高中数学正余弦定理
高中数学正弦余弦公式大全

正弦定理和余弦定理一:基础知识理解1 .正弦定理分类内容定理===2 R ( R 是△ ABC 外接圆的半径 )变形公式① a = 2 R sin _ A , b = 2 R sin _ B , c = 2 R sin _ C ,② sin A ∶ sin B ∶ sin C =a ∶ b ∶ c ,③ sin A =,sin B =,sin C =解决的问题① 已知两角和任一边,求其他两边和另一角,② 已知两边和其中一边的对角,求另一边的对角2 .余弦定理分类内容定理在△ ABC 中,有 a 2 = b 2 + c 2 -2 bc cos _ A ;b 2 = a 2 +c 2 -2 ac cos _ B ; c 2 = a 2 + b 2 -2 ab cos _ C 变形公式cos A =;cos B =;cos C =解决的问题① 已知三边,求各角;② 已知两边和它们的夹角,求第三边和其他两个角3 .三角形中常用的面积公式( 1 ) S = ah ( h 表示边 a 上的高 );( 2 ) S = bc sin A = ac sin B = ab sin C ;( 3 ) S = r ( a + b + c )( r 为三角形的内切圆半径 ).二:基础知识应用演练1 .( 2012·广东高考 ) 在△ ABC 中,若∠ A = 60°,∠ B = 45°, BC = 3 ,则 AC =()A . 4B . 22 .在△ ABC 中, a =, b = 1 , c = 2 ,则 A 等于 ()A . 30°B . 45°C . 60°D . 75°3 .( 教材习题改编 ) 在△ ABC 中,若 a = 18 , b = 24 , A = 45°,则此三角形有 ()A .无解B .两解C .一解D .解的个数不确定4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c .若 a = 2 , B =, c = 2 ,则 b = ________.5 .△ ABC 中, B = 120°, AC = 7 , AB = 5 ,则△ ABC 的面积为________ .解析:1 选B 由正弦定理得:=,即=,所以 AC = × =2 .2 选C ∵ cos A ===,又∵ 0°< A <180°,∴ A =60°.3 选B ∵ =,∴ sin B = sin A = sin 45°,∴ sinB = .又∵ a < b ,∴ B 有两个.4 由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B =4+12-2×2×2 × =4,所以 b =2.答案:25、解析:设 BC = x ,由余弦定理得49=25+ x 2 -10 x cos 120°,整理得 x 2+5 x -24=0,即 x =3.因此 S △ ABC = AB × BC ×sin B = ×3×5× = . 答案:小结: ( 1 ) 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ ABC 中,A > B ⇔ a > b ⇔ sin A >sin B .( 2 ) 在△ ABC 中,已知 a 、 b 和 A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a = b sin A b sin A < a < b a ≥ b a > b解的个数一解两解一解一解三、典型题型精讲(1)利用正弦、余弦定理解三角形[例1] ( 2012·浙江高考 ) 在△ ABC 中,内角 A , B , C 的对边分别为 a , b ,c ,且 b sin A = a cos B .( 1 ) 求角 B 的大小; ( 2 ) 若 b = 3 , sin C = 2sin A ,求 a , c 的值.解析: ( 1 ) 由 b sin A = a cos B 及正弦定理=,得sinB = cos B ,所以tan B =,所以 B = .(2) 由 sin C =2sin A 及=,得 c = 2 a . 由 b =3 及余弦定理 b 2 = a 2 + c 2 -2 ac cos B ,得 9= a 2 + c 2 - ac . 所以 a =, c =2 .思考一下:在本例 ( 2 ) 的条件下,试求角 A 的大小.方法小结:1 .应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2 .已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练 1 .△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c , a sin A sin B + b cos 2 A = a .( 1 ) 求;( 2 ) 若 c 2 = b 2 + a 2 ,求 B .解: ( 1 ) 由正弦定理得,sin 2 A sin B +sin B cos 2 A = sin A ,即 sin B ( sin 2 A +cos 2 A ) = sin A .故 sin B = sin A ,所以= .( 2 ) 由余弦定理和 c 2 = b 2 + a 2 ,得 cos B = .由 (1) 知 b 2 = 2 a 2 ,故 c 2 =(2+ ) a 2 . 