高频电子线路 (6)
高频电子线路第6章振幅调制解调及混频

Pmax Pc (1 m)2 Pmin Pc (1 m)2
(6―14)
《高频电路原理与分析》
第6章振幅调制、 解调及混频
2.
在调制过程中,将载波抑制就形成了抑制载波双边 带信号,简称双边带信号。它可用载波与调制信号相乘 得到,其表示式为
uDSB (t) kf (t)kf (t)uC 在单一正弦信号uΩ=UΩcosΩt调制时,
uAM(t)=UM(t)cosωct=UC(1+mcosΩt)cosωct (6―5)
上面的分析是在单一正弦信号作为调制信号的情
况下进行的,而一般传送的信号并非为单一频率的信号,
例如是一连续频谱信号f(t),这时,可用下式来描述调
幅波:
uAM (t) UC[1 mf (t)]cosct
(6―6 )
u
0
t
uC
(a)
0
t
(b) u AM (t)
mUc
m< 1
Uc
0
t
(c) u AM (t)
m= 1
0
t
uAM (t)
(d)
m> 1
0
t
(e)
《高频电路原理与分析》
u
0
t
uC
(a)
0
t
(b) u AM (t)
mUc
m< 1
Uc
0
t
(c) u AM (t)
m= 1
0
t
uAM (t)
(d)
m> 1
0
t
图6―1 AM调制过程中的信号波形
Um(t)=UC+ΔUC(t)=UC+kaUΩcosΩt
=UC(1+mcosΩt)
基础知识-高频电子线路

卫星通信系统中的高频电子线路
卫星通信系统中的高频电子线路主要负责信号的发射和 接收。
同时,高频电子线路也负责接收卫星转发器下行的信号, 进行变频和放大后发送给地面终端。
在卫星转发器中,高频电子线路将地面终端发射的信号 进行变频和放大,再通过天线发射到卫星上。
高频电子线路的性能直接影响到卫星通信系统的覆盖范 围和传输质量。
THANKS FOR WATCHING
感谢您的观看
基础知识-高频电子线路
目录
• 高频电子线路概述 • 高频电子线路基础知识 • 高频电子线路基本元件 • 高频电子线路中的噪声与干扰 • 高频电子线路的设计与优化 • 高频电子线路的应用实例
01 高频电子线路概述
高频电子线路的定义与特点
定义
高频电子线路是指工作频率在较 高频率范围的电子线路,通常指 工作频率在10kHz以上的电子线 路。
特点
高频电子线路具有较高的工作频 率,信号传输速度快,信号失真 小,能够实现信号的高效传输和 处理。
高频电子线路的应用领域
通信领域
高频电子线路广泛应用于 通信领域,如无线通信、 卫星通信、移动通信等。
雷达与导航领域
雷达与导航系统需要高 频电子线路来实现信号 的发射、接收和处理。
广播与电视领域
广播和电视信号的传输 和处理需要高频电子线
集成电路技术
集成电路技术的发展使得高频电子线 路能够更加紧凑和高效地实现各种功 能。
02 高频电子线路基础知识
信号与系统
信号的分类
信号可以根据其特性分为连续信 号和离散信号。连续信号在时间 上连续变化,而离散信号在时间
高频电子线路课后题答案(清华大学出版社宋树祥著)六

K(2t)gD
gD
2 3
3
cos 2t
3 2
cos 22t
3 4
cos 42t
3 5
cos 52t
......
高频电子线路习题参考答案
5-4 二极管平衡电路如图所示,u1及u2的注入位置如图所示, 图中, u1=U1COSω1t,u2=U2COSω2t且U2>>U1.求u0(t) 的表示式,并与图5-7所示电路的输出相比较.
