人教版2017高中数学(必修五)第一章 §1.1 正弦定理和余弦定理 1.1.2(一)PPT课件
必修5课件 1.1.1 正弦定理

当A为锐角
当A为直角或钝角
我舰在敌岛A南50西相距12 nmile的B处,发现敌舰正由岛沿北 10西的方向以10nmile/h的速度航行,问:我舰需要以多大速度, 沿什么方向航行才能用2小时追上敌舰? 即追击速度为14mile/h
AC BC 又:∵△ABC中,由正弦定理: sin B sin A
AC
2.找 j 与 AB 、AC 、 的夹角 CB
3。利用等式
AC + CB = AB ,与 j 作内积
比值的意义:三角形外接圆的直径2R
注意: (1)正弦定理适合于任何三角形。
a b c (2)可以证明 = = =2R(R为△ABC外接圆半径) sin A sin B sin C
(3)每个等式可视为一个方程:知三求一
ABC中,c 10, A 45 0 , C 30 0 , 求a, b和B 例1、已知在
例2、在 ABC中,b
3, B 60 0 , c 1, 求a和A, C
例3、ABC中,c
6 , A 45 0 , a 2, 求b和B, C
ቤተ መጻሕፍቲ ባይዱ
解三角形时,注意大边对大角
小结:1。正弦定理可以用于解决已知两角和一边求另两边和一角的 问题。 2。正弦定理也可用于解决已知两边及一边的对角,求其他边 和角的问题。 3。正弦定理及应用于解决两类问题,注意多解情况。 注意: ABC中,已知a, b和A时解三角形的情况: 在
人教版 必修五
第一章
解三角形
1.1.1 正弦定理
正弦定理 证明一(传统证法)在任意斜△ABC当中:
1 1 1 ab sin C ac sin B bc sin A S△ABC= 2 2 2 1 b a c abc 两边同除以 即得: = = 2 sin C , sin A sin B
高中数学必修五 目录

第一章解三角形
1.1 正弦定理和余弦定理
1.1.1 正弦定理
1课时
1.1.2 余弦定理
第1课时
1.2 应用举例
第1课时高度、距离
第2课时角度及其他问题
第3课时正余弦定理在几何中的应用章末检测卷第二章数列
2.1 数列的概念与简单表示法
1课时
2.2 等差数列
第1课时等差数列的概念
第2课时等差数列的性质
2.3 等差数列的前n项和
第1课时等差数列前n项和公式
第2课时等差数列习题课
2.4 等比数列
第1课时等比数列的概念
第2课时等比数列的性质
2.5 等比数列的前n项和
第1课时等比数列的前n项和公式
第2课时等差、等比数列综合应用
第3课时数列求和
章末检测卷
第三章不等式
3.1不等关系与不等式
1课时
3.2一元二次不等式及其解法
第1课时一元二次不等式及其解法
第2课时一元二次不等式的应用
3.3二元一次不等式(组与简单的线性规划问题3.3.1 二元一次不等式(组与平面区域
1课时
3.3.2 简单的线性规划问题
第1课时简单的线性规划问题
第2课时简单的线性规划问题的应用3.4基本不等式第1课时基本不等式
第2课时基本不等式的应用
章末检测卷。
人教版高中数学必修五正弦定理和余弦定理课件

解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是
(人教新课标)高二数学必修5第一章 解三角形《正、余弦定理》精品课件

正弦定理的应用举例 一、已知两个角和一边
变式训练一
二、已知两个边和其中一边的一个对角
变式训练二
已知下列各三角形中的两边及其一边的对角,先判断 三角形是否有解?有解的作出解答. (1)a=7,b=8,∠A=105°; (2)a=10,b=20,∠A=80°; (3)b=10,c=5,∠C=60°; (4)a=2,b=6,∠A=30°.
余弦定理的由来 /edu/ppt/ppt_playVideo.action?medi aVo.resId=55c96ff1af508f0099b1c5b6
高铁隧道招标,利用三角形确定隧道长度 /edu/ppt/ppt_playVideo.action? mediaVo.resId=55c97049af508f0099b1c5bc
A 5620
a 2 c 2 b 2 134.6 2 161.7 2 87.82 cosB 0.8398 , 2ac 2 134.6 161.7
B 3253
C 180 A B 180 5620 3253 9047
解三角形:
一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形素的过程叫做解三角形. 说明: 根据初中学习的三角形全等,我们知道确定一个三角需要
三个条件,所以在利用正弦定理时要求已知两边和其中一 边的对角或者两角和一边,才可以进一步确定三角形其它 的边和角.
