2bx ﹣b 2+4b +1=﹣(x ﹣b )2+4b +1, ∴顶点M 的坐标是(b ,4b +1), 把x =b 代入y =4x +1,得y =4b +1, ∴点M 在直线y =4x +1上;(2)如图1,直线y =mx +5交y 轴于点B , ∴B 点坐标为(0,5), 又∵B 在抛物线上,∴5=﹣(0﹣b )2+4b +1=5, 解得b =2,∴二次函数的解析是为y =﹣(x ﹣2)2+9, 当y =0时,﹣(x ﹣2)2+9=0, 解得x 1=5,x 2=﹣1, ∴A (5,0),由图象,得当mx +5>﹣x 2+2bx ﹣b 2+4b +1时,x 的取值范围是x <0或x >5; (3)如图2,∵直线y =4x +1与直线AB 交于点E ,与y 轴交于F , 设直线AB 的函数关系式为:y =px +q , 将A (5,0),B (0,5)代入得{5p +q =0q =5,解得{p =−1q =5,∴直线AB 的解析式为y =﹣x +5, 联立EF ,AB 得方程组{y =4x +1y =−x +5,解得{x =45y =215,∴点E (45,215),而F 点坐标为(0,1),∵点M (b ,4b +1)在△AOB 内, ∴1<4b +1<215, ∴0<b <45,当点C ,D 关于抛物线的对称轴对称时,b −14=34−b , ∴b =12,且二次函数图象开口向下,顶点M 在直线y =4x +1上,综上:①当0<b <12时,y 1>y 2;②当b =12时,y 1=y 2;③当12<b <45时,y 1<y 2.14.(2022•滨海县模拟)如图1,直线l :y =kx +b (k <0,b >0)与x 、y 轴分别相交于A 、B 两点,将△AOB 绕点O 逆时针旋转90°得到△COD ,过点A 、B 、D 的抛物线W 叫做直线l 的关联抛物线,而直线l 叫做抛物线W 的关联直线.(1)已知直线l1:y=﹣3x+3,求直线l1的关联抛物线W1的表达式;(2)若抛物线W2:y=−x2−x+2,求它的关联直线l2的表达式;(3)如图2,若直线l3:y=kx+4(k<0),G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=√102,求直线l3的关联抛物线W3的表达式;(4)在(3)的条件下,将直线CD绕着C点旋转得到新的直线l4:y=mx+n,若点P(x1,y1)与点Q(x2,y2)分别是抛物线W3与直线l4上的点,当0≤x≤2时,|y1﹣y2|≤4,请直接写出m的取值范围.【解答】解:(1)11:y=﹣3x+3,∵当x=0时,y=3,∴B(0,3);当y=0时,即﹣3x+3=0,解得x=1,∴A(1,0),由旋转的性质可知,OD=OB=3,∴D(﹣3,0).设W1的解析式为y=ax2+bx+c,则{a+b+c=0c=39a−3b+c=0,解得:{a=−1 b=−2 c=3,∴W1:y=﹣x2﹣2x+3;(2)W2:y=﹣x2﹣x+2,令y=0,即﹣x2﹣x+2=0,解得x1=﹣2,x2=1,∴D(﹣2,0),A(1,0),有旋转的性质可知,OB=OD=2.∴B (0,2),设l 2的解析式为y =k 2x +b 2, 则{k 2+b 2=0b 2=2, 解得{k 2=−2b 2=2,∴l 2:y =﹣2x +2;(3)连接OG 、OH ,有旋转的性质可知OG =OH ,∠GOH =90°, ∴△GOH 是等腰直角三角形, 又∵MG =MH , ∴MG =OM =√102,在Rt △OGM 中,OG =√OM 2+MG 2=√5, 在Rt △AOB 中,AG =BG , ∴AB =2OG =2√5,13:y =kx +4,当x =0时,y =4, ∴点B (0,4),即OB =4. 由旋转的性质可知,OD =OB =4, ∴点D (﹣4,0).在Rt △AOB 中,OA =√AB 2−OB 2=2, ∴A (2,0),设W 3的解析式为y =a 3x 2+b 3x +c 3, 则{4a 3+2b 3+c 3=0c 3=016a 3−4b 3+c 3=0, 解得{a 3=−12b 3=−1c 3=4,∴W 3:y =−12x 2﹣x +4;(4)由旋转的性质可知,OC =OA =2.∴C (0,2),∵l 4:y =mx +n 经过点C (0,2),∴n =2,即l 4:y =mx +2.根据题意可知,当0≤x ≤2时,|y 1﹣y 2|≤4,分析W 3与l 4的位置关系可知,只需当x =2时,|y 1﹣y 2|≤4即可,∴|(−12×22﹣2+4)﹣(2m +2)|≤4,即|2m +2|≤4,∴﹣4≤2m +2≤4,解得:﹣3≤m ≤1.∴m 的取值范围是:﹣3≤m ≤1.15.(2022•盐城一模)如图,抛物线y =﹣x 2+bx +c 经过点A (3,0)和B (0,3),与x 轴负半轴交于点C ,点D 是抛物线上的动点.(1)求抛物线的解析式;(2)过点D 作DE ⊥AB 于点E ,连接BF ,当点D 在第一象限且S △BEF =2S △AEF 时,求点D 的坐标.【解答】解:(1)将点A (3,0)和B (0,3)代入y =﹣x 2+bx +c ,∴{c =3−9+3b +c =0, 解得{b =2c =3, ∴y =﹣x 2+2x +3;(2)∵A (3,0)和B (0,3),∴OA =OB =3,∴∠BAO =45°,∵DF ⊥AB ,∴EF =AE ,∵AB =3√2,S △BEF =2S △AEF ,∴AE =√2,∴F (1,0),∴E (2,1),∴设直线DF 的解析式为y =k 'x +b ',∴{2k ′+b ′=1k′+b′=0, 解得{k ′=1b′=−1, ∴y =x ﹣1,联立方程组{y =x −1y =−x 2+2x +3, 解得x =1+√172或x =1−√172, ∵点D 在第一象限,∴x =1+√172, ∴D (1+√172,−1+√172).16.(2022•亭湖区校级一模)已知抛物线y =ax 2﹣(3a ﹣1)x ﹣2(a 为常数且a ≠0)与y 轴交于点A .(1)点A 的坐标为 (0,﹣2) ;对称轴为 x =3a−12a(用含a 的代数式表示); (2)无论a 取何值,抛物线都过定点B (与点A 不重合),则点B 的坐标为 (3,1) ;(3)若a <0,且自变量x 满足﹣1≤x ≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A 与点B 之间的函数图象记作图象M (包含点A 、B ),若将M 在直线y =﹣2下方的部分保持不变,上方的部分沿直线y =﹣2进行翻折,可以得到新的函数图象M 1,若图象M 1上仅存在两个点到直线y =﹣6的距离为2,求a 的值.【解答】解:(1)令x =0,则y =﹣2,∴A (0,﹣2);抛物线y =ax 2﹣(3a ﹣1)x ﹣2的对称轴为直线x =−−(3a−1)2a =3a−12a , 故答案为:(0,﹣2);x =3a−12a ;(2)∵抛物线y =ax 2﹣(3a ﹣1)x ﹣2=ax 2﹣3ax +x ﹣2=(x 2﹣3x )a +x ﹣2,又无论a 取何值,抛物线都过定点B (与点A 不重合),∴x 2﹣3x =0,∴x =3,∵当x =3时,y =x ﹣2=1,故答案为:(3,1);(3)∵a <0,∴抛物线y =ax 2﹣(3a ﹣1)x ﹣2开口方向向下.由(1)知:抛物线y =ax 2﹣(3a ﹣1)x ﹣2的对称轴为直线x =3a−12a , ①若3a−12a ≤−1,则a ≥15,与a <0矛盾,不合题意;②若﹣1<3a−12a <3,则a <−13,此时,抛物线的顶点为图象最高点,即当x =3a−12a 时,函数y 的值为2,∴a ×(3a−12a )2−(3a ﹣1)×3a−12a −2=0,解得:a =﹣1或a =−19(不合题意,舍去).∴a =﹣1;③若3a−12a ≥3,则−13≤a <0,此时,点(3,2)是满足﹣1≤x ≤3时,图象的最高点,∵9a ﹣3(3a ﹣1)﹣2=1≠2,∴此种情况不存在,综上,满足条件的抛物线的表达式为y =﹣x 2+4x ﹣2;(4)∵B (3,1),∴将点B 沿直线y =﹣2进行翻折后得到的对称点的坐标为B ′(3,﹣5), ∴点B ′到直线y =﹣6的距离为1.①当a >0时,∵图象M 1上仅存在两个点到直线y =﹣6的距离为2,∴此时,抛物线的顶点的纵坐标为﹣4,∴4a×(−2)−[−(3a−1)]24a =−4,解得:a =7±2√109,∴a =7+2√109或7−2√109;②当a <0时,∵点B ′到直线y =﹣6的距离为1,∴图象M 1上仅存在一个点到直线y =﹣6的距离为2,综上,若图象M 1上仅存在两个点到直线y =﹣6的距离为2,a 的值为7+2√109或7−2√109. 17.(2022•盐城二模)若二次函数y =ax 2+bx +a +2的图象经过点A (1,0),其中a 、b 为常数.(1)用含有字母a 的代数式表示抛物线顶点的横坐标;(2)点B (−12,1)、C (2,1)为坐标平面内的两点,连接B 、C 两点.