试写出电流i中组合频率分量的频率通式,说明它们是由哪些
乘积项产生的,并求出其中的ω1、2ω1+ω2、ω1+ω2-ω3频率分 量的振幅。
解5-1 i a0 a1(u1 u2 u3 ) a2 (u1 u2 u3 )2 a3(u1 u2 u3 )3
a0
a1 (u1
u2
u3 )
a2 (u12
5-3 一非线性器件的伏安特性为
i
g 0
Du
u
u 0
0
式中,u=EQ+ul+u2=EQ+U1COSω1t+U2COSω2t。若U1 很小,满足线性时变条件,则在EQ=-U2/2时,求出时变电导 gm(t)的表示式。
解5-3,根据已知条件,
由 U2 2
U2
cos 2t
0得:cos 2t
1 2
,2t
arccos(
a3
U
2 2
U1
2
a3
U23U1 2
a3
3U13 4
cos 1t
a1U2
a3
U12U2 2
a3
U23U2 2
a3
3U
3 2
4
cos 2t
a1U3
高频电子线路(第六章 功率放大器)

gC (vB VBZ )(当vB VBZ )
VBZ
近似为
iC
VBZ 是晶体管特征“折线化”后的截止电压
g C 是跨导(即第2段折线的斜率)
设vB VBB Vbm cost
考虑在流通角内 iC
vB
得iC g c (VBB Vbm cost VBZ )
低频功率放大器的负载为无调谐负载,工作在甲类或乙 类工作状态; 谐振功率放大器通常用来放大窄带高频信号(信号的通 带宽度只有其中心频率的1%或更小),其工作状态通常选为 丙类工作状态(c<90),为了不失真的放大信号,它的负 载必须是谐振回路。 12
(7)高频功放的主要技术指标
主要指标:
输出功率 效率(将电源能量转换成输出信号能量的能力)
38
第三步: 分析效率hC
仅与C 有关(后面将给大家证明 ,可记为g1 (C ) )
1 V I PO 2 cm cm1 1 Vcm I cm1 1 I cm1 hC P VCC I c 0 2 VCC I c 0 2 I c0
记为
VCC
vC
VCC
Vcm
1 g1 ( C ) 2
功放输出交流信号的功率为PO 晶体管集电极消耗的功率为PC 根据能量守恒定律,有P PO PC
PO PO 效率hC P PO PC
不难看出,设法降低Pc可以提高功放的效率
14
Pc与ic和Vc的关系
ic
+
Vc -
Pc的瞬时功率为ic和Vc的乘积
15
甲类、乙类、丙类放大器的演示
特点是负载是传输线变压器,可在很宽的频带
内对高频信号进行功率放大; 功率增益有限,一般用于中小功率级。
高频电子线路第六章信号与系统的时域和频域特性

6 Time and frequency characterization of S&S
6 Time and frequency characterization of S&S
6 Time and frequency characterization of S&S
6.4 非理想滤波器的时域和频域特性讨论 低通滤波器的模特性容限:
Problems: 6.5
6.23
6.27
6 Time and frequency characterization of S&S
Magnitude : | P( j1 , j 2 ) | Phase : 0
Magnitude : 1 Phase : P( j1 , j 2 )
6 Time and frequency characterization of S&S
( 线性相移 )
( 原始信号)
( 非线性相移 )
6 Time and frequency characterization of S&S
6.2.2 群时延
d Definition: ( ) H ( j ) d Example: y (t ) x(t t0 )
H ( j ) e jt0 H ( j ) t0
6 Time and frequency characterization of S&S
6.3 理想频率选择性滤波器的时域特性: 低通滤波器:
(1) 连续时间:
1, | | c sin c t H ( j ) F h(t ) 0 , | | c t
jX ( j )
相位频谱
高频电子线路第六章课后习题答案

因此,输出信号中包含了的基频分量和 ( ωc + ) ,ωc ) ( 频率分量.
11
高频电子线路习题参考答案
(2) u u u′ 1 = c + u , u′ 2 = c u D D 2 2 在忽略负载的反作用时,
u ′ 1 = g D K ( ωc t ) c + u i1 = g D K (ωc t )uD 2 i = g K (ω t )u′ = g K (ω t ) uc u D c D2 D c 2 2 uo = ( i1 i2 ) RL = 2 RL g D K (ωc t )u 2 2 1 2 = 2 RL g DU + cos ωc t cos 3ωc t + cos 5ωc t + ..... cos t 3π 5π 2 π
8
高频电子线路习题参考答案
所以,(b)和(c)能实现DSB调幅 而且在(b)中,包含了ωc的奇次谐波与Ω的和频与差频分 量,以及ωc的偶次谐波分量. 在(c)中,包含了ωc的奇次谐波与Ω的和频与差频分量, 以及ωc的基频分量.
9
高频电子线路习题参考答案
6-5试分析图示调制器.图中,Cb对载波短路,对音频开路; uC=UCcosωct, u =U cos t (1)设UC及U 均较小,二极管特性近似为i=a0+a1u2+a2u2.求 输出uo(t)中含有哪些频率分量(忽略负载反作用)? (2)如UC>>U ,二极管工作于开关状态,试求uo(t)的表示式. (要求:首先,忽略负载反作用时的情况,并将结果与(1) 比较;然后,分析考虑负载反作用时的输出电压.