回忆一下直角三角形的边角关系? b a sin B sin A c c
两等式间有联系吗?
B
A c a b
a b c sin A sin B
sin C 1
C
a b c sin A sin B sin C
高中数学必修5第一章:解三角形

外接圆法
A
BOb CFra bibliotekB`B a
c
O
C
b
A
C′
A
ObC B` B
A O bC
B
一.正弦定理: 在一个三角形中,各边和它所对角的正弦
的比相等,即
注意:
(1)正弦定理指出了任意三角形中三条边与对应角的正弦 之间的一个关系式.由正弦函数在区间上的单调性可知, 正弦定理非常好地描述了任意三角形中边与角的一种数 量关系.
2.在△ABC中,已知下列条件,解三角形(角度精确到1o, 边长精确到1cm): (1) a=20cm,b=11cm,B=30o; (2) c=54cm,b=39cm,C=115o.
3.判断满足下列条件的三角形的个数:
(1)b=11, a=20, B=30o 两解
(2)c=54, b=39, C=120o 一解
由此可知余弦定理是勾股定理的推广,勾股定理是余 弦定理的特例.
余弦定理及其推论的基本作用是什么? ①已知三角形的任意两边及它们的夹角可以求出第三边; ②已知三角形的三条边就可以求出其他角.
例1 在△ABC中,已知b=60 cm,c=34 cm,A=41° ,解三 角形(角度精确到1°,边长精确到1 cm). 解:方法一: 根据余弦定理,
用正弦定理试求,发现因A、B均
A
未知,所以较难求边c.
由于涉及边长问题,从而可以
考虑用向量来研究这个问题.
C
B
.
,
A
,
,
C
B
,
.
一、余弦定理: 三角形中任何一边的平方等于其他两边的平方的和减
去这两边与它们的夹角的余弦的积的两倍,即
注:利用余弦定理,可以从已知的两边及其夹角求出三角 形的第三条边.
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理人教A版必修5

∴A=60°,C=180°-(A+B)=75°.
探究 2 已知三边(三边关系)解三角形 例 2 (1)在△ABC 中,若 a=7,b=4 3,c= 13,则 △ABC 的最小角为( )
πππ π A.3 B.6 C.4 D.12 (2)在△ABC 中,角 A,B,C 的对边分别为 a,b,c, 已知 a-b=4,a+c=2b,且最大角为 120°,求此三角形的 最大边长. 答案 (2)见解析
2.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c, 5π
若 a=1,b= 7,c= 3,则 B=____6____. (2) 已知 △ABC 的 三边 分 别为 2,3,4 , 则此 三 角形是
___钝__角___三角形.
π (3)在△ABC 中,若 a2+b2-c2=ab,则角 C 的大小为 ___3_____.
解析 (1)因为 c<b<a,所以最小角为角 C. 所以 cosC=a2+2ba2b-c2=429×+74×8-4 133= 23, 所以 C=π6,故选 B.
(2)已知 a-b=4,且 a>b,且 a=b+4,又 a+c=2b, 则 b+4+c=2b,所以 b=c+4,则 b>c,从而 a>b>c,所以 a 为最大边,A=120°,b=a-4,c=a-8.
解 利用边的关系判断, 由正弦定理,得sinC=c,
sinB b 由 2cosAsinB=sinC,得 cosA=2ssininCB=2cb, 又 cosA=b2+2cb2c-a2,∴2cb=b2+2cb2c-a2,即 a=b.
又(a+b+c)(a+b-c)=3ab,∴(a+b)2-c2=3ab, ∴b=c, 综上 a=b=c,∴△ABC 为等边三角形.
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?