可得 cos 2 B =,又 cos B >0,故 cos B =,所以 B =45°.(2)利用正弦、余弦定理判定三角形的形状[例2] 在△ ABC 中 a , b , c 分别为内角 A , B , C 的对边,且2 a sin A =( 2 b + c ) sin B +( 2 c + b ) sin C .( 1 ) 求 A 的大小;( 2 ) 若sin B + sin C = 1 ,试判断△ ABC 的形状.[ 解析 ] ( 1 ) 由已知,根据正弦定理得 2 a 2 = ( 2 b + c ) · b + ( 2 c + b ) c ,即a 2 = b 2 + c 2 + bc .由余弦定理得 a 2 = b 2 + c 2 -2 bc cos A ,故 cos A =-,∵ 0< A <180°,∴ A =120°.(2) 由 (1) 得 sin 2 A =sin 2 B +sin 2 C +sin B sin C =又 sin B +sin C =1,解得 sin B =sin C = .∵ 0°< B <60°,0°< C <60°,故 B = C ,∴△ ABC 是等腰的钝角三角形.方法小结:依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:( 1 ) 利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;( 2 ) 利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用 A + B + C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.试题变式演练 ( 2012·安徽名校模拟 ) 已知△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c ,向量 m =( 4 ,- 1 ), n =,且m · n = .( 1 ) 求角 A 的大小;( 2 ) 若 b + c = 2 a = 2 ,试判断△ ABC 的形状.解:( 1 ) ∵ m = ( 4,-1 ) , n =,∴ m · n =4cos 2 -cos 2 A =4·- ( 2cos 2 A -1 ) =-2cos 2 A +2cos A +3.又∵ m · n =,∴ -2cos 2 A +2cos A +3=,解得 cos A =. ∵ 0< A < π ,∴ A = .(2) 在△ ABC 中, a 2 = b 2 + c 2 -2 bc cos A ,且 a =,∴ ( ) 2 =b 2 +c 2 -2 bc ·= b 2 + c 2 -bc . ①又∵ b + c =2 ,∴ b =2 - c ,代入① 式整理得 c 2 - 2 c +3=0,解得 c =,∴ b =,于是 a = b = c =,即△ ABC 为等边三角形.(3)与三角形面积有关的问题[例3] ( 2012·新课标全国卷 ) 已知 a , b , c 分别为△ ABC 三个内角 A , B ,C 的对边, a cos C + a sin C - b - c = 0.( 1 ) 求 A ;( 2 ) 若 a = 2 ,△ ABC 的面积为,求 b , c .[ 解 ] ( 1 ) 由 a cos C + a sin C - b - c =0及正弦定理得sin A cos C + sin A sin C -sin B -sin C =0.因为 B =π- A - C ,所以 sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin = . 又0< A <π,故 A = .( 2 ) △ ABC 的面积 S = bc sin A =,故 bc =4.而 a 2 = b 2 + c 2 -2 bc cos A ,故 b 2 + c 2 =8. 解得 b = c =2.方法小结:1 .正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2 .在解决三角形问题中,面积公式 S = ab sin C = bc sin A = ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.试题变式演练 ( 2012·江西重点中学联考 ) 在△ ABC 中, cos 2 A = cos 2 A -cos A .( 1 ) 求角 A 的大小;( 2 ) 若 a = 3 , sin B = 2sin C ,求 S △ ABC .解: ( 1 ) 由已知得 ( 2cos 2 A -1 ) =cos 2 A -cos A ,则cos A = .因为0< A <π,所以 A = .( 2 ) 由=,可得==2,即 b = 2 c .所以cos A ===,解得 c =, b =2 ,所以 S △ ABC = bc sin A = ×2 × × = .课后强化与提高练习(基础篇-必会题)1 .在△ ABC 中, a 、 b 分别是角 A 、 B 所对的边,条件“ a < b ”是使“cosA >cosB ”成立的 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2 .( 2012·泉州模拟 ) 在△ ABC 中, a , b , c 分别是角 A , B , C 所对的边.若 A =, b = 1 ,△ ABC 的面积为,则 a 的值为 ()A . 