遗传算法(GeneticAlgorithm)..
遗传算法

1.3 遗传算法与传统方法的比较
传统算法 起始于单个点 遗传算法 起始于群体
改善 (问题特有的)
否
改善 (独立于问题的) 否
终止?
终止? 是 结束
是
结束
1.3.1遗传算法与启发式算法的比较
启发式算法是通过寻求一种能产生可行解的启发式规则,找到问 题的一个最优解或近似最优解。该方法求解问题的效率较高,但是具有 唯一性,不具有通用性,对每个所求问题必须找出其规则。但遗传算法 采用的是不是确定性规则,而是强调利用概率转换规则来引导搜索过程。
1.2 遗传算法的特点
遗传算法是一种借鉴生物界自然选择和自然遗传机制 的随机搜索法。它与传统的算法不同,大多数古典的优化算 法是基于一个单一的度量函数的梯度或较高次统计,以产生 一个确定性的试验解序列;遗传算法不依赖于梯度信息,而 是通过模拟自然进化过程来搜索最优解,它利用某种编码技 术,作用于称为染色体的数字串,模拟由这些串组成的群体 的进化过程。
1.2.2 遗传算法的缺点
(1)编码不规范及编码存在表示的不准确性。 (2)单一的遗传算法编码不能全面地将优化问题的约束表示 出来。考虑约束的一个方法就是对不可行解采用阈值,这样, 计算的时间必然增加。 (3)遗传算法通常的效率比其他传统的优化方法低。 (4)遗传算法容易出现过早收敛。 (5)遗传算法对算法的精度、可信度、计算复杂性等方面, 还没有有效的定量分析方法。
上述遗传算法的计算过程可用下图表示。
遗传算法流程图
目前,遗传算法的终止条件的主要判据有 以下几种:
• 1) 判别遗传算法进化代数是否达到预定的最大代数; • 2) 判别遗传搜索是否已找到某个较优的染色体; • 3) 判别各染色体的适应度函数值是否已趋于稳定、再上升 否等。
遗传算法

1 遗传算法1.1 遗传算法的定义遗传算法(GeneticAlgorithm,GA)是近多年来发展起来的一种全新的全局优化算法,它是基于了生物遗传学的观点,是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
它通过自然选择、遗传、复制、变异等作用机制,实现各个个体的适应性的提高,从而达到全局优化。
遗传算法151解决一个实际问题通常都是从一个种群开始,而这个种群通常都是含有问题的一个集合。
这个种群是由一定数目的个体所构成的,利用生物遗传的知识我们可以知道这些个体正好组成了我们知道的染色体,也就是说染色体是由一个个有特征的个体组成的。
另外我们还知道,遗传算法是由染色体组成,而染色体是由基因组成,可以这么说,基因就决定了个体的特性,所以对于遗传算法的最开始的工作就需要进行编码工作。
然后形成初始的种群,最后进行选择、交叉和变异的操作。
1.2遗传算法的重要应用在现实应用中,遗传算法在很多领域得到很好的应用,特别是在解决多维并且相当困难的优化问题中时表现出了很大的优势。
在遗传算法的优化问题的应用中,其中最为经典的应用就是我们所熟悉的函数优化问题,它也是对遗传算法的性能进行评价的最普遍的一种算法;另外的一个最重要的应用,也就是我们本文所研究的应用—组合优化问题,一般的算法很难解决组合优化问题的搜索空间不断扩大的局面,而组合优化问题正好是解决这种问题的最有效的方法之一,在本文的研究中,比如求解TSP问题、VRP问题等方面都得到了很好的应用;另外遗传算法在航空控制系统中的应用、在图像处理和模式识别的应用、在生产调度方面的应用以及在工人智能、人工生命和机器学习方面都得到了很好的应用。
其实在当今的社会中,有关于优化方面的问题应用于各行各业中,因此有关于优化问题已经变得非常重要,它对于整个社会的发展来说都是一个不可改变的发展方向,也是社会发展的一个非常重要的需要。
1.3 遗传算法的特点遗传算法不同于传统的搜索与优化方法,它是随着问题种类的不同以及问题规模的扩大,能以有限的代价来很好的解决搜索和优化的方法。
遗传算法的概念

遗传算法的概念
遗传算法(Genetic Algorithm)是基于生物学进化理论的一种优化算法。
它是模拟自然界的进化过程,通过筛选、交叉、变异等元素不断筛选出能够适应环境的个体,最终得到最优解或次优解的一种算法。
遗传算法的基本思想是将问题看作一个个体,使用种群的方式不断迭代,将群体中优劣个体进行适应度评估并进行优胜劣汰,简单来说就是不断筛选出最优的解决方案来。
遗传算法被广泛应用于各类优化问题,例如旅行商问题、机器学习和函数优化等。
什么是遗传算法