正弦定理和余弦定理
高中数学必修五知识点1.1:正弦定理和余弦定理一、学习目标1.掌握正、余弦定理。
2.能利用 正、余弦定理判断三角形的形状。
二、知识点说明1、正弦定理:R Cc B b A a 2sin sin sin ===. (其中R 为ABC ∆外接圆的半径)2sin ,2sin ,2sin ;a R A b R B c R C ⇔===sin ,sin ,sin ;222a b c A B C R R R⇔=== ::sin :sin :sin .a b c A B C ⇔= 用途:⑴已知三角形两角和任一边,求其它元素;⑵已知三角形两边和其中一边的对角,求其它元素。
2、余弦定理:2222222222cos ,2cos ,2cos .a b c bc A b a c ac B c a b ab C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos ,2cos ,2cos .2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩用途:⑴已知三角形两边及其夹角,求其它元素;⑵已知三角形三边,求其它元素。
注意:做题中两个定理经常结合使用.3、三角形面积公式:B ac A bcC ab S ABC sin 21sin 21sin 21===∆ 4、三角形内角和定理:在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5、一个常用结论:在ABC ∆中,sin sin ;a b A B A B >⇔>⇔> 若sin 2sin 2,.2A B A B A B π==+=则或特别注意,在三角函数中,sin sin A B A B >⇔>不成立。
三、典型例题1.设a ,b ,c 为△ABC 的三边,其面积S △ABC =123,bc =48,b -c =2,求a .解:由S △ABC =21bc sin A ,得123=21×48×sin A ∴ sin A =23∴ A =60°或A =120°a 2=b 2+c 2-2bc cos A=(b -c )2+2bc (1-cos A ) =4+2×48×(1-cos A )当A =60°时,a 2=52,a =213当A =120°时,a 2=148,a =2372.把一30厘米的木条锯成两段,分别做钝角三角行ABC 的两边AB 和BC ,且∠ABC=1200, AB= 时,才能使第三条边AC 最短。
人教版高中数学必修五目录
人教版高中数学必修五目录 1.1正弦定理与余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.2.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用领域3.5二元一次不等式(组)与简单的线性规划问题如何努力学习高中数学一·培养良好的学习兴趣自学数学最出色的方法就是把数学培育成自己的嗜好。
嗜好高中数学就可以有兴趣回去课堂教学高中数学的自学方法,有兴趣才可以构成自学的主动性和积极性。
养好较好的自学习惯,并把它培育成自学兴趣存有这几点建议:(1)课前预习,对所有学识产生疑问,产生好奇心。
(2)听讲中要协调老师授课,满足用户感官的兴奋性,听讲重点化解复习中疑点,把老师课堂的回答·停滞·教具和模型的模拟的都视作观赏音乐,及时提问老师课堂回答,培育思索与老师同步性,提升精神,把老师对你的回答的评价,变成鞭策自学的动力。
(3)思考问题注意归纳,挖掘你的学习的潜力。
(4)听讲中特别注意老师传授时的数学思想,多问什么必须这样的思索,这样的方法怎样就是产生的?把概念回归自然。
所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念·直角坐标系的产生·极坐标的产生都是从实际生活中抽象出来的。
只有回归现实才能对概念理解切实可靠,有应用概念判断·推理时会准确。
二、弄清楚概念、性质与基本方法弄清概念、性质和基本方法是每个学科学习的第一步也是最重要的一步,如果概念没有弄清就去解题是没有不碰壁的。
正确理解概念再做习题就比较容易了,通过习题的演算反过来还可以进一步理解概念与性质。
要弄清概念、性质和基本方法,就要先复习老师上课所讲的东西,要看一看课本上的相关内容。
人教A版高中数学必修5第一章 解三角形1.1 正弦定理和余弦定理教案
专题22正弦定理和余弦定理1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R a 2=b 2+c 22bc cos__A ;b 2=c 2+a 22ca cos__B ; c 2=a 2+b 2-2ab cos__C常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin_C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .高频考点一 利用正弦定理、余弦定理解三角形例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b .解得b =1.【感悟提升】(1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数. 【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.高频考点二 利用正弦、余弦定理判定三角形的形状例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a2=12c 2. (1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得(2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C ,所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3. 【感悟提升】(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin60° =2 3.高频考点三 正弦、余弦定理的简单应用例3、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案 B【感悟提升】(1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.高频考点三 和三角形面积有关的问题【例3】 (2016·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cosB +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解 (1)由已知及正弦定理得,2cos C (sin A cos B +sin B ·cos A )=sin C ,2cos C sin(A +B )=sinC ,故2sin C cos C =sin C . 由C ∈(0,π)知sin C ≠0, 可得cos C =12,所以C =π3.