7
高频电子线路习题参考答案
i Lc = ( i1 i2 ) = g D K (ωc t )( u + uc ) g D K (ωc t π )( u uc ) = g D K (ωc t ) K (ωc t π ) u + g D K (ωc t ) + K (ωc t π ) uc = g D K ′(ωc t )u + g D uc 4 4 cos 3ωc t + ...... U cos ω t + g DU c cos ωc t = g D cos ωc t 3π π cos(ωc + ω )t + cos(ωc ω )t 2 g DU + g U cos ω t 1 1 D c c π cos(3ωc + ω )t cos(3ωc ω )t + ..... 3 3
高频电子线路第6章混频
高频电子线路第6章混频
PPT文档演模板
•图6.7 g(t)、gc与U1m的关系
高频电子线路第6章混频
PPT文档演模板
•图6.8 g(t)、gc与EB的关系
高频电子线路第6章混频
图6.9给出了混频功率增益KPc和噪声系数NF与Ulm 的关系曲线。图6.10给出KPc和NF与静态直流工作点电 流 IEQ 的 关 系 曲 线 。 由 图 可 见 , 一 般 锗 管 U1m 选 在 50~200mV范围内,硅管可取大些。偏置电压EB一般 选择在使IEQ等于0.3~1mA的范围内工作比较合适。
混频器由于处于接收机电路的前端,对整机噪声 性能的影响很大,所以减小混频器的噪声系数是至关 重要的。
PPT文档演模板
高频电子线路第6章混频
3. 混频失真与干扰 混频器的失真有频率失真和非线性失真。此外, 由于器件的非线性还存在着组合频率。某些组合频率 往往是伴随有用信号而存在的,严重地影响了混频器 的正常工作及性能,称之为组合频率干扰。因此,如何 减小失真与干扰是混频器研究中的一个重要问题。
• 图6.15 DGMOS管符号和转移特性
高频电子线路第6章混频
当用DGMOS管做放大器时,把G2交流接地,可 以将G1和漏极D屏蔽起来,从而使管子的漏极到信号 输入栅G1间的电容减小到0.03~0.05pF,从而使放大器 的工作频率提高。另外,通过改变第二栅极的直流电
压可以构成增益可控放大器。利用DGMOS管做混频
•(6.2―11)
•(6.2―12)
PPT文档演模板
高频电子线路第6章混频
由以上分析可得到晶体三极管混频器的交流等效 电路如图6.6所示, 据此可导出三极管混频器的电压增 益为
•功率增 益
高频电子线路
高频电子线路电子线路是现代电子技术的基石,广泛应用于通信、计算机、消费电子、医疗等领域。
高频电子线路是其中的一个重要分支,主要应用于高频通信、雷达、微波技术等领域。
本文将介绍高频电子线路的基本概念、分类、常用器件以及设计方法,并对其在实际应用中的一些问题进行了探讨。
一、基本概念高频电子线路是指工作频率在几百MHz至数GHz范围内的电子线路。
相比于低频电子线路,高频电子线路所涉及的频率更高,信号波形更为复杂,传输和反射效应更为显著,因此需要采用特殊的设计技术和器件来满足其特殊要求。
高频电子线路的特点主要包括以下几个方面:1. 器件的尺寸和结构对电路性能影响显著,需要进行精细化设计和工艺。
2. 信号传输中存在大量的反射和损耗,需要采用返波抑制和匹配技术来提高传输效率和信号质量。
3. 线路的电磁兼容性问题更为突出,需要进行屏蔽和抗干扰设计。
4. 信号时延和相位误差对系统性能有较大的影响,需要进行相位同步和时延补偿等技术处理。
二、分类根据其应用领域和特点,高频电子线路可以分为不同的分类,其中主要包括以下几类:1. 射频线路射频线路主要用于高频通信和无线电技术中,其特点是工作频率在几十MHz至数GHz范围内,需要采用匹配、滤波、放大、混频等技术来实现信号的调制、解调、传输和放大。
射频线路所用的器件包括晶体管、二极管、集成电路等。
2. 微波线路微波线路是指工作频率在数十GHz至数百GHz范围内的电子线路,是雷达、卫星、电视等高速通信系统的核心部件之一。
微波线路需要采用宽带、低损耗、高阻抗、稳定性好的器件和材料,如微带线、同轴线、波导等。
3. 毫米波线路毫米波线路是指工作频率在数百GHz至数千GHz范围内的电子线路,主要用于高速通信、毫米波雷达、太阳能辐射测量等领域。
毫米波线路需要采用特殊的器件和制备工艺,如基于硅基集成电路的器件和图案化的微波印刷技术。