①若抛物线的顶点在线段BC 上,求a 的值;②若抛物线与线段BC 有且只有一个公共点,求a 的取值范围.【解答】解:(1)∵y =ax 2+bx +a +2的图象经过点A (1,0),即当x =1时,y =a +b +a +2=0,∴b =﹣2﹣2a ,∴y =ax 2﹣(2a +2)x +a +2,∴对称轴x =−−(2a+2)2a =a+1a =1+1a, ∴抛物线顶点的横坐标为1+1a ;(2)①抛物线的顶点在线段BC 上,且点B (−12,1)、C (2,1),∴顶点纵坐标为1,且−12≤1+1a ≤2,当x =1+1a 时,y =1,即a (1+1a )2﹣(2a +2)(1+1a )+a +2=1,整理得:−1a =1,解得:a =﹣1,检验,当a =﹣1时,a ≠0,∴a =﹣1;②∵对称轴x =1+1a ,当a >0时,对称轴x =1+1a 在点A (1,0)的右侧,即xx =1+1a >1,∵抛物线与线段BC有且只有一个公共点,点B(−12,1)、C(2,1),∴当x=2时,y<1,即4a﹣2(2a+2)+a+2<1,解得:a<3,当x=−12时,y>1,即14a+12(2a+2)+a+2≥1,解得:a≥−8 9,∴0<a<3,当a<0,且a≠﹣1时,对称轴x=1+1a在点A(1,0)的左侧,即x=1+1a<1,抛物线开口向下,且过点A(1,0),当x=−12时,y>1,即14a+12(2a+2)+a+2>1,解得:a>−8 9,∵a<0,∴−89<a<0;由①知,当a=﹣1时,抛物线顶点恰好在线段BC上,∴当a=﹣1时,抛物线与线段BC有且只有一个公共点,综上所述,抛物线与线段BC有且只有一个公共点时,a的取值范围是0<a<3或−89<a<0或a=﹣1.18.(2022•滨海县一模)如图1,在平面直角坐标系中,抛物线y=−12x2+bx+c与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,连接BC,直线BM:y=2x+m 交y轴于点M.P为直线BC上方抛物线上一动点,过点P作x轴的垂线,分别交直线BC、BM于点E、F.(1)求抛物线的表达式:(2)当点P 落在抛物线的对称轴上时,求△PBC 的面积:(3)①若点N 为y 轴上一动点,当四边形BENF 为矩形时,求点N 的坐标;②在①的条件下,第四象限内有一点Q ,满足QN =QM ,当△QNB 的周长最小时,求点Q 的坐标.【解答】解:(1)∵抛物线y =−12x 2+bx +c 与x 轴交于点A (﹣1,0)、B (4,0)两点,∴抛物线的表达式为:y =−12(x +1)(x ﹣4),即y =−12x 2+32x +2;(2)如图:∵点P 落在抛物线y =−12x 2+32x +2的对称轴上,∴P 为抛物线y =−12x 2+32x +2的顶点,∵y =−12x 2+32x +2=−12(x −32)2+258,∴P (32,258), 在y =−12x 2+32x +2中,令x =0得y =2,∴C (0,2)由B (4,0),C (0,2)得直线BC 的表达式为y =−12x +2,把x =32代入y =−12x +2得y =54,∴E (32,54), ∴PE =258−54=158,∴S △PBC =12PE •|x B ﹣x C |=12×158×4=154,答:△PBC 的面积是154;(3)①过点N 作NG ⊥EF 于点G ,如图:∵y=2x+m过点B(4,0),∴0=2×4+m,解得m=﹣8,∴直线BM的表达式为:y=2x﹣8,∴M(0,﹣8),设E(a,−12a+2),则F(a,2a﹣8),∵四边形BENF为矩形,∴∠NEG=∠BFH,NE=BF,又∠NGE=90°=∠BHF,∴△NEG≌△BFH(AAS),∴NG=BH,EG=FH,而NG=a,BH=OB﹣OH=4﹣a,∴a=4﹣a,解得a=2,∴F(2,﹣4),E(2,1),∴EH=1,∵EG=FH,∴EF﹣EG=EF﹣FH,即GF=EH=1,∵F(2,﹣4),∴G(2,﹣3),∴N(0,﹣3);②取MN的中点D,如图:∵QN =QM ,∴点Q 在MN 的垂直平分线上,又∵B (4,0),N (0,﹣3),∴BN =5,∴C △QNB =BQ +NQ +BN =BQ +NQ +5=BQ +MQ +5,∴要使C △QNB 最小,只需BQ +MQ 最小,∴当点B 、Q 、M 共线时,△QNB 的周长最小,此时,点Q 即为MN 的垂直平分线与直线BM 的交点,∵N (0,﹣3),M (0,﹣8),∴D (0,−112),在y =2x ﹣8中,令y =−112得: −112=2x ﹣8, 解得x =54,∴Q (54,−112). 19.(2022•射阳县一模)新冠疫情爆发后,某超市发现使用湿巾纸量变大,其中A 种湿巾纸售价为每包18元;B 种湿巾纸售价为每包12元.该超市决定购进一批这两种湿巾纸,经市场调查得知,购进2包A 种湿巾纸与购进3包B 种湿巾纸的费用相同,购进10包A 种湿巾纸和购进6包B 种湿巾纸共需168元.(1)求A 、B 两种湿巾纸的进价.(2)该超市平均每天可售出40包A 种湿巾纸,后来经过市场调查发现,A 种湿巾纸单价每降低1元,则平均每天的销量可增加8包.为了尽量让顾客得到更多的优惠,该超市将A 种湿巾纸调整售价后,当天销售A 种湿巾纸获利224元,那么A 种湿巾纸的单价降了多少元?(3)该超市准备购进A 、B 两种湿巾纸共600包,其中B 种湿巾纸的数量不少于A 种湿巾纸数量的两倍.请为该超市设计获利最大的进货方案,并求出最大利润.【解答】解:(1)设种湿巾纸的进价为x 元,B 种湿巾纸的进价为y 元,由题意得:{2x =3y 10x +6y =168, 解得{x =12y =8, 答:A 种湿巾纸的进价为12元,B 种湿巾纸的进价为8元.(2)设A 种湿巾纸的单价降了a 元,由题意得:(40+8a )(18﹣a ﹣12)=224,解得a =2或a =﹣1(不符题意,舍去).答:A 种湿巾纸的单价降了2元.(3)设购进种湿巾纸m 包,该超市获得利润为W 元,则购进B 种湿巾纸(600﹣m )包, 由题意得:W =(18﹣12)m +(12﹣8)(600﹣m )=2m +2400,∵B 种湿巾纸的数量不少于A 种湿巾纸数量的两倍,∴{0<m <600600−m ≥2m, 解得0<m ≤200,由一次函数的性质可知,当0<m ≤200时,w 随m 的增大而增大,则当m =200时,W 取得最大值,最大值为2×200+2400=2800,答:该超市获利最大的进货方案是购进A 种湿巾纸200包,购进B 种湿巾纸400包,最大利润为2800元.20.(2022•射阳县一模)在平面直角坐标系xOy 中,已知抛物线y =﹣x 2+2mx ﹣m 2+1与y 轴的交点为A ,过点A 作直线l 垂直于y 轴.(1)当m =1时,求抛物线的顶点坐标;(2)若点(m ﹣3,y 1),(m ,y 2),(m +1,y 3)都在抛物线y =﹣x 2+2mx ﹣m 2+1上,则y 1,y 2,y 3的大小关系为 y 2>y 3>y 1 ;(3)将抛物线在y 轴左侧的部分沿直线l 翻折,其余部分保持不变,组成图形G .点M (x 1,y 1),N (x 2,y 2)为图形G 上任意两点.①当m =0时,若x 1<x 2,判断y 1与y 2的大小关系,并说明理由;②若对于x 1=m +3,x 2=m ﹣3,都有y 1<y 2,求m 的取值范围.【解答】解:(1)当m =1时,抛物线的解析式为:y =﹣x 2+2x ﹣1+1=﹣x 2+2x =﹣(x ﹣1)2+1,∴抛物线的顶点坐标为(1,1);(2)∵抛物线y=﹣x2+2mx﹣m2+1的对称轴为x=−2m−2=m,a=﹣1<0,∴抛物线开口向下,x=m时函数取得最大值,∴离对称轴距离越远,函数值越小,∵m﹣3<m<m+1,且点(m﹣3,y1),(m,y2),(m+1,y3)都在抛物线y=﹣x2+2mx ﹣m2+1上,∴y2>y3>y1,故答案为:y2>y3>y1;(3)①y1>y2.理由:当m=0时,二次函数解析式是y=﹣x2+1,对称轴为y轴;所以图形G上的点的横纵坐标x和y,满足y随x的增大而减小;∵x1<x2,∴y1>y2;②∵x1=m+3时,y=﹣(m+3)2+2m(m+3)﹣m2+1=﹣8,,x2=m﹣3时,y=﹣(m﹣3)2+2m(m﹣3)﹣m2+1=﹣8,∴M(m﹣3,﹣8),N(m+3,﹣8)为抛物线上关于对称轴x=m对称的两点,下面讨论当m变化时,y轴与点M,N的相对位置:如图,当y轴在点M左侧时(含点M),经翻折后,得到点M,N的纵坐标相同,y1=y2,不符题意;如图,当y轴在点N右侧时(含点N),经翻折后,点M,N的纵坐标相同,y1=y2,不符题意;如图4,当y轴在点M,N之间时(不含M,N),经翻折后,点M在l下方,点N,P重合,在l上方,y1<y2,符合题意.此时有m﹣3<0<m+3,即﹣3<m<3.综上所述,m的取值范围为﹣3<m<3.21.(2022•建湖县二模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与y轴交于点C,与x轴交于A、B两点,直线y=x+4恰好经过B、C两点.。