1B . 23 .( 2013·“江南十校”联考 ) 在△ ABC 中,角 A , B , C 所对的边分别为 a , b ,c ,已知 a = 2 , c = 2 , 1 +=,则 C =()A . 30°B . 45°C . 45°或135°D . 60°4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c ,若 a 2 + b 2 = 2 c 2 ,则cos C 的最小值为 ()D .-5 .( 2012·上海高考 ) 在△ ABC 中,若sin 2 A + sin 2 B <sin 2 C ,则△ ABC 的形状是 ()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6 .在△ ABC 中,角 A 、 B 、 C 所对的边分别是 a 、 b 、 c .若 b = 2 a sin B ,则角 A 的大小为________ .解析:由正弦定理得sin B =2sin A sin B ,∵ sin B ≠0,7 .在△ ABC 中,若 a = 3 , b =, A =,则 C 的大小为________ .8 .( 2012·北京西城期末 ) 在△ ABC 中,三个内角 A , B , C 的对边分别为 a ,b ,c .若 b = 2 , B =, sin C =,则 c = ________ ; a = ________.9 .( 2012·北京高考 ) 在△ ABC 中,若 a = 2 , b + c = 7 , cos B =-,则 b = ________.10 .△ ABC 的内角 A , B , C 的对边分别为 a , b , c , a sin A + c sin C -a sin C =b sin B .( 1 ) 求 B ;( 2 ) 若 A = 75°, b = 2 ,求 a , c .11 .( 2013·北京朝阳统考 ) 在锐角三角形 ABC 中, a , b , c 分别为内角 A , B ,C 所对的边,且满足 a - 2 b sin A = 0.( 1 ) 求角 B 的大小;( 2 ) 若 a + c = 5 ,且 a > c , b =,求 ·的值.12 .( 2012·山东高考 ) 在△ ABC 中,内角 A , B , C 所对的边分别为 a , b ,c ,已知sin B ( tan A + tan C )= tan A tan C .( 1 ) 求证: a , b , c 成等比数列;( 2 ) 若 a = 1 , c = 2 ,求△ ABC 的面积 S .课后强化与提高练习(提高篇-选做题)1 .( 2012·湖北高考 ) 设△ ABC 的内角 A , B , C 所对的边分别为 a , b , c .若三边的长为连续的三个正整数,且 A > B > C , 3 b = 20 a cos A ,则sin A ∶ sin B ∶ sin C 为 ()A .4 ∶ 3 ∶ 2B .5 ∶ 6 ∶ 7C .5 ∶ 4 ∶ 3D .6 ∶ 5 ∶ 42 .( 2012·长春调研 ) 在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,已知4sin 2 - cos 2 C =,且 a + b = 5 , c =,则△ ABC 的面积为________ .3 .在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,且满足 ( 2 b - c ) cos A - a cos C = 0.( 1 ) 求角 A 的大小;( 2 ) 若 a =, S △ ABC =,试判断△ ABC 的形状,并说明理由.选做题1 .已知 a , b , c 分别是△ ABC 的三个内角 A , B , C 所对的边.若 a = 1 ,b =, A + C = 2 B ,则sin C = ________.2 .在△ ABC 中, a = 2 b cos C ,则这个三角形一定是 ()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3 .在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c ,已知cos 2 C =- .( 1 ) 求sin C 的值;( 2 ) 当 a = 2 , 2sin A = sin C 时,求 b 及 c 的长.4 .设△ ABC 的内角 A , B , C 所对的边长分别为 a , b , c ,且cos B =, b = 2.( 1 ) 当 A = 30°时,求 a 的值;( 2 ) 当△ ABC 的面积为3时,求 a + c 的值.课后强化与提高练习(基础篇-必会题)解析1 解析:选C a < b ⇔ A < B ⇔ cos A >cos B .2 解析:选D 由已知得 bc sin A = ×1× c ×sin =,解得 c = 2 ,则由余弦定理可得 a 2 = 4 + 1 - 2×2×1×cos =3 ⇒ a = .3 解析:选B 由1 +=和正弦定理得 cos A sin B +sin A cos B=2sin C cos A ,即 sin C =2sin C cos A ,所以 cos A =,则 A =60°. 