什么是遗传算法遗传算法的基本意思就是说象人的遗传一样,有一批种子程序,它们通过运算得到一些结果,有好有坏,把好的一批取出来,做为下一轮计算的初值进行运算,反复如此,最终得到满意的结果。
举个例子,假如有一个动物群体,如果你能让他们当中越强壮的越能优先交配和产籽,那么千万年后,这个动物群体肯定会变得更加强壮,这是很容易理解的。
同样,对于许多算法问题,特别是NP问题,比如说最短路径,如果有400个城市,让你找出最短的旅游路线,采用穷举比较,复杂度为O(n!),这时,你可以先随机产生100种路径,然后让他们之中路程越短的那些越能优先互相交换信息(比如每条里面随机取出10个位置互相交换一下),那么循环几千次后,算出来的路径就跟最短路径非常接近了(即求出一个近似最优解)。
遗传算法的应用还有很多,基本思想都一样,但实现上可能差别非常大。
现在有许多搞算法的人不喜欢遗传算法,因为,它只给出了一种“有用”的方法,却不能保证有用的程度,与此相反,能保证接近最优程度的概率算法更受青睐。
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。
它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。
它是现代有关智能计算中的关键技术之一。
1.遗传算法与自然选择 达尔文的自然选择学说是一种被人们广泛接受的生物进化学说。
这种学说认为,生物要生存下去,就必须进行生存斗争。
生存斗争包括种内斗争、种间斗争以及生物跟无机环境之间的斗争三个方面。
在生存斗争中,具有有利变异的个体容易存活下来,并且有更多的机会将有利变异传给后代;具有不利变异的个体就容易被淘汰,产生后代的机会也少的多。
进化计算的主要分支

进化计算的主要分支
进化计算是一种模拟自然进化过程的计算方法,它的主要分支包括以下几种:
1. 遗传算法(Genetic Algorithm,GA):遗传算法是进化计算中最经典和广泛应用的方法之一。
它基于生物进化的遗传原理,通过模拟基因的交叉、变异和选择等操作,来优化问题的解。
2. 进化策略(Evolution Strategies,ES):进化策略是一种基于种群的搜索方法,它通过个体的变异和选择来更新种群,以找到最优解。
与遗传算法不同,进化策略通常不使用交叉操作。
3. 遗传编程(Genetic Programming,GP):遗传编程是一种基于树结构的进化计算方法,它用于解决问题的编程任务。
个体在遗传编程中表示为树状结构,通过遗传操作和适应度评估来优化程序的性能。
4. 协同进化(Coevolution):协同进化是指多个物种或多个智能体在相互作用和共同演化的环境中进行进化。
它可以应用于多目标优化、生态系统建模等领域。
5. 免疫算法(Immunological Algorithm,IA):免疫算法是一种受生物免疫系统启发的计算方法,它利用免疫机制来实现优化和问题求解。
6. 粒子群优化(Particle Swarm Optimization,PSO):粒子群优化是一种基于群体智能的优化算法,它模拟鸟群或鱼群的行为,通过个体之间的协作和竞争来寻找最优解。
这些分支在不同的应用领域和问题类型中都有广泛的应用,并且不断有新的分支和改进方法涌现。
进化计算的优点包括全局搜索能力、适应性和鲁棒性等,使其成为解决复杂优化问题的有效工具。
遗传算法(GeneticAlgorithm)..

被选定的一组解 根据适应函数选择的一组解 以一定的方式由双亲产生后代的过程 编码的某些分量发生变化的过程
遗传算法的基本操作
➢选择(selection):
根据各个个体的适应值,按照一定的规则或方法,从 第t代群体P(t)中选择出一些优良的个体遗传到下一代 群体P(t+1)中。
等到达一定程度时,值0会从整个群体中那个位上消失,然而全局最 优解可能在染色体中那个位上为0。如果搜索范围缩小到实际包含全局 最优解的那部分搜索空间,在那个位上的值0就可能正好是到达全局最 优解所需要的。
2023/10/31
适应函数(Fitness Function)
➢ GA在搜索中不依靠外部信息,仅以适应函数为依据,利 用群体中每个染色体(个体)的适应值来进行搜索。以染 色体适应值的大小来确定该染色体被遗传到下一代群体 中的概率。染色体适应值越大,该染色体被遗传到下一 代的概率也越大;反之,染色体的适应值越小,该染色 体被遗传到下一代的概率也越小。因此适应函数的选取 至关重要,直接影响到GA的收敛速度以及能否找到最优 解。
2023/10/31
如何设计遗传算法
➢如何进行编码? ➢如何产生初始种群? ➢如何定义适应函数? ➢如何进行遗传操作(复制、交叉、变异)? ➢如何产生下一代种群? ➢如何定义停止准则?
2023/10/31
编码(Coding)
表现型空间
基因型空间 = {0,1}L
编码(Coding)
10010001
父代
111111111111
000000000000
交叉点位置
子代
2023/10/31
111100000000 000011111111
遗传算法简介