2021届中考数学专题复习训练——二次函数 专题2.2函数动点图象问题

2021届中考数学专题复习训练——二次函数 专题2.2函数动点图象问题

函数图象解题思路起点:动点从何处出发,何时出发,何速度运动,运动方向是什么,形成的是何图形?起点有没有意义?点运动的路程(边长)中间点:分阶段运动,中间的位置是什么?终点:何时何地结束运动,停止时是否有先后?特殊点:运动过程中特殊的位置。

类型一、实际问题【经典例题1】已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A.B. C. D.【解析】 由题意和图象可得,乙到达B 地时甲距A 地120km ,开始时两人的距离为0; 甲的速度是:120÷(3−1)=60km/h ,乙的速度是:80÷3=380km/h ,即乙出发1小时后两人距离为380km ;设乙出发后被甲追上的时间为x h ,则60(x −1)=380x ,得x =1.8,即乙出发后被甲追上的时间为1.8h.所以符合题意的函数图象只有选项B.故选:B.练习1-1甲、乙两位同学进行长跑训练,甲和乙所跑的路程S (单位:米)与所用时间t (单位:秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是( )A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢练习1-2小明在书上看到了一个实验:如图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t 以及容器内水面的高度h ,并画出表示h 与t 的函数关系的大致图象,如下图所示.小明选择的物体可能是( )A.B.C.D.练习1-3如图,在一个盛水的圆柱形容器的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速将小球从水下向水面上拉动时,圆柱形容器内水面的高度与时间的函数图象大致是()类型二:几何动态①动点图形面积【经典例题2】如图,在等腰△ABC中,AB=AC=4cm,△B=30°,点P从点B 出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B. C. D.【解析】作AH ⊥BC 于H ,∵AB=AC=4cm ,∴BH=CH ,∵∠B=30°,∴AH=12AB=2,BH=3AH=23,∴BC=2BH=43,∵点P 运动的速度为3m/s ,Q 点运动的速度为1cm/s ,∴点P 从B 点运动到C 需4s ,Q 点运动到C 需8s ,当0△x △4时,作QD ⊥BC 于D ,如图1,BQ=x ,BP=3x ,在Rt △BDQ 中,DQ=21BQ=21x , ∴y=21⋅21x ⋅3x =43x 2,当4<x △8时,作QD ⊥BC 于D ,如图2,CQ=8−x ,BP=43在Rt △BDQ 中,DQ=21CQ=21(8−x ),∴y=21⋅21(8−x )⋅43=−3+83, 综上所述,⎪⎩⎪⎨⎧≤<+-≤≤=)84(383)40(432x x x x y ,,,.故选D.练习2-1四边形ABCD 为直角梯形,CD△AB ,CB△AB 且CD=BC=21AB ,若直线l △AB ,直线l 截这个梯形所得的位于此直线左方的图形面积为y ,点A 到直线L 的距离为x ,则y 与x 关系的大致图象为( )A.B. C. D.练习2-2如图,四边形ABCD 是矩形,AB=8,BC=4,动点P 以每秒2个单位的速度从点A 沿线段AB 向B 点运动,同时动点Q 以每秒3个单位的速度从点B 出发沿B −C −D 的方向运动,当点Q 到达点D 时P 、Q 同时停止运动,若记△PQA 的面积为y ,运动时间为x ,则下列图象中能大致表示y 与x 之间函数关系图象的是( )练习2-3如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A. B. C. D.练习2-4如图,四边形ABCD为正方形,若AB=4,E是AD边上一点(点E与点A、D不重合),BE的中垂线交AB于M,交DC于N,设AE=x,则图中阴影部分的面积S与x的大致图象是()A. B. C. D.练习2-5如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s 的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t (s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()练习2-6如图,在△ABCD中,AB=6,BC=10,AB△AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A.B.C.D.练习2-7如图,在平面直角坐标系x Oy中,A(2,0),B(0,2),点M在线段AB 上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为()A. B. C. D.练习2-8木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A. B. C. D.练习2-9数学课上,老师提出一个问题:如图△,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使△BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图△所示,题中用“……”表示的缺失的条件应补为( )A. 点C的横坐标B. 点C的纵坐标C. △ABC的周长D. △ABC的面积练习2-10如图,在平面直角坐标系x Oy中,以点A(2,3)为顶点作一直角∠PAQ,使其两边分别与x轴,y轴的正半轴交于点P,Q.连接PQ,过点A作AH⊥PQ 于点H.设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x函数关系的图象大致是().②动点图形边长【经典例题3】如图△,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图△所示,则AD边的长为( )A. 3B. 4C. 5D. 6【解析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,△AOP 面积最大为3. ∴21AB •21=3,即AB •BC=12. 当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为7,∴AB+BC=7.则BC=7-AB ,代入AB •BC=12,得AB 2-7AB+12=0,解得AB=4或3, 因为AB<AD ,即AB<BC ,所以AB=3,BC=4.故选:B .练习3-1如图1,动点P 从菱形ABCD 的顶点A 出发,沿以1cm/s 的速度运动到点D ,设点P 的运动时间为x (s ),△PAB 的面积为y(cm 2),表示y 与x 的函数关系的图象如图2所示,则a 的值为( ) A.25 B.5 C. 2 D.52练习3-2如如图△,菱形ABCD中,∠B=60°,动点P以每秒1个单位的速度自点A出发沿线段AB运动到点B,同时动点Q以每秒2个单位的速度自点B--运动到点D.图△是点P、Q运动时,△BPQ的面积S随时出发沿折线B C D间t变化关系图象,则a的值是()A.2B.2.5C.3D.练习3-3如如图1,四边形ABCD中,AB△CD,△B=90°,AC=AD.动点P从点B出发沿折线B﹣A﹣D﹣C方向以1单位/秒的速度运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,则AD等于()A.10B.C.8D.练习3-4如如图1,点P 从ABC △的顶点B 出发,沿B C A →→匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC △的面积是______.练习3-5如图1,在矩形ABCD 中,动点E 从A 出发,沿AB →BC 方向运动,当点E 到达点C 时停止运动,过点E 做FE ⊥AE ,交CD 于F 点,设点E 运动路程为x ,FC=y ,如图2所表示的是y 与x 的函数关系的大致图象,当点E 在BC 上运动时,FC 的最大长度是52,则矩形ABCD 的面积是() A.523 B. 5 C. 6 D. 425【经典例题4——圆】如图,在平面直角坐标系x Oy中,以(3,0)为圆心作△P,△P与x轴交于A. B,与y轴交于点C(0,2),Q为△P上不同于A. B的任意一点,连接QA、QB,过P点分别作PE△QA于E,PF△QB于F. 设点Q的横坐标为x,PE2+PF2=y.当Q 点在△P上顺时针从点A运动到点B的过程中,下列图象中能表示y与x的函数关系的部分图象是( )【解析】△P(3,0),C(0,2),△PC2=13.△AC是直径,△△Q=90°.又PE△QA于E,PF△QB于F,△四边形PEQF是矩形。