由正弦定理得=,则 sin C =,又 c < a ,则 C <60°,故 C =45°.4 解析:选 C 由余弦定理得 a 2 + b 2 - c 2 =2 ab cos C ,又 c 2 =( a 2 + b 2 ),得 2 ab cos C = ( a 2 + b 2 ),即 cos C =≥ = .6 解析:选 C 由正弦定理得 a 2 + b 2 < c 2 ,所以 cos C =<0,所以 C 是钝角,故△ ABC 是钝角三角形.∴ sin A =,∴ A =30°或 A =150°. 答案:30°或 150°7 解析:由正弦定理可知 sin B ===,所以 B =或 ( 舍去 ),所以 C =π - A - B =π --= . 答案:8 解析:根据正弦定理得=,则 c ==2 ,再由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,即 a 2 - 4 a -12=0,( a +2)( a -6)=0,解得 a =6 或 a =-2( 舍去 ).答案:2 69 解析:根据余弦定理代入 b 2 =4+(7- b ) 2 -2×2×(7- b )× ,解得b =4. 答案:410 解:(1) 由正弦定理得 a 2 + c 2 - ac = b 2 . 由余弦定理得 b 2 = a 2 +c 2 -2 ac cos B .故cos B =,因此 B =45°.(2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°= .故 a = b × ==1+, c = b × =2×= .1 1 解:(1) 因为 a -2 b sin A =0,所以 sin A -2sin B sin A =0,因为sin A ≠0,所以 sin B = . 又 B 为锐角,所以 B = .( 2 ) 由 ( 1 ) 可知, B = .因为 b = .根据余弦定理,得7= a 2 + c 2 -2 ac cos ,整理,得 ( a + c ) 2 - 3 ac =7.由已知 a + c =5,得 ac =6.又 a > c ,故 a =3, c =2.于是cos A ===,所以 ·=| |·| |cos A = cb cos A=2× × =1.12 解: ( 1 ) 证明:在△ ABC 中,由于sin B ( tan A +tan C ) =tan A tan C ,所以sin B = ·,因此sin B ( sin A cos C +cos A sin C ) =sin A sin C ,所以 sin B sin( A + C )=sin A sin C .又 A + B + C =π ,所以 sin( A + C )=sin B ,因此 sin 2 B =sin A sin C .由正弦定理得 b 2 = ac ,即 a , b , c 成等比数列.( 2 ) 因为 a =1, c =2,所以 b =,由余弦定理得cos B ===,因为0< B <π,所以sin B ==,故△ ABC 的面积 S = ac sin B = ×1×2× = .课后强化与提高练习(提高篇-选做题)解析1 解析:选D 由题意可得 a > b > c ,且为连续正整数,设 c = n , b = n +1,a = n +2 ( n >1,且n ∈ N * ) ,则由余弦定理可得3 ( n +1 ) =20 ( n +2 ) ·,化简得7 n 2 -13 n -60=0,n ∈ N * ,解得 n =4,由正弦定理可得sin A ∶ sin B ∶ sin C =a ∶ b ∶ c =6 ∶ 5 ∶ 4.2 解析:因为4sin 2 -cos 2 C =,所以2[1-cos( A + B )]-2cos 2 C +1=,2+2cos C -2cos 2 C +1=,cos 2 C -cos C +=0,解得cos C = .根据余弦定理有cos C ==,ab = a 2 + b 2 -7 , 3 ab = a 2 + b 2 +2 ab -7= ( a + b ) 2 -7=25-7=18,ab =6,所以△ ABC 的面积 S △ ABC = ab sin C = ×6× =.答案:3 解: ( 1 ) 法一:由 ( 2 b - c ) cos A - a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴ 2sin B cos A -sin( A + C )=0,sin B (2cos A -1)=0. ∵ 0< B < π ,∴ sin B ≠0,∴ cos A =. ∵ 0< A < π ,∴ A= .法二:由 (2 b - c )cos A - a cos C =0,及余弦定理,得 (2 b - c )·- a ·=0,整理,得 b 2 + c 2 - a 2 = bc ,∴ cos A ==,∵ 0<A < π ,∴ A = .(2) ∵ S △ ABC = bc sin A =,即 bc sin =,∴ bc =3,①∵ a 2 = b 2 + c 2 -2 bc cos A , a =, A =,∴ b 2 + c 2 =6,② 由①② 得 b = c =,∴△ ABC 为等边三角形.选择题解析1 解析:在△ ABC 中, A + C =2 B ,∴ B =60°. 又∵ sin A ==,∴ A =30°或 150°( 舍 ),∴ C =90°,∴ sin C =1.答案:12 解析:选A 法一: ( 化边为角 ) 由正弦定理知:sin A =2sin B cos C ,又 A =π -( B + C ),∴ sin A =sin( B + C )=2sin B cos C .