(2)由已知,12ab sin C =332,又C =π3,所以ab =6,由已知及余弦定理得,a 2+b 2-2ab cos C =7,故a 2+b 2=13, 从而(a +b )2=25.所以△ABC 的周长为5+7. 【方法规律】三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.【变式探究】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2a -b )cos C -c cos B =0.(1)求角C 的值;(2)若三边a ,b ,c 满足a +b =13,c =7,求△ABC 的面积.1.【2016高考新课标3理数】在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( ) (A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C . 2.【2016高考新课标2理数】ABC ∆的内角,,A B C 的对边分别为,,a b c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【答案】21133.【2016高考天津理数】在△ABC 中,若AB ,120C ∠=o ,则AC = ( ) (A )1(B )2(C )3(D )4【答案】A【解析】由余弦定理得213931AC AC AC =++⇒=,选A.4.【2016高考江苏卷】在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 ▲ . 【答案】8. 【解析】sin sin()2sin sin tan tan 2tan tan A B+C B C B C B C==⇒+=,又tan tan tan tan tan 1B+CA=B C -,因tan tan tan tan tan tan tan 2tan tan tan tan tan 8,A B C A B C A B C A B C =++=+≥≥即最小值为8.5.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sinA ),则A =( )A.3π4 B.π3 C.π4 D.π6解析 在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b 2,又a 2=2b 2(1-sin A ),所以cos A =sin A ,即tan A =1,又知A ∈(0,π),所以A =π4,故选C.答案 C【2015高考天津,理13】在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为 ,12,cos ,4b c A -==- 则a 的值为 . 【答案】【解析】因为0A π<<,所以sin 4A ==,又1sin 242ABC S bc A bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.【2015高考北京,理12】在ABC △中,4a =,5b =,6c =,则sin 2sin AC= .【答案】1【解析】222sin 22sin cos 2sin sin 2A A A a b c a C C c bc +-==⋅2425361616256⨯+-=⋅=⨯⨯【2015高考新课标1,理16】在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 . 【答案】(62-,6+2)AB 的取值范围为(62-,6+2).【2015江苏高考,15】(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB . (1)求BC 的长; (2)求C 2sin 的值 【答案】(17(243【2015高考湖南,理17】设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,,tan a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围. 【答案】(1)详见解析;(2)29,]28. 【解析】(1)由tan a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =,即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,故2B A π=+,即2B A π-=; (2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin A <<221992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是29]28.(2014·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·江西卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝ ⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.【解析】(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2=22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x .因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4,故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.(2014·四川卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.当sin α+cos α=0时,由α是第二象限角,得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2013·北京卷)在△ABC 中,a =3,b =2 6,∠B=2∠A. (1)求cos A 的值; (2)求c 的值.【解析】(1)因为a =3,b =2 6,∠B=2∠A, 所以在△ABC 中,由正弦定理得3sin A =2 6sin 2A .所以2sin Acos A sin A =2 63.故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为∠B=2∠A,所以cos B =2cos 2A -1=13.所以sin B =1-cos 2B =2 23.在△ABC 中,sin C =sin(A +B) =sin AcosB +cos Asin B =5 39. 所以c =a sin Csin A=5.(2013·全国卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a +b +c)(a -b +c)=ac. (1)求B ; (2)若sin Asin C =3-14,求C.