中考数学复习----《二次函数之函数变换》知识点总结与专项练习题(含答案解析)

中考数学复习----《二次函数之函数变换》知识点总结与专项练习题(含答案解析)

中考数学复习----《二次函数之函数变换》知识点总结与专项练习题(含答案解析)知识点总结1.二次函数的平移:①若函数进行左右平移,则在函数的自变量上进行加减。

左加右减。

②若函数进行上下平移,则在函数解析式整体后面进行加减。

上加下减。

2.一次函数的对称变换:①若二次函数关于x轴对称,则自变量不变,函数值变为相反数。

②若二次函数关于y轴对称,则函数值不变,自变量变成相反数。

③若二次函数关于原点对称,则自变量与函数值均变成相反数。

练习题1、(2022•通辽)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图像向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣1【分析】根据图像的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图像向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.2、(2022•玉林)小嘉说:将二次函数y=x2的图像平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度④沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个【分析】分别求出平移或翻折后的解析式,将点(2,0)代入可求解.【解答】解:①向右平移2个单位长度,则平移后的解析式为y =(x ﹣2)2,当x =2时,y =0,所以平移后的抛物线过点(2,0),故①符合题意;②向右平移1个单位长度,再向下平移1个单位长度,则平移后的解析式为y =(x ﹣1)2﹣1,当x =2时,y =0,所以平移后的抛物线过点(2,0),故②符合题意;③向下平移4个单位长度,则平移后的解析式为y =x 2﹣4,当x =2时,y =0,所以平移后的抛物线过点(2,0),故③符合题意;④沿x 轴翻折,再向上平移4个单位长度,则平移后的解析式为y =﹣x 2+4,当x =2时,y =0,所以平移后的抛物线过点(2,0),故④符合题意;故选:D .3、(2022•泸州)抛物线y =﹣21x 2+x +1经平移后,不可能得到的抛物线是( ) A .y =﹣21x 2+x B .y =﹣21x 2﹣4 C .y =﹣21x 2+2021x ﹣2022 D .y =﹣x 2+x +1【分析】根据抛物线的平移规律,可得答案.【解答】解:∵将抛物线y =﹣x 2+x +1经过平移后开口方向不变,开口大小也不变, ∴抛物线y =﹣x 2+x +1经过平移后不可能得到的抛物线是y =﹣x 2+x +1.故选:D .4、(2022•湖州)将抛物线y =x 2向上平移3个单位,所得抛物线的解析式是( )A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2D.y=(x﹣3)2【分析】根据二次函数变化规律:左加右减,上加下减,进而得出变化后解析式.【解答】解:∵抛物线y=x2向上平移3个单位,∴平移后的解析式为:y=x2+3.故选:A.5、(2022•牡丹江)抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线的顶点坐标是.【分析】利用平移规律可求得平移后的抛物线的解析式,可求得其顶点坐标.【解答】解:∵抛物线y=x2﹣2x+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度,得到抛物线y=(x﹣1﹣2)2+2+3,即y=(x﹣3)2+5,∴平移后的抛物线的顶点坐标为(3,5).故答案为:(3,5).6、(2022•黑龙江)把二次函数y=2x2的图像向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图像向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,故答案为:y=2(x+1)2﹣2.7、(2022•黔东南州)在平面直角坐标系中,将抛物线y=x2+2x﹣1先绕原点旋转180°,再向下平移5个单位,所得到的抛物线的顶点坐标是.【分析】先求出绕原点旋转180°的抛物线解析式,再求出向下平移5个单位长度的解析式,配成顶点式即可得答案.【解答】解:将抛物线y=x2+2x﹣1绕原点旋转180°后所得抛物线为:﹣y=(﹣x)2+2(﹣x)﹣1,即y=﹣x2+2x+1,再将抛物线y=﹣x2+2x+1向下平移5个单位得y=﹣x2+2x+1﹣5=﹣x2+2x﹣4=﹣(x﹣1)2﹣3,∴所得到的抛物线的顶点坐标是(1,﹣3),故答案为:(1,﹣3).8、(2022•荆州)规定:两个函数y1,y2的图像关于y轴对称,则称这两个函数互为“Y 函数”.例如:函数y1=2x+2与y2=﹣2x+2的图像关于y轴对称,则这两个函数互为“Y 函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图像与x轴只有一个交点,则其“Y函数”的解析式为.【分析】根据关于y轴对称的图形的对称点的坐标特点,分情况讨论求解.【解答】解:∵函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图像与x轴只有一个交点,∴函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的图像与x轴也只有一个交点,当k=0时,函数解析式为y=﹣2x﹣3,它的“Y函数”解析式为y=2x﹣3,它们的图像与x轴只有一个交点,当k≠0时,此函数是二次函数,∵它们的图像与x轴都只有一个交点,∴它们的顶点分别在x轴上,∴=0,解得:k=﹣1,∴原函数的解析式为y=﹣x2﹣4x﹣4=﹣(x+2)2,∴它的“Y函数”解析式为y=﹣(x﹣2)2=﹣x2+4x﹣4,综上,“Y函数”的解析式为y=2x﹣3或y=﹣x2+4x﹣4,故答案为:y=2x﹣3或y=﹣x2+4x﹣4.。