三、常用器件1. 晶体管晶体管是高频电子线路中应用最广泛的器件之一,可用于放大、调制、解调、混频等应用。
高频电子线路最新版课后习题解答第六章 频谱搬移电路习题解答
6.1 已知某广播电台的信号电压为()620(10.3cos6280)cos5.7650410t t t υ=+⨯mV ,问此电台的频率是多少?调制信号频率是多少?解:该电台的频率是65.7650410918kHz 2c f π⨯==; 调制信号率是62801000Hz 2F π== 6.2 已知非线性器件的伏安特性为3012i a a a υυ=++,试问它能否产生频谱搬移功能? 解:不能产生频谱搬移功能,因为伏安特性中没有平方项。
6.3 画出下列各式的波形图和频谱图,并指出是何种调幅波的数学表达式。
(1)cos )cos 1(t Ω+t c ω (2)cos )cos 211(t Ω+t c ω (3)cos cos ⋅Ωt t c ω (假设Ω=10c ω) 解:(1)cos )cos 1(t Ω+t c ω是1a M =的普通调幅波;波形图频谱图:(2)cos )cos 211(t Ω+t c ω是12a M =的普通调幅波波形图频谱图(3)cos cos ⋅Ωt t c ω是抑制载波的双边带调幅波波形图频谱图6.4 已知调制信号()()()32cos 22103cos 2300t t t υππΩ⎡⎤=⨯⨯+⨯⎣⎦V ,载波信号()()55cos 2510c t t υπ=⨯⨯V ,1a k =,试写出调幅波的表示式,画出频谱图,求出频 带宽度BW 。
解:调幅波的表示式()()()()()()()()()5a 3535[5k ]cos 2510{52cos 22103cos 2300}cos 25105[10.4cos 22100.6cos 2300]cos 2510c t t t t t t t t t υυπππππππΩ=+⨯⨯⎡⎤=+⨯⨯+⨯⨯⨯⎣⎦=+⨯⨯+⨯⨯⨯ 频谱图频带宽度 322104kHz BW =⨯⨯=6.5 已知调幅波表示式()()()62012cos 2500cos 210AM t t t υππ=+⨯⨯⎡⎤⎣⎦V ,试求该调幅波的载波振幅cm V 、载波频率c f 、调制信号频率F 、调幅系数a M 和频带宽度BW 的值。
高频电子线路 第6章 习题答案
第6章角度调制与解调电路6.1已知调制信号38cos(2π10)V u t Ω=⨯,载波输出电压6o ()5cos(2π10)V u t t =⨯,3f 2π10rad/s V k =⨯ ,试求调频信号的调频指数f m 、最大频偏m f ∆和有效频谱带宽BW ,写出调频信号表示式[解]3m 3m 2π108810Hz2π2πf k U f Ω⨯⨯∆===⨯3m33632π1088rad2π102(1)2(81)1018kHz ()5cos(2π108sin 2π10)(V)f f o k U m BW m F u t t t Ω⨯⨯===Ω⨯=+=+⨯==⨯+⨯6.2已知调频信号72()3cos[2π105sin(2π10)]V o u t t t =⨯+⨯,3f 10πrad/s V k = ,试:(1)求该调频信号的最大相位偏移f m 、最大频偏m f ∆和有效频谱带宽BW ;(2)写出调制信号和载波输出电压表示式。
[解](1)5f m =5100500Hz=2(+1)2(51)1001200Hzm f f m F BW m F ∆==⨯==+⨯=(2)因为mf f k U m Ω=Ω,所以352π1001V π10f m fm U k ΩΩ⨯⨯===⨯,故27()cos 2π10(V)()3cos 2π10(V)O u t t u t t Ω=⨯=⨯6.3已知载波信号m c ()cos()o u t U t ω=,调制信号()u t Ω为周期性方波,如图P6.3所示,试画出调频信号、瞬时角频率偏移()t ω∆和瞬时相位偏移()t ϕ∆的波形。
[解]FM ()u t 、()t ω∆和()t ϕ∆波形如图P6.3(s)所示。
6.4调频信号的最大频偏为75kHz ,当调制信号频率分别为100Hz 和15kHz 时,求调频信号的fm 和BW 。