遗传算法简介遗传算法英文全称是Genetic Algorithm,是在1975年的时候,由美国科学家J.Holland从生物界的进化规律之中发现并且提出来的,借助适者生存,优胜劣汰的自然科学规律运用到科学的训练方法之中,对于对象直接进行操作的一种算法。
并且,遗传算法作为一种搜索的方法,已经成为成熟的具有良好收敛性、极高鲁棒性和广泛适用性的优化方法,很好的解决了电力系统的多变量、非线性、不连续、多约束的优化控制问题。
非常多的运用到了生产的方方面面。
可以说遗传算法的研究已经取得了巨大的成功。
2.1.1染色体在具体的使用遗传算法的时候,一般是需要把实际之中的问题进行编码,使之成为一些具有实际意义的码子。
这些码子构成的固定不变的结构字符串通常被叫做染色体。
跟生物学之中一样的,具体的染色体中的每一个字符符号就是一个基因。
总的固定不变的结构字符串的长度称之为染色体长度,每个具体的染色体求解出来就是具体问题之中的一个实际问题的解。
2.1.2群体具体的实际之中的问题的染色体的总数我们称之为群体,群体的具体的解就是实际之中的问题的解的集合。
2.1.3适应度在对于所有的染色体进行具体的编码之后,具体的一条染色体对应着一个实际的数值解,而每个实际的数值解对应着一个相对应的函数,这个函数就是适应度指标,也就是我们数学模型之中常说的目标函数。
2.1.4遗传操作说到遗传算法,不得不提的是遗传算法之中的遗传问题,具体进行遗传的时候有如下操作:1、选择:从上一次迭代过程之中的M个染色体,选择二个染色体作为双亲,按照一定的概率直接遗传到下一代。
2、交叉:从上一次迭代过程之中的M个染色体,选择二个染色体A、B作为双亲,用A、B作为双亲进行生物学之中的交叉操作,遗传到下一代。
3、变异从上一次迭代过程之中的M个染色体,选择一个染色体进行去某一个字符进行反转。
遗传算法