2021年江苏各市(苏州扬州泰州盐城无锡等)中考数学真题分项汇编18 二次函数含详解

2021年江苏各市(苏州扬州泰州盐城无锡等)中考数学真题分项汇编18 二次函数含详解

专题18二次函数一、二次函数1.(2021·江苏泰州市)在函数2(1)y x =-中,当x >1时,y 随x 的增大而 ___.(填“增大”或“减小”) 2.(2021·江苏徐州市)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( ) A .()221y x =-+B .()221y x =++C .()221y x =+-D .()221y x =--3.(2021·江苏盐城市)已知抛物线2(1)y a x h =-+经过点(0,3)-和(3,0). (1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.4.(2021·江苏常州市)已知二次函数2(1)y a x =-,当0x >时,y 随x 增大而增大,则实数a 的取值范围是( ) A .0a >B .1a >C .1a ≠D .1a <5.(2021·江苏无锡市)设1(,)P x y ,2(,)Q x y 分别是函数1C ,2C 图象上的点,当a x b ≤≤时,总有1211y y 恒成立,则称函数1C ,2C 在a x b ≤≤上是“逼近函数”,a x b ≤≤为“逼近区间”.则下列结论: ①函数5y x =-,32y x =+在12x ≤≤上是“逼近函数”; ①函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”; ①01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”; ①23x ≤≤是函数5y x =-,24y x x =-的“逼近区间”. 其中,正确的有( ) A .①①B .①①C .①①D .①①6.(2021·江苏苏州市)已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( ) A .5-或2B .5-C .2D .2-7.(2021·江苏南通市)平面直角坐标系xOy 中,已知点()2,39P m n -,且实数m ,n 满足240m n -+=,则点P 到原点O 的距离的最小值为___________.8.(2021·江苏扬州市)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.9.(2021·江苏泰州市)二次函数y =﹣x 2+(a ﹣1)x +a (a 为常数)图象的顶点在y 轴右侧. (1)写出该二次函数图象的顶点横坐标(用含a 的代数式表示);(2)该二次函数表达式可变形为y =﹣(x ﹣p )(x ﹣a )的形式,求p 的值;(3)若点A (m ,n )在该二次函数图象上,且n >0,过点(m +3,0)作y 轴的平行线,与二次函数图象的交点在x 轴下方,求a 的范围.10.(2021·江苏徐州市)如图,点,A B 在函数214y x =的图像上.已知,A B 的横坐标分别为-2、4,直线AB 与y 轴交于点C ,连接,OA OB . (1)求直线AB 的函数表达式; (2)求AOB ∆的面积; (3)若函数214y x =的图像上存在点P ,使得PAB ∆的面积等于AOB ∆的面积的一半,则这样的点P 共有___________个.11.(2021·江苏无锡市)如图,在平面直角坐标系中,O 为坐标原点,点C 为y 轴正半轴上的一个动点,过点C 的直线与二次函数2yx 的图象交于A 、B 两点,且3CBAC ,P 为CB 的中点,设点P 的坐标为(,)(0)P x y x >,写出y 关于x 的函数表达式为:________.12.(2021·江苏宿迁市)已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;①24b ac ->0;①40a b +=;①不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是( )A .1B .2C .3D .413.(2021·江苏无锡市)在平面直角坐标系中,O 为坐标原点,直线3y x =-+与x 轴交于点B ,与y 轴交于点C ,二次函数2y ax 2x c =++的图象过B 、C 两点,且与x 轴交于另一点A ,点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交BC 于点F ,交二次函数2y ax 2x c =++的图象于点E .(1)求二次函数的表达式;(2)当以C 、E 、F 为顶点的三角形与ABC 相似时,求线段EF 的长度; (3)已知点N 是y 轴上的点,若点N 、F 关于直线EC 对称,求点N 的坐标. 14.(2021·江苏南京市)已知二次函数2y ax bx c =++的图像经过()()2,1,2,3--两点. (1)求b 的值.(2)当1c >-时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m -<<时,结合函数的图像,直接写出a 的取值范围. 15.(2021·江苏扬州市)如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于点.()1,0A -、()3,0B ,与y 轴交于点C .(1)b =________,c =________; (2)若点D 在该二次函数的图像上,且2ABDABCSS=,求点D 的坐标;(3)若点P 是该二次函数图像上位于x 轴上方的一点,且APCAPBS S=,直接写出点P 的坐标.16.(2021·江苏连云港市)如图,抛物线()223(69)y mx m x m =++-+与x 轴交于点A 、B ,与y 轴交于点C ,已知(3,0)B .(1)求m 的值和直线BC 对应的函数表达式;(2)P 为抛物线上一点,若PBC ABC S S =△△,请直接写出点P 的坐标; (3)Q 为抛物线上一点,若45ACQ ∠=︒,求点Q 的坐标.17.(2021·江苏苏州市)如图,二次函数()21y x m x m =-++(m 是实数,且10m -<<)的图像与x 轴交于A 、B两点(点A 在点B 的左侧),其对称轴与x 轴交于点C ,已知点D 位于第一象限,且在对称轴上,OD BD ⊥,点E 在x 轴的正半轴上,OC EC =.连接ED 并延长交y 轴于点F ,连接AF .(1)求A 、B 、C 三点的坐标(用数字或含m 的式子表示); (2)已知点Q 在抛物线的对称轴上,当AFQ △的周长的最小值等于125,求m 的值.专题18二次函数一、二次函数1.(2021·江苏泰州市)在函数2(1)y x =-中,当x >1时,y 随x 的增大而 ___.(填“增大”或“减小”) 【答案】增大 【分析】根据其顶点式函数2(1)y x =-可知,抛物线开口向上,对称轴为1x = ,在对称轴右侧y 随x 的增大而增大,可得到答案. 【详解】由题意可知: 函数2(1)y x =-,开口向上,在对称轴右侧y 随x 的增大而增大,又①对称轴为1x =, ①当1x >时,y 随的增大而增大, 故答案为:增大. 【点睛】本题主要考查了二次函数的对称轴及增减性,掌握当二次函数开口向上时,在对称轴的右侧y 随x 的增大而增大,在对称轴的左侧y 随x 的增大而减小是解题的关键.2.(2021·江苏徐州市)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( ) A .()221y x =-+ B .()221y x =++C .()221y x =+-D .()221y x =--【答案】B 【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案. 【详解】 解:①2yx 的顶点坐标为(0,0)①将二次函数2yx 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),①所得抛物线对应的函数表达式为()221y x =++, 故选B 【点睛】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.3.(2021·江苏盐城市)已知抛物线2(1)y a x h =-+经过点(0,3)-和(3,0). (1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.【答案】(1)1a =,4h =-;(2)242y x x =-+ 【分析】(1)将点(0,3)-和(3,0),代入解析式求解即可; (2)将2(1)4y x =--,按题目要求平移即可. 【详解】(1)将点(0,3)-和(3,0)代入抛物线2(1)y a x h =-+得:22(01)3(31)0a h a h ⎧-+=-⎨-+=⎩解得:14a h =⎧⎨=-⎩ ①1a =,4h =-(2)原函数的表达式为:2(1)4y x =--,向上平移2个单位长度,再向右平移1个单位长度,得:∴平移后的新函数表达式为:22(11)42=42y x x x =---+-+即242y x x =-+ 【点睛】本题考查了待定系数法确定解析式,顶点式的函数平移,口诀:“左加右减,上加下减”,正确的计算和牢记口诀是解题的关键.4.(2021·江苏常州市)已知二次函数2(1)y a x =-,当0x >时,y 随x 增大而增大,则实数a 的取值范围是( ) A .0a > B .1a >C .1a ≠D .1a <【答案】B 【分析】根据二次函数的性质,可知二次函数的开口向上,进而即可求解. 【详解】①二次函数2(1)y a x =-的对称轴为y 轴,当0x >时,y 随x 增大而增大, ①二次函数2(1)y a x =-的图像开口向上, ①a -1>0,即:1a >, 故选B . 【点睛】本题主要考查二次函数的性质,掌握二次函数的开口方向与二次项系数的关系,是解题的关键. 5.(2021·江苏无锡市)设1(,)P x y ,2(,)Q x y 分别是函数1C ,2C 图象上的点,当a x b ≤≤时,总有1211y y 恒成立,则称函数1C ,2C 在a x b ≤≤上是“逼近函数”,a x b ≤≤为“逼近区间”.则下列结论: ①函数5y x =-,32y x =+在12x ≤≤上是“逼近函数”; ①函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”; ①01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”; ①23x ≤≤是函数5y x =-,24y x x =-的“逼近区间”. 其中,正确的有( ) A .