∴ sin B cos C +cos B sin C =2sin B cos C ,∴ sin B cos C -cos B sin C =0,∴ sin ( B - C ) =0.又∵ B 、 C 为三角形内角,∴ B = C .法二: ( 化角为边 ) 由余弦定理知cos C =,∴ a =2 b ·=,∴ a 2 = a 2 + b 2 - c 2 ,∴ b 2 = c 2 ,∴ b = c .3 解: ( 1 ) 因为cos 2 C =1-2sin 2 C =-,且0< C <π,所以sin C = .( 2 ) 当 a =2 , 2sin A =sin C 时,由正弦定理=,得 c =4.由cos 2 C =2cos 2 C -1=-,及0< C <π得cos C =± .由余弦定理 c 2 = a 2 + b 2 -2 ab cos C ,得 b 2 ± b -12=0,解得 b =或2 ,所以或4 解: ( 1 ) 因为cos B =,所以sin B = .由正弦定理=,可得=,所以 a = .( 2 ) 因为△ ABC 的面积 S = ac ·sin B ,sin B =,所以 ac =3, ac =10.由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,得4= a 2 + c 2 - ac = a 2 + c 2 -16,即 a 2 + c 2 =20.所以 ( a + c ) 2 - 2 ac =20, ( a + c ) 2 =40.所以 a + c =2 .。
高中数学理科基础知识讲解《46正弦定理和余弦定理》教学课件

(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1(-13,9);当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.
--
对点训练1(2019江苏丹阳高级中学模拟)如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于( )
D
--
二、测量距离问题的模型案例2(2019江苏,18)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P,Q两点间的距离.
--
考点4
对点训练4如图,一辆汽车在一条水平的公路上向正西方向行驶,到a处时测得公路北侧一 脚c在西偏北30°的方向上,行驶600 m后到达b处,测得此 脚c在西偏北75°的方向上, 顶d的仰角为30°,则此 的高度cd= m.
高中数学高三第三章正弦定理、余弦定理【教案】

§3.7正弦定理、余弦定理1.正弦、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容错误!=错误!=错误!=2R a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B; c2=a2+b2-2ab cos C变形(1)a=2R sin A,b=2R sin B,c=2R sinC;(2)sin A=错误!,sin B=错误!,sin C=错误!;(5)cos A=错误!cos B=错误!;cos C=错误!(3)a ∶b ∶c =sinA ∶sinB ∶sinC ;(4)a sin B =b sin A ,b sinC =c sin B ,a sin C =c sin A2.S △ABC =12ab sin C =错误!bc sin A =错误!ac sin B =错误!=错误!(a +b +c )·r (r是三角形内切圆的半径),并可由此计算R 、r 。
3.在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a 〈b a ≥b a 〉b解的个数一解 两解 一解 一解【思考辨析】判断下面结论是否正确(请在括号中打“√"或“×")(1)在△ABC中,A>B必有sin A>sin B.(√)(2)若满足条件C=60°,AB=错误!,BC=a的△ABC有两个,那么a的取值范围是(3,2).( √)(3)若△ABC中,a cos B=b cos A,则△ABC是等腰三角形.( √) (4)在△ABC中,tan A=a2,tan B=b2,那么△ABC是等腰三角形.( ×)(5)当b2+c2-a2〉0时,三角形ABC为锐角三角形;当b2+c2-a2=0时,三角形为直角三角形;当b2+c2-a2<0时,三角形为钝角三角形.(×)(6)在△ABC中,AB=错误!,AC=1,B=30°,则△ABC的面积等于错误!.(×)1.(2013·湖南改编)在锐角△ABC中,角A,B所对的边长分别为a,b,若2a sin B=3b,则角A=。
人教版高中数学必修五正弦定理和余弦定理课件

解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是
余弦定理、正弦定理课件-2025届高三数学一轮复习

2
5
10
(2)[2021全国卷乙]记△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,面积为
3 , B =60°, a 2+ c 2=3 ac ,则 b =
1
2
[解析] 由题意得 S △ ABC = ac sin B =
2 2
3
ac =
4
.