第1章遗传算法简介遗传算法(Genetic Algorithm)起始于20世纪60年代,主要由美国Michigan大学的John Holland与其同事和学生研究形成了一个较完整的理论和方法。
从1985年在美国卡耐基梅隆大学召开的第5届目标遗传算法会议(Intertional Conference on Genetic Algorithms:ICGA’85)到1997年5月IEEE的Transaction on Evolutionary Computation创刊,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究逐渐成熟。
1.1遗传算法的产生与发展(略)1.2遗传算法概要1.2.1生物进化理论和遗传算法的知识遗传:变异:亲代和子代之间,子代和子代的不同个体之间总有些差异,这种现象称为变异,变异是随即发生的,变异的选择和积累是生命多样性的根源生存斗争和适者生存:下面给出生物学的几个基本概念知识,这对于理解遗传算法很重要。
染色体:是生物细胞中含有的一种微小的丝状化合物,是遗传物质的主要载体,由多个遗传因子—基因组成。
遗传因子(gene):DNA长链结构中占有一定位置的基本遗传单位,也称基因。
生物的基因根据物种的不同而多少不一。
个体(individual):指染色体带有特征的实体种群(population):染色体带有特征的个体的集合进化(evolution);生物在其延续生命的过程中,逐渐适应其生存环境使得其品质不断得到改良,这种生命现象称为进化。
生物的进化是以种群的形式进行的。
适应度(fitness):度量某个物种对于生存环境的适应程度选择(selection):指以一定的概率从种群中选择若干个体的操作复制(reproduction)交叉(crossorer)变异(musation):复制时很小的概率产生的某些复制差错编码(coding):DNA中遗传信息在一个长链上按一定的模式排列,也即进行了遗传编码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/10/7
选择(Selection)
选择(复制)操作把当前种群的染色体按与适应值成正比例 的概率复制到新的种群中 主要思想: 适应值较高的染色体体有较大的选择(复制)机 会 实现1:”轮盘赌”选择(Roulette wheel selection) 将种群中所有染色体的适应值相加求总和,染色体适应 值按其比例转化为选择概率Ps 产生一个在0与总和之间的的随机数m 从种群中编号为1的染色体开始,将其适应值与后续染色 体的适应值相加,直到累加和等于或大于m
2018/10/7
选择(Selection)
染色体的适应值和所占的比例
轮盘赌选择
2018/10/7
选择(Selection)
染色体被选的概率
染色体编号
1
2
3
4
5
6
染色体
适应度 被选概率 适应度累计
01110
8
0.16 8
11000
15
0.3 23
00100
2
0.04 25
10010
5
0.1 30
适者生存(Survival of the Fittest)
GA主要采用的进化规则是“适者生存” 较好的解保留,较差的解淘汰
2018/10/7
生物进化与遗传算法对应关系
生物进化
环境
适者生存 个体 染色体 基因 群体 种群 交叉 变异
2018/10/7
遗传算法
适应函数
适应函数值最大的解被保留的概率最大 问题的一个解 解的编码 编码的元素 被选定的一组解 根据适应函数选择的一组解 以一定的方式由双亲产生后代的过程 编码的某些分量发生变化的过程
遗传算法的基本操作
选择(selection):
根据各个个体的适应值,按照一定的规则或方法,从 第t代群体P(t)中选择出一些优良的个体遗传到下一代 群体P(t+1)中。 交叉(crossover): 将群体P(t)内的各个个体随机搭配成对,对每一个个 体,以某个概率Pc (称为交叉概率,crossvoer rate)交换 它们之间的部分染色体。 变异(mutation): 对群体P(t)中的每一个个体,以某一概率Pm(称为变异 概率,mutation rate)改变某一个或一些基因座上基因 值为其它的等位基因。
遗传算法作为一种有效的工具,已广泛地应用于最 优化问题求解之中。 遗传算法是一种基于自然群体遗传进化机制的自适 应全局优化概率搜索算法。它摒弃了传统的搜索方 式,模拟自然界生物进化过程,采用人工的方式对 目标空间进行随机化搜索。
2018/10/7
遗传算法的搜索机制
遗传算法模拟自然选择和自然遗传过程中发生 的繁殖、交叉和基因突变现象,在每次迭代中 都保留一组候选解,并按某种指标从解群中选 取较优的个体,利用遗传算子(选择、交叉和变 异)对这些个体进行组合,产生新一代的候选解 群,重复此过程,直到满足某种收敛指标为止。
2018/10/7
选择(Selection)
设种群的规模为N xi是i为种群中第i个染色体
染色体xi被选概率
ps ( xi )
F ( xi )
F (x )
j 1 j
N
1/6 = 17%
A
B
C
3/6 = 50% 2/6 = 33%
fitness(A) = 3 fitness(B) = 1 fitness(C) = 2
2018/10/7
遗传算法(GA)
GA----第1代
New one
Dead法(GA)
GA----第?代
Not at the top, Come Up!!!
2018/10/7
遗传算法(GA)
GA----第N代
I am the BEST !!!
2018/10/7
遗传算法(GA)
2018/10/7
遗传算法(GA)
全局
局部
2018/10/7
遗传算法(GA)
GA-----第0代
We have a dream!! I am not at the top. My high is better! I am at the top Height is ...
I will continue
2018/10/7
如何设计遗传算法
如何进行编码? 如何产生初始种群? 如何定义适应函数? 如何进行遗传操作(复制、交叉、变异)? 如何产生下一代种群? 如何定义停止准则?
2018/10/7
编码(Coding)
表现型空间 编码(Coding)
基因型空间 = {0,1}L 10010001 10010010 010001001 011101001 解码(Decoding)
选择(Selection)
其他选择法:
随机遍历抽样(Stochastic universal sampling) 局部选择(Local selection) 截断选择(Truncation selection) 竞标赛选择(Tournament selection)
特点:选择操作得到的新的群体称为交配池,交配池 是当前代和下一代之间的中间群体,其规模为初始 群体规模。选择操作的作用效果是提高了群体的平 均适应值(低适应值个体趋于淘汰,高适应值个体 趋于选择),但这也损失了群体的多样性。选择操 作没有产生新的个体,群体中最好个体的适应值不 会改变。
遗传算法(Genetic Algorithm)
进化算法(Evolutionary Algorithm)
2018/10/7
遗传算法(GA)
Darwin(1859): “物竟天择,适者生存” John Holland (university of Michigan, 1975)
《Adaptation in Natural and Artificial System》
01100
12
0. 24 42
00011
8
0.16 50
被选的染色体
随机数
23
49
13
38
6
27
所选号码
2
6
00011
2
11000
5
01100
1
01110
4
10010
所选染色体 11000
2018/10/7
选择(Selection)
轮盘上的片分配给群体的染色体,使得每一个片的大小与对于 染色体的适应值成比例
从群体中选择一个染色体可视为旋转一个轮盘,当轮盘停止时, 指针所指的片对于的染色体就时要选的染色体。
模拟“轮盘赌” 算法:
(1) (2) (3) (4) (5)
2018/10/7
r=random(0, 1),s=0,i=0; 如果s≥r,则转(4); s=s+p(xi),i=i+1, 转(2) xi即为被选中的染色体,输出I 结束