=32, 故A -C =30°或A -C =-30°,因此C =15°或C =45°. (2013·浙江卷)已知α∈R,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 【答案】C【解析】由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan2α=-34,选择C.(2013·重庆卷)4cos 50°-tan 40°=( ) A. 2 B.2+32C. 3 D .2 2-1 【答案】C1.在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A.30° B.45°C.60°D.75°解析 法一 ∵S △ABC =12·AB ·AC ·sin A =32,即12×3×1×sin A =32,∴sin A =1, 由A ∈(0°,180°),∴A =90°,∴C =60°.故选C. 法二 由正弦定理,得sin B AC =sin C AB ,即12=sin C 3,sin C =32,又C ∈(0°,180°),∴C =60°或C =120°. 当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 答案 C2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =233,则B 等于( )A.π3B.5π6C.π6或5π6D.π6解析∵A=2π3,a=2,b=233,∴由正弦定理asin A=bsin B可得,sin B=basin A=2332×32=12.∵A=2π3,∴B=π6.答案 D3.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ) A.等边三角形 B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形答案 B4.△ABC的内角A,B,C的对边分别为a,b,c,则“a>b”是“cos 2A<cos 2B”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析因为在△ABC中,a>b⇔sin A>sin B⇔sin2A>sin2B⇔2sin2A>2sin2B⇔1-2sin2A<1-2sin2B⇔cos 2A<cos 2B.所以“a>b”是“cos 2A<cos 2B”的充分必要条件.答案 C5.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________. 答案π3或2π3解析 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 7.在△ABC 中,若b =5,B =π4,tan A =2,则a =______.答案 2108.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴sin A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C=4+3310, 所以,△ABC 的面积为S =12ac sin B =83+1825.10.如图,在△ABC 中,B =π3,AB =8,点D 在BC 边上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD 、AC 的长.在△ABD 中,由正弦定理得 BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+(2+3)2-2×8×5×12=49.所以AC =7.11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sin B =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b=2,故S △ABC =12ab sin C =12×2×2×32= 3.12.设f (x )=sin x cos x -cos 2⎝ ⎛⎭⎪⎫x +π4.(1)求f (x )的单调区间;精品文档. (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝ ⎛⎭⎪⎫A 2=0,a =1,求△ABC 面积的最大值.解 (1)由题意知f (x )=sin 2x 2-1+cos ⎝ ⎛⎭⎪⎫2x +π22=sin 2x 2-1-sin 2x 2=sin 2x -12. 由-π2+2k π≤2x ≤π2+2k π,k ∈Z, 可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π2+2k π≤2x ≤3π2+2k π,k ∈Z, 可得π4+k π≤x ≤3π4+k π,k ∈Z . 所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-π4+k π,π4+k π(k ∈Z ); 单调递减区间是⎣⎢⎡⎦⎥⎤π4+k π,3π4+k π(k ∈Z ). (2)由f ⎝ ⎛⎭⎪⎫A 2=sin A -12=0,得sin A =12, 由题意知A 为锐角,所以cos A =32. 由余弦定理a 2=b 2+c 2-2bc cos A ,可得1+3bc =b 2+c 2≥2bc ,即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.所以△ABC 面积的最大值为2+34.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a2+b2-c2 cos C = 2ab .
知识点三
适宜用余弦定理解决的两类基本的解三角形问题
思考1
观察知识点二第1条中的公式结构,其中等号右边涉及几个 量?你认为可用来解哪类三角形? 答案
每个公式右边都涉及三个量,两边及其夹角 . 故如果已知三
角形的两边及其夹角,可用余弦定理解三角形.
思考2
观察知识点二第2条中的公式结构,其中等号右边涉及几个
跟踪训练1
例1涉及线段长度,,以A为原点,边AB所在直线为x轴建立直角坐标系,
则A(0,0),B(c,0),C(bcos A,bsin A),
∴BC2=b2cos2A-2bccos A+c2+b2sin2A,
即a2=b2+c2-2bccos A.
跟踪训练2 在△ABC中,已知a=2,b= 2 2, C=15°,求A. 解答
由余弦定理,得 c =a +b -2abcos C=8-4 3,
2 2 2
所以 c= 6- 2.
asin C 1 由正弦定理,得 sin A= c =2,
因为b>a,所以B>A,所以A为锐角,所以A=30°.
命题角度2 已知三边 例3 在△ABC中,已知a=134.6 cm,b=87.8 cm,c=161.7 cm,解 三角形.(角度精确到1′) 解答
第一章 §1.1
正弦定理和余弦定理
1.1.2 余弦定理(一)
学习目标
1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.
2.会运用余弦定理解决两类基本的解三角形问题.