3 ,则 ac =4,所以 a 2+ c 2=3 ac =
A为锐角
A为钝角或直角
图形
关系式
a<b sinA
解的个数
无解
a=b sinA
⑪ 一解
b sin A<a<b
⑫
两解
a≥b
⑬ 一解
a>b
a≤b
一解
无解
3. 三角形中常用的面积公式
△ ABC 中,角 A , B , C 对应的边分别为 a , b , c .则:
1
(1) S = ah ( h 表示边 a 上的高);
(2,8) .
2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
(
D )
A. 1
B. 2
C. 5
D. 3
[解析] 由余弦定理得 AC 2= AB 2+ BC 2-2 AB ·BC ·cos B ,得 BC 2+2 BC -15=
高中正余弦定理数学公式有哪些

高中正余弦定理数学公式有哪些高中正余弦定理数学公式有哪些高中正余弦定理数学公式正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosA诱导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα高考前数学的复习方法1、调整好状态,控制好自我。
保持清醒。
高考数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
2、提高解选择题的速度、填空题的准确度。
高考数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法。
尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
高中数学必修4平面向量复习5正弦定理余弦定理

5.5 正弦定理、余弦定理要点透视:1.正弦定理有以下几种变形,解题时要灵活运用其变形公式.(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =2a R ,sin B =2b R ,sin C =2c R: (3)sin A :sin B :sin C =a :b :c .可以用来判断三角形的形状,其主要功能是实现三角形中的边角关系转化,如常把a ,b ,c 换成2R sin A ,2R sin B ,2R sin C 来解题.2.判断三角形的形状特征,必须从研究三角形的边与边关系,或角与角的关系入手,充分利用正弦定理与余弦定理进行边角转化,由三角形的边或角的代数运算或三角运算,找出边与边或角与角的关系,从而作出正确判断.3.要注意利用△ABC 中 A +B +C =π,以及由此推得的一些基本关系式sin( B +C )=sin A ,cos (B +C )=-sin A ,sin 2B C +=cos 2A 等,进行三角变换的运用.4.应用解三角形知识解决实际问题时,要分析和研究问题中涉及的三角形,它的哪些元素是已知的,哪些元素是未知的,应选用正弦定理还是余弦定理进行求解.5.应用解三角形知识解实际问题的解题步骤:(1)根据题意画出示意图.(2)确定实际问题所涉及的三角形,并搞清该三角形的已知元和末知元.(3)选用正、余弦定理进行求解,并注意运算的正确性.(4)给出答案.活题精析:例1.( 2001年全国卷)已知圆内接四边形ABCD 的边长是AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.要点精析:本题主要考查三角函数的基础知识,以及应用三角形面积公式和余弦定理解三角形的方法,考查应用数学知识分析、解决实际问题的能力.解:如图所示,连BD ,四边形ABCD 的面积S =ABD CDB S S + =21AB ·AD ·sin A +21BC ·CD sin C , ∵ A +C =180°,∴ sin A = sin C ,于是 S =21(2×4+4×6)·sin A =16sin A . 在△ABD 中,BD 2=AB 2+AD 2-2AB ·AD cos A =20-16cos A .在△CBD 中,BD 2=CD 2+BC 2-2CD ·BC cos C =52-48cos C .又cos A =-cos C , ⇒cos A =-21, ∵ A ∈(0, π), ∴ A =32π, sin A =23. ∴ S =16×23=83. 例2.(2004春北京卷)在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边长,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及sin b B c 的值。
高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理和余弦定理一:基础知识理解 1.正弦定理(1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二:基础知识应用演练1.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D.322.在△ABC 中,a =3,b =1,c =2,则A 等于( ) A .30° B .45° C .60°D .75°3.(教材习题改编)在△ABC 中,若a =18,b =24,A =45°,则此三角形有( )A .无解B .两解C .一解D .解的个数不确定4.(2012·陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =________.5.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.解析:1选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.2选C ∵cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,又∵0°<A <180°,∴A =60°.3 选B ∵a sin A =b sin B ,∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.4 由余弦定理得b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4,所以b =2.答案:2 5、解析:设BC =x ,由余弦定理得49=25+x 2-10x cos 120°,整理得x 2+5x -24=0,即x =3. 因此S △ABC =12AB ×BC ×sin B =12×3×5×32=1534. 答案:1534小结:(1)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .(2)在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角 或直角图形关系式 a =b sin A b sin A <a <ba ≥b a >b 解的个数一解两解一解一解(1)利用正弦、余弦定理解三角形[例1] (2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B 的大小; (2)若b =3,sin C =2sin A ,求a ,c 的值.解析:(1)由b sin A =3a cos B 及正弦定理a sin A =b sin B ,得sin B =3cos B ,所以tan B =3,所以B =π3. (2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac . 所以a =3,c =2 3. 思考一下:在本例(2)的条件下,试求角A 的大小.方法小结:1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B .