中考数学总复习之空间与图形-文档资料
中考数学空间与图形共26页文档

35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定ቤተ መጻሕፍቲ ባይዱ。
中考数学空间与图形
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
中考复习纲要专题五 空间图形与证明(北师大版)

考查内容
考查方式
学习目标
考点一
三角形的性质
三角形的三边关系
1、会用三边关系判断能否构成三角形梯形等。
三角形的三边关系及中位线定理
能利用中位线定理进行等分线段,
考点二
全等三角形的性质与判定
全等三角形的性质与判定综合运用
1、会使用全等的判定,能在给定全等的判定方法下添加条件判定全等。
2、会根据已有的条件构造三角形的全等,进而解决问题。
坐标系中平行四边形综合应用
考点5.7特殊平行四边形
序号
考查内容
考查方式
学习目标
考点
矩形、菱形、正方形
矩形的判定
关注中点四边形以及特殊四边形
正方形的性质运用
关注四边形的外接平行四边形
特别关注矩形及正方形的对称性应用
考点5.8梯形
序号
考查内容
考查方式
学习目标
考点一
梯形
1、关注特殊的梯形
2、能够根据实际情况将梯形转化成三角形及其他的特殊四边形
考点5.3 等腰三角形与直角三角形
序号
考查内容
考查方式
学习目标
考点一
等腰三角形的性质与判定
等腰三角形的性质运用
1、会用“三线合一”
2、会证明等腰三角形的其他性质
3、能初步掌握一些有特殊性质的等腰三角形,如顶角是36° 120°等的三角形
考点二
直角三角形的性质与判定
直角三角形中位线定理
会用中线定理判定一个三角形是直角三角形
专题五 空间图形与证明
考点5.1 点、线、面、角、相交线与平行线
序号
考查内容
考查方式
学习目标
考点一
点、线、面、角
中考数学复习会资料《空间与图形》复习建议

(2)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形 时,相应的原四边形ABCD必须满足怎样的条件?
《空间与图形》安岳实验中学 邓玲
7
2、四边形与圆的综合
例1:AB、CD是圆O两条不重合的直径,以A、B、C、D为顶点的四边形是( ▲ ) A、矩形 B、菱形 C、正方形 D、等腰梯形
例2:如图扇形中,点P是从A向B运动的一个动点 (不包含点A和点B),过点P分别作半径OA和OB 的垂线段,垂足分别为M和N,则线段的变化规律 是( ▲ ) A、由长变短 B、由短变长 C、先变短后变长 D、始终不变
《空间与图形》安岳实验中学 邓玲
22
例1(2007北京)
例2(2007天津)如图,已知⊙A,⊙B都经过点C,BC是⊙A的切线,⊙B交 AB于点D,连结CD并延长交⊙A于点E,连结AE. (1)求证:AE⊥AB;(2)求证:DE· DC=2AD· DB (3)如果DE· DC=8 ,AE=3,求BC的长。
A
B
C
度
27
《空间与图形》安岳实验中学 邓玲
轴对称变换应用 变换在几何图形中的应用 3、会应用 平移变换应用 变换的综合应用
变换在函数图象中的应用
通过一些具体的应用让学生深刻认识到几何变换的特征和性质: (1)轴对称、平移、旋转变换具有保角性和保长性,相似变换 具有保角性不具有保长性(全等除外)
17
二、着力于演绎推理能力的考查(侧重于三种论证方法及书写格式)
1、对几何图形的性质和判定进行必要的梳理和识记
2、掌握论证的基本方法及每种方法的书写格式 演绎法:要从宏观和微观两个方面来把握书写 反证法:要抓住精神实质 举反例:从命题的条件和结论上去把握 字母与图形不对应 证明的基本组成模糊 条件过多 结论当条件用
九年级数学中考专题(空间与图形)-第十二讲《四边形(四)》课件(北师大版)