①① B .①①C .①①D .①①【答案】A 【分析】分别求出12y y -的函数表达式,再在各个x 所在的范围内,求出12y y -的范围,逐一判断各个选项,即可求解. 【详解】解:①①15y x =-,232y x =+, ①1253227y y x x x ,当12x ≤≤时,12119y y ,①函数5y x =-,32y x =+在12x ≤≤上不是“逼近函数”;①①15y x =-,224y x x =-,①12225554x y y x x x x ,当34x ≤≤时,1211y y ,函数5y x =-,24y x x =-在34x ≤≤上是“逼近函数”;①①211y x =-,222y x x =-,①22122112x x x y y x x ,当01x ≤≤时,12314y y , ①01x ≤≤是函数21y x =-,22y x x =-的“逼近区间”;①①15y x =-,224y x x =-,①12225554x y y x x x x ,当23x ≤≤时,12514y y , ①23x ≤≤不是函数5y x =-,24y x x =-的“逼近区间”. 故选A 【点睛】本题主要考查一次函数与二次函数的性质,掌握一次函数与二次函数的增减性,是解题的关键.6.(2021·江苏苏州市)已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( ) A .5-或2 B .5- C .2 D .2-【答案】B 【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可. 【详解】解:函数22y x kx k =+-向右平移3个单位,得:22(3)(3)y x k x k =-+--; 再向上平移1个单位,得:22(3)(3)y x k x k =-+--+1, ①得到的抛物线正好经过坐标原点①220(03)(03)k k =-+--+1即20310k k +-= 解得:5k =-或2k =①抛物线22y x kx k =+-的对称轴在y 轴右侧 ①2kx =->0①k <0 ①5k =- 故选:B . 【点睛】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.7.(2021·江苏南通市)平面直角坐标系xOy 中,已知点()2,39P m n -,且实数m ,n 满足240m n -+=,则点P 到原点O 的距离的最小值为___________.【分析】由已知得到点P 的坐标为(m ,33m +),求得PO =可. 【详解】解:①240m n -+=,①24n m =+,则23933n m -=+, ①点P 的坐标为(m ,33m +),①PO=①100>,①210189m m++当1892010m=-=-时,有最小值,且最小值为9 10,①PO=.【点睛】本题考查了点的坐标,二次函数的图象和性质,熟练掌握二次函数的性质是解决本题的关键.8.(2021·江苏扬州市)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第①个图形中的黑色圆点的个数为:()1222+⨯=3,第①个图形中的黑色圆点的个数为:()1332+⨯=6,第①个图形中的黑色圆点的个数为:()1442+⨯=10,...第n个图形中的黑色圆点的个数为()12n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275, 故答案为:1275.【点睛】 此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.9.(2021·江苏泰州市)二次函数y =﹣x 2+(a ﹣1)x +a (a 为常数)图象的顶点在y 轴右侧.(1)写出该二次函数图象的顶点横坐标(用含a 的代数式表示);(2)该二次函数表达式可变形为y =﹣(x ﹣p )(x ﹣a )的形式,求p 的值;(3)若点A (m ,n )在该二次函数图象上,且n >0,过点(m +3,0)作y 轴的平行线,与二次函数图象的交点在x 轴下方,求a 的范围.【答案】(1)12a -;(2)p =-1;(3)1<a <2. 【分析】(1)根据顶点坐标公式即可得答案;(2)利用十字相乘法分解因式即可得答案;(3)利用(2)的结果可得抛物线与x 轴的交点坐标,根据顶点在y 轴右侧,过点(m +3,0)作y 轴的平行线,与二次函数图象的交点在x 轴下方可得关于a 的不等式,解不等式即可得答案.【详解】(1)①二次函数解析式y =﹣x 2+(a ﹣1)x +a ,①顶点横坐标为12(1)a --⨯-=12a -. (2)①y =﹣x 2+(a ﹣1)x +a =(1)()x x a -+-=﹣(x ﹣p )(x ﹣a ),①p =-1.(3)①y =﹣x 2+(a ﹣1)x +a =(1)()x x a -+-,①抛物线与x 轴的交点坐标为(-1,0),(a ,0),①-1<0,①该二次函数的图象开口向下,①图象的顶点在y 轴右侧, ①12a ->0, ①1a >,①点A (m ,n )在该二次函数图象上,且n >0,①-1<m <a ,①过点(m +3,0)作y 轴的平行线,与二次函数图象的交点在x 轴下方,①(1)a --<3,解得:2a <,①a 的范围为1<a <2.【点睛】本题考查二次函数、因式分解及解一元一次不等式,熟练掌握二次函数顶点坐标公式是解题关键.10.(2021·江苏徐州市)如图,点,A B 在函数214y x =的图像上.已知,A B 的横坐标分别为-2、4,直线AB 与y 轴交于点C ,连接,OA OB .(1)求直线AB 的函数表达式;(2)求AOB ∆的面积;(3)若函数214y x =的图像上存在点P ,使得PAB ∆的面积等于AOB ∆的面积的一半,则这样的点P 共有___________个.【答案】(1)直线AB 的解析式为:122y x =+;(2)6;(3)4 【分析】(1)将,A B 的横坐标分别代入214y x =求出生意人y 的值,得到A ,B 点坐标,再运用待定系数法求出直线AB 的解析式即可; (2)求出OC 的长,根据“AOB AOC BOC S S S ∆∆∆=+”求解即可;(3)分点P 在直线AB 的上方和下方两种情况根据分割法求解即可.【详解】解:(1)①A ,B 是抛物线214y x =上的两点, ①当2x =-时,21(2)14y =⨯-=;当4x =时,21444y =⨯= ①点A 的坐标为(-2,1),点B 的坐标为(4,4)设直线AB 的解析式为y kx b =+,把A ,B 点坐标代入得2144k b k b -+=⎧⎨+=⎩解得,122k b ⎧=⎪⎨⎪=⎩所以,直线AB 的解析式为:122y x =+; (2)对于直线AB :122y x =+ 当0x =时,2y =①2OC = ①AOB AOC BOC S S S ∆∆∆=+=11222422⨯⨯+⨯⨯=6 (3)设点P 的坐标为(x ,214x ) ①PAB ∆的面积等于AOB ∆的面积的一半,①PAB ∆的面积等于162⨯=3, ①当点P 在直线AB 的下方时,过点A 作AD ①x 轴,过点P 作PF ①x 轴,过点B 作BE ①x 轴,垂足分别为D ,F ,E ,连接P A ,PB ,如图,①PAB ADEB ADFP PFEB S S S S ∆=++四边形四边形四边形 ①2211111(14)(24)(2)(1)(4)(4)322424x x x x ⨯+⨯+=++++-+ 整理,得,2240x x --=解得,11x =21x =①在直线AB 的下方有两个点P ,使得PAB ∆的面积等于AOB ∆的面积的一半;①当点P 在直线AB 的上方时,过点A 作AD ①x 轴,过点P 作PF ①x 轴,过点B 作BE ①x 轴,垂足分别为D ,F ,E ,连接P A ,PB ,如图,①PADF PAB ADEB BEFP S S S S ∆=++四边形四边形四边形①2211111(1)(2)(14)(24)(4)(4)324224x x x x ++=⨯+⨯+++-+ 整理,得,22120x x --=解得,11x =21x =①在直线AB 的上方有两个点P ,使得PAB ∆的面积等于AOB ∆的面积的一半; 综上,函数214y x =的图像上存在点P ,使得PAB ∆的面积等于AOB ∆的面积的一半,则这样的点P 共有4个, 故答案为:4.【点睛】此题主要考查了运用待定系数法示直线解析式,二次函数与图形面积,注意在解决(3)问时要注意分类讨论. 11.(2021·江苏无锡市)如图,在平面直角坐标系中,O 为坐标原点,点C 为y 轴正半轴上的一个动点,过点C 的直线与二次函数2y x 的图象交于A 、B 两点,且3CB AC ,P 为CB 的中点,设点P 的坐标为(,)(0)P x y x >,写出y 关于x 的函数表达式为:________.【答案】283y x = 【分析】过点A 作AN ①y 轴,过点B 作BM 垂直y 轴,则BM ①AN ,13AN AC BM CB ==,设A (-a ,a 2),则B (3a ,9a 2),求出C (0,3a 2),从而得P (32a ,26a ),进而即可得到答案. 【详解】解:过点A 作AN ①y 轴,过点B 作BM 垂直y 轴,则BM ①AN ,①CBM CAN ∽,①3CB AC , ①13AN AC BM CB ==, 设A (-a ,a 2),则B (3a ,9a 2),设直线AB 的解析式为:y =kx +b ,则2293a ka b a ka b ⎧=-+⎨=+⎩,解得:223k a b a =⎧⎨=⎩, ①直线AB 的解析式为:y =2ax +3a 2,①C (0,3a 2),①P 为CB 的中点,①P (32a ,26a ), ①2326x a y a⎧=⎪⎨⎪=⎩,即:283y x =, 故答案是:283y x =.【点睛】本特纳主要考查二次函数与一次函数的综合,相似三角形的判定和性质,掌握函数图像上点的坐标特征,是解题的关键.12.(2021·江苏宿迁市)已知二次函数2y ax bx c =++的图像如图所示,有下列结论:①0a >;①24b ac ->0;①40a b +=;①不等式21ax b x c +-+()<0的解集为1≤x <3,正确的结论个数是( )A .1B .2C .3D .4【答案】A【分析】 根据抛物线的开口方向、于x 轴的交点情况、对称轴的知识可判①①①的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定①.