解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A = 2sin A ,即sin B (sin 2A +cos 2A )=2sin A . 故sin B = 2sin A ,所以ba= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a2c .由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°. (2)利用正弦、余弦定理判定三角形的形状[例2] 在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.[解析] (1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc . 由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,∵0<A <180°,∴A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34 又sin B +sin C =1,解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.方法小结:依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.试题变式演练 (2012·安徽名校模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝⎛⎭⎫cos 2A 2,cos 2A ,且m ·n =72. (1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =⎝⎛⎭⎫cos 2A2,cos 2A , ∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3.又∵m ·n =72, ∴-2cos 2A +2cos A +3=72,解得cos A =12.∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3,∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23, ∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.(3)与三角形面积有关的问题[例3] (2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .[解] (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C , 所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2. 方法小结:1.正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2.在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.试题变式演练 (2012·江西重点中学联考)在△ABC 中,12cos 2A =cos 2A -cos A .(1)求角A 的大小;(2)若a =3,sin B =2sin C ,求S △ABC .解:(1)由已知得12(2cos 2A -1)=cos 2A -cos A ,则cos A =12.因为0<A <π,所以A =π3.(2)由b sin B =c sin C ,可得sin B sin C =b c=2, 即b =2c . 所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12, 解得c =3,b =23,所以S △ABC =12bc sin A =12×23×3×32=332.课后强化与提高练习(基础篇-必会题)1.在△ABC 中,a 、b 分别是角A 、B 所对的边,条件“a <b ”是使“cos A >cos B ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2012·泉州模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边.若A =π3,b =1,△ABC 的面积为32,则a 的值为( ) A .1 B .2 C.32D. 33.(2013·“江南十校”联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan A tan B =2c b,则C =( )A .30°B .45°C .45°或135°D .60°4.(2012·陕西高考)在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12D .-125.(2012·上海高考)在△ABC 中,若sin 2 A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .若b =2a sin B ,则角A 的大小为________. 解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0,7.在△ABC 中,若a =3,b =3,A =π3,则C 的大小为________.8.(2012·北京西城期末)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若b =25,B =π4,sin C =55,则c =________;a =________. 9.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B . (1)求B ;(2)若A =75°,b =2,求a ,c .11.(2013·北京朝阳统考)在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.(1)求角B 的大小;(2)若a +c =5,且a >c ,b =7,求AB ·AC 的值.12.(2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .课后强化与提高练习(提高篇-选做题)1.(2012·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶42.(2012·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知4sin 2A +B 2-cos 2C =72,且a +b =5,c =7,则△ABC 的面积为________.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.选做题1.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.2.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知 cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长.4.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c , 且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值.