[解]当100Hz F =时,37510750100m f f m F ∆⨯===2(1)2(7501)100Hz 150kHzf BW m F =+=+⨯=当15kHz F =时,33751051510m f f m F ∆⨯===⨯32(51)1510Hz 180kHzBW =+⨯⨯=6.5已知调制信号3()6cos(4π10)V u t t Ω=⨯、载波输出电压8()2cos(2π10)V o u t t =⨯,p 2rad /V k =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▼
2013-8-4
13
对于调相波
▼
p (t ) ct K p v f (t ) 0
dt
2013-8-4 10
10.2-2 调角波的数学表示式 假定未调载波表示为:
vc (t ) Vcm cos(ct ) Vcm cos[ (t )]
假定调制信号为一单频余弦波,并表示为:
v f (t ) Vm cos t
调频波的瞬时角频率为:
F (t ) c K F v f (t ) c D m cos t
0
在相位调制时,保持余弦信号的中心角频率 c 不变,而使 其瞬时相位与调制信号成线性关系变化。
▼
调相波的瞬时相位 P (t ) 为: p (t ) ct K P v f (t ) 0
其中,K P 为比例常数。rad / v d p (t ) ▼ 调相波的瞬时角频率 p (t ) 为: p (t )
ct D p (t ) 0
称为最大附加相移:
max
调相波的瞬时相位为:
▼
调相波的调制指数
mP
mP D P (t ) max K P v f (t )
▼
K PVm
调相波的瞬时角频率为:
P (t )
dv f (t ) d P (t ) d [c t K P v f (t )] c K P c D P (t ) dt dt dt
2013-8-4
8
§10.2 调角波的性质
10.2-1-1 瞬时频率和瞬时相位 一个余弦信号可以表示为: 其中, (t ) c t 0 常数)
t t1
vc (t ) Vcm cos( ct 0 )
称为该余弦信号的全相角。(角频率是 瞬时角频率 (t ) :称在某一时刻 的角频率为该时刻的瞬时角频率。 瞬时相位 (t ) :称在某一时刻 的全相角为该时刻的瞬时相位。 t = 0 时的初始相位为 0 。
2013-8-4
7
三、鉴频器(鉴相器) 鉴频器(鉴相器)要求输出信号幅度与输入调频(调相) 信号的瞬时频率(瞬时相位)的变化成正比。 四、鉴频器实现方法 1.波形变换法 调频波-> 调幅-调频波->振幅检波 ->输出 信号。 2.脉冲计数鉴频法 通过对调频波过零点的数目计数实现频 率-幅度转换。 3.符合门鉴频器 利用移相器与符合门配合实现,移相大 小与频率偏移有关。
如果事先不知道调制信号的动态变化特性,就不能区
分调频波和调相波 如果先将调制信号经积分处理后,再进行相位调制, 得到的是调制信号的调频波 如果先将调制信号经微分处理后,再进行频率调制, 得到的是调制信号的调相波
t K t v t dt 调频波:v FM t Vcm cos c F 0 0 调相波:v PM t Vcm cos c t K P v t 0
已调波:vFM cosct mF sin t 频偏:D K FVm mF
2013-8-4
10.2-3 调角波的频谱和频带宽度
由于频率调制过程是非线性过程,叠加原理不能应用。 在本节中,主要分析单频正弦信号调制下调频波的性质。
10.2-3-1 单频正弦调频 假定调制信号为一单频余弦波,并表示为:
0
t
K F v f (t )
KF
max
0
v f ( ) d
max
K P v f (t )
max
2013-8-4
15
载波:vc t cos c t
调制信号:v t Vm cos t
调角波
FM
PM
瞬时相位: c t K PVm cos t
瞬时频率: c K PVm sint
第十章 角度调制与解调
§10.1 概述
§10.2 调角波的性质
§10.3 调频方法概述 §10.4 变容二极管调频电路
§10.5 其他调频电路
§10.6 间接调频电路 §10.7 调角信号解调概述
§10.8 限幅器
§10.9 相位鉴频器
2013-8-4
1
§10.1 概述
一、调频、调相 利用高频振荡的频率或相位的变化来携带信息称为调频 (Frequency Modulation,简称FM)或调相(Phase
F (t ) K F v f ( ) d