【详解】解:①抛物线的开口向上,①a >0,故①正确;①抛物线与x 轴没有交点①24b ac -<0,故①错误①抛物线的对称轴为x =1 ①12b a-= ,即b =-2a ①4a +b =2a ≠0,故①错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则21933b a a b c a b c =-⎧⎪++=⎨⎪++=⎩ ,解得12132a b c ⎧=⎪⎪=-⎨⎪⎪=⎩①()21ax b x c +-+<0可化为213222x x -+<0,解得:1<x <3 故①错误.故选A .【点睛】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.13.(2021·江苏无锡市)在平面直角坐标系中,O 为坐标原点,直线3y x =-+与x 轴交于点B ,与y 轴交于点C ,二次函数2y ax 2x c =++的图象过B 、C 两点,且与x 轴交于另一点A ,点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交BC 于点F ,交二次函数2y ax 2x c =++的图象于点E .(1)求二次函数的表达式;(2)当以C 、E 、F 为顶点的三角形与ABC 相似时,求线段EF 的长度;(3)已知点N 是y 轴上的点,若点N 、F 关于直线EC 对称,求点N 的坐标.【答案】(1)2y x 2x 3=-++;(2)209或94;(3)N (0,1) 【分析】 (1)先求出B (3,0),C (0,3),再利用待定系数法即可求解;(2)先推出①MBF =①FBM =①CFE =45°,可得以C 、E 、F 为顶点的三角形与ABC 相似时,EF CF AB CB=或CF CF AB EB =,设F (m ,-m +3),则E (m ,223m m -++),根据比例式列出方程,即可求解;(3)先推出四边形NCFE 是平行四边形,再推出FE =FC ,列出关于m 的方程,求出m 的值,从而得CN =EF =2,进而即可得到答案.【详解】解:(1)①直线3y x =-+与x 轴交于点B ,与y 轴交于点C ,①B (3,0),C (0,3),①二次函数2y ax 2x c =++的图象过B 、C 两点, ①3096c a c =⎧⎨=++⎩,解得:31c a =⎧⎨=-⎩, ①二次函数解析式为:2y x 2x 3=-++;(2)①B (3,0),C (0,3),l ①y 轴,①OB =OC ,①①MBF =①FBM =①CFE =45°,①以C 、E 、F 为顶点的三角形与ABC 相似时,EF CF AB CB =或CF EF AB CB=, 设F (m ,-m +3),则E (m ,223m m -++),①EF =223m m -++-(-m +3)= 23m m -+,CF =,①234m m -+=2= ①53m =或0m =(舍去)或32m =或0m =(舍去), ①EF =23m m -+=209或94; (3)①l ①y 轴,点N 是y 轴上的点,①①EFC =①NCG ,①点N 、F 关于直线EC 对称,①①CNE =①EFC ,①①CNE =①NCG ,①NE ①FC ,①四边形NCFE 是平行四边形,①点N 、F 关于直线EC 对称,①①NCE =①FCE ,①l ①y 轴,①①NCE =①FEC ,①①FCE =①FEC ,①FE =FC ,①23m m -+,解得:3m =0m =(舍去),①CN =EF =2,①ON =2+3=1,①N (0,1).【点睛】本题主要考查二次函数与几何的综合,相似三角形的判定,掌握函数图像上点的坐标特征,用点的横坐标表示出相关线段的长,是解题的关键.14.(2021·江苏南京市)已知二次函数2y ax bx c =++的图像经过()()2,1,2,3--两点.(1)求b 的值.(2)当1c >-时,该函数的图像的顶点的纵坐标的最小值是________.(3)设()0m ,是该函数的图像与x 轴的一个公共点,当13m -<<时,结合函数的图像,直接写出a 的取值范围. 【答案】(1)1b =-;(2)1;(3)0a <或45a >. 【分析】(1)将点()()2,1,2,3--代入求解即可得;(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得; (3)分0a <和0a >两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得.【详解】 解:(1)将点()()2,1,2,3--代入2y ax bx c =++得:421423a b c a b c -+=⎧⎨++=-⎩, 两式相减得:44b -=,解得1b =-;(2)由题意得:0a ≠,由(1)得:2211()24y ax x c a x c a a=-+=-+-, 则此函数的顶点的纵坐标为14c a-, 将点()2,3-代入2y ax x c =-+得:423a c -+=-,解得41a c -=+, 则1141c c a c -=++,下面证明对于任意的两个正数00,x y ,都有00x y +≥2000(0x x y -=+-≥,00x y ∴+≥00x y =时,等号成立), 当1c >-时,10c +>,则11111111c c c c +=++-≥=++(当且仅当111c c +=+,即0c 时,等号成立), 即114c a -≥, 故当1c >-时,该函数的图像的顶点的纵坐标的最小值是1;(3)由423a c -+=-得:41c a =--,则二次函数的解析式为241(0)y ax x a a =---≠,由题意,分以下两种情况:①如图,当0a <时,则当1x =-时,0y >;当3x =时,0y <,即141093410a a a a +-->⎧⎨---<⎩, 解得0a <;①如图,当0a >时,当1x =-时,14130y a a a =+--=-<,∴当3x =时,93410y a a =--->, 解得45a >, 综上,a 的取值范围为0a <或45a >. 【点睛】本题考查了二次函数的图象与性质等知识点,较难的是题(3),熟练掌握函数图象法是解题关键.15.(2021·江苏扬州市)如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于点.()1,0A -、()3,0B ,与y 轴交于点C .(1)b =________,c =________;(2)若点D 在该二次函数的图像上,且2ABD ABC S S =,求点D 的坐标;(3)若点P 是该二次函数图像上位于x 轴上方的一点,且APC APB S S =,直接写出点P 的坐标.【答案】(1)-2,-3;(2)(16)或(16);(3)(4,5)【分析】(1)利用待定系数法求解即可;(2)先求出①ABC 的面积,设点D (m ,223m m --),再根据2ABD ABC SS =,得到方程求出m 值,即可求出点D的坐标;(3)分点P 在点A 左侧和点P 在点A 右侧,结合平行线之间的距离,分别求解.【详解】解:(1)①点A 和点B 在二次函数2y x bx c =++图像上, 则01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩, 故答案为:-2,-3;(2)连接BC ,由题意可得:A (-1,0),B (3,0),C (0,-3),223y x x =--,①S ①ABC =1432⨯⨯=6, ①S ①ABD =2S ①ABC ,设点D (m ,223m m --), ①1262D AB y ⨯⨯=⨯,即21423262m m ⨯⨯--=⨯,解得:x =1+1223y x x =--,可得:y 值都为6,①D (16)或(16);(3)设P (n ,223n n --),①点P 在抛物线位于x 轴上方的部分,①n <-1或n >3,当点P 在点A 左侧时,即n <-1,可知点C 到AP 的距离小于点B 到AP 的距离,①APC APB S S <△△,不成立;当点P 在点B 右侧时,即n >3,①①APC 和①APB 都以AP 为底,若要面积相等,则点B 和点C 到AP 的距离相等,即BC ①AP ,设直线BC 的解析式为y =kx +p ,则033k p p =+⎧⎨-=⎩,解得:13k p =⎧⎨=-⎩, 则设直线AP 的解析式为y =x +q ,将点A (-1,0)代入,则-1+q =0,解得:q =1,则直线AP 的解析式为y =x +1,将P (n ,223n n --)代入,即2231n n n --=+,解得:n =4或n =-1(舍),2235n n --=,①点P 的坐标为(4,5).【点睛】本题考查了二次函数综合,涉及到待定系数法求函数解析式,三角形面积,平行线之间的距离,一次函数,解题的难点在于将同底的三角形面积转化为点到直线的距离.16.(2021·江苏连云港市)如图,抛物线()223(69)y mx m x m =++-+与x 轴交于点A 、B ,与y 轴交于点C ,已知(3,0)B . (1)求m 的值和直线BC 对应的函数表达式;(2)P 为抛物线上一点,若PBC ABC S S =△△,请直接写出点P 的坐标;(3)Q 为抛物线上一点,若45ACQ ∠=︒,求点Q 的坐标.【答案】(1)1m =-,3y x =-;(2)()2,1P ,⎝⎭P ,⎝⎭P ;(3)75,24⎛⎫- ⎪⎝⎭Q 【分析】 (1)求出A ,B 的坐标,用待定系数法计算即可;(2)做点A 关于BC 的平行线1AP ,联立直线1AP 与抛物线的表达式可求出1P 的坐标,设出直线1AP 与y 轴的交点为G ,将直线BC 向下平移,平移的距离为GC 的长度,可得到直线23P P ,联立方程组即可求出P ;(3)取点Q ,连接CQ ,过点A 作AD CQ ⊥于点D ,过点D 作DF x ⊥轴于点F ,过点C 作CE DF ⊥于点E ,得直线CD 对应的表达式为132y x =-,即可求出结果;【详解】(1)将()3,0B 代入()()22369=++-+y mx m x m , 化简得20m m +=,则0m =(舍)或1m =-,①1m =-,得:243y x x =-+-,则()0,3C -.设直线BC 对应的函数表达式为y kx b =+,将()3,0B 、()0,3C -代入可得033k b b =+⎧⎨-=⎩,解得1k =, 则直线BC 对应的函数表达式为3y x =-.(2)如图,过点A 作1AP ①BC ,设直线1AP 与y 轴的交点为G ,将直线BC 向下平移 GC 个单位,得到直线23P P ,由(1)得直线BC 的解析式为3y x =-,1,0A ,①直线AG 的表达式为1y x =-,联立2143y x y x x =-⎧⎨=-+-⎩, 解得:10x y =⎧⎨=⎩(舍),或21x y =⎧⎨=⎩, ①()12,1P ,由直线AG 的表达式可得()1,0G -,①2GC =,2CH =,①直线23P P 的表达式为5y x =-,联立2543y x y x x =-⎧⎨=-+-⎩,解得:11x y ⎧⎪⎪⎨⎪=⎪⎩22x y ⎧⎪⎪⎨⎪=⎪⎩①3P ⎝⎭,2P ⎝⎭,①()2,1P ,⎝⎭P ,⎝⎭P . (3)如图,取点Q ,连接CQ ,过点A 作AD CQ ⊥于点D ,过点D 作DF x ⊥轴于点F ,过点C 作CE DF ⊥于点E ,①45ACQ ∠=︒,①AD=CD ,又①90ADC ∠=︒,①90ADF CDE ∠+∠=︒,①90CDE DCE ∠+∠=︒,①DCE ADF ∠=∠,又①90E AFD ∠=∠=︒,①CDE DAF ∆∆≌,则AF DE =,CE DF =.