课后强化与提高练习(基础篇-必会题)解析1解析:选C a <b ⇔A <B ⇔cos A >cos B .2解析:选D 由已知得12bc sin A =12×1×c ×sin π3=32,解得c =2,则由余弦定理可得a 2=4+1-2×2×1×cos π3=3⇒a = 3.3解析:选B 由1+tan A tan B =2cb 和正弦定理得cos A sin B +sin A cos B =2sin C cos A ,即sin C =2sin C cos A ,所以cos A =12,则A =60°.由正弦定理得23sin A =22sin C ,则sin C =22,又c <a ,则C <60°,故C =45°. 4解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cosC =a 2+b 24ab ≥2ab 4ab =12.6解析:选C 由正弦定理得a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以C 是钝角,故△ABC 是钝角三角形.∴sin A =12,∴A =30°或A =150°.答案:30°或150°7解析:由正弦定理可知sin B =b sin Aa =3sinπ33=12,所以B =π6或5π6(舍去),所以C =π-A -B =π-π3-π6=π2.答案:π28解析:根据正弦定理得b sin B =c sin C ,则c =b sin Csin B=22,再由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2-4a -12=0,(a +2)(a -6)=0,解得a =6或a =-2(舍去).答案:22 69解析:根据余弦定理代入b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14,解得b =4.答案:4 10解:(1)由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B . 故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故a =b ×sin A sin B =2+62=1+3,c =b ×sin C sin B =2×sin 60°sin 45°= 6.11解:(1)因为3a -2b sin A =0,所以 3sin A -2sin B sin A =0,因为sin A ≠0,所以sin B =32.又B 为锐角,所以B =π3. (2)由(1)可知,B =π3.因为b = 7.根据余弦定理,得7=a 2+c 2-2ac cos π3,整理,得(a +c )2-3ac =7. 由已知a +c =5,得ac =6.又a >c ,故a =3,c =2.于是cos A =b 2+c 2-a 22bc =7+4-947=714, 所以AB ·AC =|AB |·|AC |cos A =cb cos A=2×7×714=1. 12解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B ⎝⎛⎭⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C, 因此sin B (sin A cos C +cos A sin C )=sin A sin C ,所以sin B sin(A +C )=sin A sin C .又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sin C .由正弦定理得b 2=ac ,即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34, 因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74. 课后强化与提高练习(提高篇-选做题)解析1解析:选D 由题意可得a >b >c ,且为连续正整数,设c =n ,b =n +1,a =n +2(n >1,且n ∈N *),则由余弦定理可得3(n +1)=20(n +2)·(n +1)2+n 2-(n +2)22n (n +1),化简得7n 2-13n -60=0,n ∈N *,解得n =4,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.2解析:因为4sin 2A +B 2-cos 2C =72,所以2[1-cos(A +B )]-2cos 2C +1=72, 2+2cos C -2cos 2C +1=72,cos 2C -cos C +14=0,解得cos C =12.根据余弦定理有cos C =12=a 2+b 2-72ab, ab =a 2+b 2-7,3ab =a 2+b 2+2ab -7=(a +b )2-7=25-7=18,ab =6,所以△ABC 的面积S △ABC =12ab sin C =12×6×32=332.答案:3323解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴2sin B cos A -sin(A +C )=0,sin B (2cos A -1)=0. ∵0<B <π,∴sin B ≠0,∴cos A =12.∵0<A <π,∴A =π3. 法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab=0, 整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3. (2)∵S △ABC =12bc sin A =334, 即12bc sin π3=334,∴bc =3,①∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3, ∴b 2+c 2=6,②由①②得b =c =3,∴△ABC 为等边三角形.选择题解析1解析:在△ABC 中,A +C =2B ,∴B =60°.又∵sin A =a sin B b =12,∴A =30°或150°(舍),∴C =90°,∴sin C =1.答案:12解析:选A 法一:(化边为角)由正弦定理知:sin A =2sin B cos C ,又A =π-(B +C ),∴sin A =sin(B +C )=2sin B cos C .∴sin B cos C +cos B sin C =2sin B cos C ,∴sin B cos C -cos B sin C =0,∴sin(B -C )=0.又∵B 、C 为三角形内角,∴B =C .法二:(化角为边)由余弦定理知cos C =a 2+b 2-c 22ab, ∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a, ∴a 2=a 2+b 2-c 2,∴b 2=c 2,∴b =c .3解:(1)因为cos 2C =1-2sin 2C =-14,且0<C <π, 所以sin C =104. (2)当a =2,2sin A =sin C 时,由正弦定理a sin A =c sin C ,得c =4.由cos 2C =2cos 2C -1=-14,及0<C <π得cos C =±64. 由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或26,所以⎩⎪⎨⎪⎧ b =6,c =4或⎩⎪⎨⎪⎧b =26,c =4.4 解:(1)因为cos B =45,所以sin B =35. 由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53. (2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10. 由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20. 所以(a +c )2-2ac =20,(a +c )2=40.所以a +c =210.。