0
t
P (t ) K P v f (t )
p (t ) c t K P v f (t ) 0
KP dv f (t ) dt
max
F (t ) c t K F v f ( ) d 0
(t )
t0 ) (t ) 2013-8-4 dt
(t ) (t )dt 0
0
t
9
10.2-1-2 角度调制的瞬时频率和瞬时相位的关系 在频率调制时,是使余弦信号的瞬时角频率与调制信号成线 性关系变化,而初始相位不变。 ▼ 调频波的瞬时角频率 (t ) 为: (t ) K v (t ) F F c F f 其中, c 为调频波的中心角频率,也即载波角频率; K F 为比例常数。 rad / s v t F (t ) F (t )dt 0 ▼ 调频波的瞬时相位 (t ) 为: F
Modulation,简称PM),即在调频或调相中,载波的瞬时
频率或瞬时相位受调制信号的控制,作周期性的变化,变 化的大小与瞬时信号的强度成线性关系,变化的周期由调 制信号的频率决定,但已调波的振幅保持不变,不受调制 信号的影响。
2013-8-4 2
《 高 频 电 子 线 路 》 ( 第 四 版 ) 张 肃 文 主 编 高 等 教 育 出 版 社
v V cos Ωt
v V cos Ωt
v 0 V0 cos0t
v 0 V0 cos0t
0+Dm
0–Dm
2013-8-4
AM
FM
3
调频波与调相波的关系
频率调制和相位调制都是改变载波信号的相角, 只是该相角的变化随调制信号的变化关系不同, 它们之间存在着内在联系
J n (mF ) (1) J n (mF )
n
n
2 J n ( mF ) 1 3、
4、对于某一固定的
调相波的数学 表示式:
▼
vPM (t ) Vcm cos[ p (t )] Vcm cos[ c t K p v f (t ) 0 ] Vcm cos[ c t K PVm cos t 0 ] Vcm cos[ c t mP cos t 0 ]
12
调频波的数学表示式: t v FM (t ) Vcm cos[ F (t )] Vcm cos[ F ( )d 0 ]
0
Vcm cos[ c t K F v f ( )d 0 ]
0
t
K F Vm Vcm cos[ c t sin t 0 ] Vcm cos[ c t m F sin t 0 ]
2013-8-4
14
调频波和调相波的主要参数
频率调制 已调信号 瞬时角频率 附加相位 全相角 最大频移 最大相移 相位调制
v FM (t ) Vcm cos[ F (t )]
v PM (t ) Vcm cos[ p (t )]
F (t ) c K F v f (t )
p (t ) c K p dv f (t ) / dt
v f (t ) Vm cos t
调频波的表示式为:
vFM (t ) cos[ ct mF sin t ]
下面分析单频余弦信号调制下,调频波的频谱。
vFM (t ) cos ct cos(mF sin t ) sin ct sin( mF sin t )
式中,出现了cos(mF sin t )和sin( mF sin t ) 两个特殊函数。
2013-8-4
4
2013-8-4
5
《 高 频 电 子 线 路 》 ( 第 四 版 ) 张 肃 文 主 编 高 等 教 育 出 版 社
载波信号 的受控参量
解调方式 相干解调或 非相干解调
解调方式 的差别 频谱线性搬 移频谱结构 无变化
特点
频带窄 频带利 用率高
用途
幅 调 度 幅 调 制 调 频 角 度 调 调 相 制 PM AM FM
振幅
频率
鉴频或 频率检波
频谱非线性 频谱结构发 生变化属于 非线性频率 变换
相位
鉴相或 相位检波
频带宽 频带利 用不经 济、抗 干扰性 强
广播 电视 通信 遥测 数字 通信
2013-8-4
6
二、调频波的指标
1)频谱宽度
调频波的频谱从理论上来说,是无限宽的,但实际上, 如果略去很小的边频分量,则它所占频带宽度是有限的.根 据频宽分为宽带调频和窄带调频。 2)寄生调幅 调频波应是等幅波,但易引起调幅,应尽量避免。 3)抗干扰能力 调频波有较强的抗干扰能力。
其中 c 为调频波的中心频率(即载波频率),D m K F Vm 是频移的幅度,称为最大频偏或简称频偏。
D F (t ) max F (t ) c K F v f (t )