设==DE AF a ,①1OA =,OF CE =,①1CE DF a ==+.由3OC =,则3=-DF a ,即13+=-a a ,解之得,1a =.所以()2,2D -,又()0,3C -,可得直线CD 对应的表达式为132y x =-, 设1,32Q m m ⎛⎫- ⎪⎝⎭,代入243y x x =-+-, 得213432-=-+-m m m ,2142=-+m m m ,2702-=m m , 又0m ≠,则72m =.所以75,24⎛⎫- ⎪⎝⎭Q . 【点睛】本题主要考查了二次函数综合题,结合一元二次方程求解是解题的关键.17.(2021·江苏苏州市)如图,二次函数()21y x m x m =-++(m 是实数,且10m -<<)的图像与x 轴交于A 、B两点(点A 在点B 的左侧),其对称轴与x 轴交于点C ,已知点D 位于第一象限,且在对称轴上,OD BD ⊥,点E 在x 轴的正半轴上,OC EC =.连接ED 并延长交y 轴于点F ,连接AF .(1)求A 、B 、C 三点的坐标(用数字或含m 的式子表示);(2)已知点Q 在抛物线的对称轴上,当AFQ △的周长的最小值等于125,求m 的值.【答案】(1)(),0A m ,()1,0B ,1,02m C +⎛⎫ ⎪⎝⎭;(2)15m =- 【分析】(1)把0y =代入函数解析式,可得()210x m x m -++=,再利用因式分解法解方程可得,A B 的坐标,再求解函数的对称轴,可得C 的坐标;(2)先证明COD CDB ∽△△,利用相似三角形的性质求解2214m CD -=,利用三角形的中位线定理再求解22241OF CD m ==-.再利用勾股定理求解1AF =,如图,当点F 、Q 、B 三点共线时,FQ AQ +的长最小,此时AFQ △的周长最小.可得75BF =.再利用勾股定理列方程,解方程可得答案. 【详解】解:(1)令0,y = 则()210x m x m -++=,()()10,x x m ∴--=∴ 12,1,x m x ==①(),0A m ,()1,0B ,①对称轴为直线12m x +=, ①1,02m C +⎛⎫ ⎪⎝⎭. (2)在Rt ODB △中,CD OB ⊥,,OD BD ⊥90,ODB OCD ∴∠=∠=︒,DOC BOD ∠=∠∴ COD CDB ∽△△,,CD CO CB CD∴= ()1,0,1,0,2m C B +⎛⎫ ⎪⎝⎭∴ 12m OC +=,11122m m BC +-=-=. ∴ 22111224m m m CD OC CB +--=⋅=⋅=. ①CD x ⊥轴,OF x ⊥轴,①//CD OF .①OC EC =,①2OF CD =.①22241OF CD m ==-.在Rt AOF 中,222AF OA OF +=,①22211AF m m =+-=,即1AF =.(负根舍去)①点A 与点B 关于对称轴对称,①QA QB =.①如图,当点F 、Q 、B 三点共线时,FQ AQ +的长最小,此时AFQ △的周长最小. ①AFQ △的周长的最小值为125,①FQ AQ +的长最小值为127155-=,即75BF =. ①222OF OB BF +=,①2491125m -+=. ①15m =±. ①10m -<<,①15m =-. 【点睛】本题考查的求解二次函数与坐标轴的交点坐标以及对称轴方程,图形与坐标,二次函数的对称性,勾股定理的应用,相似三角形的判定与性质,灵活应用二次函数的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.图象向右平移3个单位则变为y=2(x﹣3)2﹣4
C.当x=3时,函数y有最大值﹣1
D.当x>3时,y随x的增大而增大
19.已知抛物线y=﹣x2+mx+2m,当x<1时,y随x的增大而增大,则抛物线的顶点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
20.对于抛物线 ,下列说法错误的是( )
A.2B.3C.4D.5
8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②若m为任意实数,则a+b≥am2+bm;③a﹣b+c>0;④3a+c<0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的个数为( )
A.2B.3C.4D.5
17.已知抛物线y x2﹣mx+c(m>0)过两点A(x0,y0)和B(x1,y1),若x0<1<x1,且x0+x1=3.则y0与y1的大小关系为( )
A.y0<y1B.y0=y1C.y0>y1D.不能确定
18.下列关于二次函数y=2(x﹣3)2﹣1的说法,正确的是( )
A.图象的对称轴是直线x=﹣3
A.1个B.2个C.3个D.4个
10.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n),抛物线与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①a+b+c>0;②对于任意实数m,a+b≥am2+bm总成立;③关于x的方程ax2+bx+c=n有两个相等的实数根;④﹣1≤a ,其中结论正确个数为( )
9.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),交x轴于A,B两点,交y轴于C,则:
①a+c=0;
②无论a取何值,此二次函数图象与x轴必有两个交点,函数图象截x轴所得的线段长度必大于2;
③当函数在x>1时,y随x的增大而增大;
④若a=1,则OA•OB=OC2.
以上说法正确的有( )
A.0B.0或2C.0或2或﹣2D.2或﹣2
6.如图在平面直角坐标系中,一次函数y=mx+n与x轴的轴交于点A,与二次函数交于点B、点C,点A、B、C三点的横坐标分别是a、b、c,则下面四个等式中不一定成立的是( )
A.a2+bc=c2﹣abB.
C.b2(c﹣a)=c2(b﹣a)D.
7.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc>0;②4a+2b+c>0;③9a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8.其中正确的结论有( )个
A.对称轴是直线x=5
B.函数的最大值是3
C.开口向下,顶点坐标(5,3)
D.当x>5时,y随x的增大而增大
21.已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是( )
(1)2a+b=0;
(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;
(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;
A.1个B.2个C.3个D.4个
12.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是( )
A. B.
C. D.
13.已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是( )
A.图象的开口向上
B.图象的顶点坐标是(1,3)
C.当x<1时,y随x的增大而增大
D.图象与x轴有唯一交点
14.在平面直角坐标系中,已知a≠b,设函数y=(x﹣a)(x﹣b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图形与x轴有N个交点,则( )
A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2
C.M=N或M=N+1D.M=N或M=N﹣1
15.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为( )
C.(﹣4,y1),(2,y2)是抛物=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0(2)9a>3bc;(3)9a+b+c=0:(4)若方程a(x+1)(x﹣5)=﹣2的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2,其中正确的结论有( )
A.1个B.2个C.3个D.4个
11.抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论:①abc>0,②3a+c<0,③a(m﹣1)+2b>0,④a=﹣1时,存在点P使△PAB为直角三角形.其中正确有( )
(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是 m<0.
A.1B.2C.3D.4
22.抛物线y=ax2+bx+c(a<0)与x轴的一个交点坐标为(﹣1,0),对称轴是直线x=1,其部分图象如图所示,则此抛物线与x轴的另一个交点坐标是( )
A.1个B.2个C.3个D.4个
4.如图,抛物线y1:y=a1(x+1)2+1与y2:y=a2(x﹣4)2﹣3交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论,正确的是( )
A.a1>a2B.当y1=y2时,x=1
C.当y2>y1时,0≤x<1D.3AB=2AC
5.函数y=mx2+(m+2)x m+1的图象与x轴只有一个交点,则m的值为( )
A.y=(x+1)2﹣13B.y=(x﹣5)2﹣5
C.y=(x﹣5)2﹣13D.y=(x+1)2﹣5
16.用一段20米长的铁丝在平地上围成一个长方形,求长方形的面积y(平方米)和长方形的一边的长x(米)的关系式为( )
A.y=﹣x2+20xB.y=x2﹣20xC.y=﹣x2+10xD.y=x2﹣10x
2021年江苏省盐城市中考数学总复习:二次函数
一.选择题(共50小题)
1.抛物线y=x2﹣2x+5与坐标轴的交点个数为( )
A.0个B.1个C.2个D.3个
2.如图是二次函数y=ax2+bx+c图象的一部分,且过点(﹣3,0),(1,0),下列说法错误的是( )
A.2a﹣b=0
B.4a﹣2b+c<0
相关文档
最新文档