内容索引
问题导学
题型探究
当堂训练
问题导学
知识点一
余弦定理的推导
思考1
根据勾股定理,若△ABC 中, ∠C = 90°,则 c2 = a2 + b2 = a2 +b2-2abcos C.① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a=b=c时,∠C=60°,
a2+b2-2abcos C=c2+c2-2c· ccos 60°=c2,
即①式仍成立,据此猜想,对一般△ABC,都有c2=a2+b2-
2abcos C.
思考2
在c2=a2+b2-2abcos C中,abcos C能解释为哪两个向量的 数量积?你能由此证明思考1的猜想吗? 答案
→ → → → abcos C=|CB||CA|cos<CB,CA>=CB· CA.
的形状. 解答 因为a∶b∶c=sin A∶sin B∶sin C=2∶4∶5,
所以可令a=2k,b=4k,c=5k(k>0).
2k2+4k2-5k2 c 最大,cos C= <0, 2×2k×4k
所以C为钝角,从而三角形为钝角三角形.
当堂训练
3 1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-5, 则三角形 的另一边长为 答案 解析
a2+b2-c2 4c2+4c2-c2 7 由余弦定理,得 cos C= = = . 2ab 2×2c×2c 8
另外,也可通过建立坐标系利用两点间距离公式证明余弦定理.
知识点二
1.a2= b2+c2-2bccos A c2= a2+b2-2abcos C .
2 2 2 b + c - a 2.cos A = ; 2bc
余弦定理的呈现形式
cacos B ,b2= c2+a2-2,
2 2 2 c + a - b cos B = 2ca ;
量?你认为可用来解哪类三角形? 答案 每个公式右边都涉及三个量,即三角形的三条边,故如果已
知三角形的三边,也可用余弦定理解三角形.
梳理
余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知
三边,解三角形.
题型探究
类型一 余弦定理的证明
例1 已知△ABC,BC=a,AC=b和角C,求解c.
反思与感悟
b2+c2-a2 已知三边求三角,可利用余弦定理的变形 cos A= 2bc ,cos B= a +c -b b +a -c , cos C = 求一个角,求其余角时,可用余弦定理也 2ac 2ba
2 2 2 2 2 2
可用正弦定理.
跟踪训练3
在△ABC中,sin A∶sin B∶sin C=2∶4∶5,判断三角形
a2+b2-c2 由余弦定理,得 cos C= 2ab 72+4 32- 132 3 = =2. 2×7×4 3
π 又∵C 为锐角,∴C=6.
1 2 3
3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为
5 A. 18
3 B. 4
3 C. 2
√
7 D. 8
答案
解析
设顶角为C,周长为l,因为l=5c,
A.52 B. 2 √
13
C.16
D.4
设另一边长为 x, 3 则 x =5 +3 -2×5×3×(-5)=52,
2 2 2
∴x=2 13.
1
2
3
2.在△ABC 中,a=7,b=4 3,c= 13,则△ABC 的最小角为 π A. 3
√
π B. 6
π C. 4
π D. 12
答案
解析
∵a>b>c,∴C为最小角且C为锐角,
同理可证b2=c2+a2-2cacos B,
c2=a2+b2-2abcos C.
类型二 例2
用余弦定理解三角形
命题角度1 已知两边及其夹角 在△ABC中,已知b=60 cm,c=34 cm,A=41°,解三角形.(角 度精确到1°,边长精确到1 cm) 解答
反思与感悟
已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再 利用正弦定理求其余的角.
解答
如图,设CB=a,CA=b,AB=c,
由AB=CB-CA,知 c=a-b,
则|c|2=c· c=(a-b)· (a-b)
=a · a +b · b-2a· b
→
→
→
→
→
→
=a2+b2-2|a||b|cos C.
所以c2=a2+b2-2abcos C.
反思与感悟
所谓证明,就是在新旧知识间架起一座桥梁 .桥梁架在哪儿,要勘探地 形,证明一个公式,要观察公式两边的结构特征,联系已经学过的知 识,看有没有相似的地方.
∴a2+b2-2abcos C →2 →2 → → =CB +CA -2CB· CA → → 2 →2 2 =(CB-CA) =AB =c . 猜想得证.
→ →
梳理
余弦定理的发现是基于已知两边及其夹角求第三边的需要.因为两边
及其夹角恰好是平面向量一组基底的条件,所以能把第三边用基底表
示进而求出模长.