正多边形边数 正多边形每个内 角度数
3
4
5
6
… n
60° 90° 108° 120° …
典型例题
(2)如果限于用一种正多边形镶嵌,哪几种正 多边形能镶嵌成一个平面图形? (3)从正三角形、正四边形、正六边形中选 一种,再在其他正多边形中选一种, 请画出用 这两种不同的正多边形镶嵌成一个平面图形, 并探索这两种正多边形共能镶嵌成几种不同 的平面图形?说明你的理由.
; 九目妖:/
;
天资都不错,但是玩xing太重.如果继续玩下去の话,估计此生最终の成就不会太大. 所以她才抛出落神山の事情,来激励他们一下.看着几人の表情,她知道自己の话起了一定の作用,沉默片刻,决定继续加上一把火,说道: "不过,你们也别开心,别想の那么好,我告诉你们,没有突破帝王境 可是没有机会进去寻宝の,所以你们想要五年之后进去寻宝の话,就得努力了,否则就必须还要等十年后再一次天路开启了…这次我在府战,感悟良多,也摸到了一丝天地法则の门槛,估计要不了多久,就能迈入帝王境.五年之后,我必能进入落神山,至于你们是否有幸在五年之后也一同进去, 则要看你们是否努力修炼了,我倒是真の很希望,到时候我们几人一同去闯闯这个三大绝地之一の落神山…" "额…" 龙赛男の话语将众人心里齐齐一震,集体惊愕の看着龙赛男.龙赛男居然要突破帝王境了?要不了多久,那么估计最多也就一两年,而龙赛男现在二十八岁,那么就是说,她很有 希望在三十岁前突破帝王境.这可是非常惊人の消息啊,毕竟这百年来,除了白重炙の父亲夜刀外,还没有一人能在三十岁前突破帝王境.他们在听到这个消息之后,第一反应时震惊,而第二反应则是莫大の压力,和微微の羞愧. 微微一愣之后,几人同时明白了她得苦心.这么久の相处,他们都 知道龙赛男不是一个炫耀の人.她这么说,将这么隐私の消息告诉大家,就是想提醒在坐の各位,要想五年之后进入落神山,要想进去碰运气拿宝器,拿圣器,甚至拿神器,那就必须在五年之内突破帝王境.她是在变相の激励大家,奉劝大家,提醒大家修炼の重要性. "呵呵…多谢龙女主提醒,让 我犹如当头喝棒啊!回头我一定好好修炼,争取五年之后,和大家一同进去落神山,我们几人再次一同历险去!"风紫沉默片刻,首先开口了,他本来就是个直xing子の人,这样直接地说出来,众人丝毫没有觉得他在出牛,反而感觉到他の决心. 花草也跟着说道:"我也是!五年后我一定追上你 们の脚步!我依然是绝佳の斥候,和刺客!" "多谢表姐,提醒,水流知错了,会龙城我直接闭关,不修炼个样子绝不出关!五年之后希望我能和你们一起闯荡."龙水流脸色一阵火热,和龙赛男认真说道. "嘻嘻,既然大家都那么认真了,我也得努力连连了,否则可要被你们追上了!"夜轻舞轻笑 一声,伸了个懒腰,挺了挺傲人の山峰,说道. "恩努力,五年后一同上落神山."月倾城,淡淡点了点头,对于修炼她有着无比の信心,因为她拥有能进入灵魂静寂状态の白重炙,只要她嫁给白重炙,到时候一同双修,实力肯定会爆涨. "额…小寒子?你怎么不说话?你没有把握?"夜轻舞见白重炙只 是微笑の看着他们,却没有说话,有些好奇の问道. "嘿嘿…五年突破帝王境?这个小意思,不就几个境界吗?这一年多时间,小爷可是突破了三个境界…"白重炙嘿嘿一笑,不以为意の说道.当然,白重炙也没炫耀の习惯,他也是把疯子和花草当兄弟了,成心刺激他们一下. "额…"白重炙の话,明 显把几人刺激の够呛,就连龙赛男也是微微有些别扭起来.别说花草和风紫龙水流他们の实力,就连她二十八岁,诸侯境巅峰の实力,在白重炙恐怖の修炼速度和强悍の实力下,也是羞于见人,拿不出手啊… 当前 第壹柒伍章 壹66章 恐怖の重力空间 休息一夜,第二天天一亮,众人再次启程, 车队行走在并不平坦の山道上,发出吱吱の响声,惊喜了丛林里の鸟群一阵乱飞. 行走了大约三四个小时,车队缓缓穿过树林,来到了一个平原. "那…那就是落神山吗?" 透过马车の车帘子,夜轻舞和白重炙看到远方平坦の平地上,一座异常高耸白雾环绕の山峰突兀の竖立着,宛如一座平地 而起の高楼般,在一片青草の平原中非常の凸显和迥异. "恩,那就是落神山,等会路过那里了,停一下给你们下去好好看看吧!"夜青牛点了点头,并不意外两人惊奇の表情,当年他第一次看到落神山也是如此表情. "这山也太高了吧,而且就这样笔直挺立,整座山还被白雾环绕,而对顶却反而 没有一丝白雾?额,天哪…那上面好像是,悬浮着一个阁楼?那是小神阁吗?"夜轻舞站起身子,趴在马车窗户上,仔细观察期落神山来,第一次看到如此奇景,让她很是惊讶.而当她仰头往山峰顶端看去の时候,却惊讶の大叫起来. "额…还真好像是一个阁楼般?难道传说是真の?落神山竟然真の 可以到达小神阁?"白重炙也看到了这一奇异の情况,张大了嘴巴,睁着眼睛不敢相信般,整个落神山都被白雾环绕,微微山顶有半截,可以清晰の看到山顶の景色,而封顶竟然悬浮着一个阁楼摸样の建筑物. "嘿嘿,之所以我们那么肯定,只要能过去第三关就能达到小神阁,现在你们相信了吧, 千万年来,这个传说从来没有人怀疑过,就是因为封顶の小神阁,の确是实实在在存在の,而且落神山の许多奇妙之处,也证明了这一点!"夜青牛点了点头,叹道. "太神奇了,の确太神奇了!小神阁竟然可以看到?那为什么没人直接飞上去?闯入小神阁,直接拿取宝物哪?"夜轻舞抽动了一下她 の小鼻子,疑惑不解の问道. "傻丫头,要是有那么容易,小神阁早就不存在了!"白重炙看着夜轻舞抖动鼻子可爱の摸样,眼中闪过一丝温柔,调笑道. "呵呵,小舞,你最近脑袋有点转不过弯来哦,小寒子说の对,要是那么容易,落神山早就毁了,传说中,只要得到小神阁の至宝,那么落神山将会 自动毁灭.至于为什么没人直接飞上去,这点就是刚才我说过の落神山の奇妙之处,只要靠近落神山,没人都会受到一种无形の禁制之力,没有人能飞,只能用脚一步步の走,而且里面の重力非常强大,等会你们亲自去体验一下就知道了…"夜青牛宠爱の摸了摸夜轻舞の头,耐性の为她解释道. "额,平叔,开快点,我要去落神山哪里好好玩玩!"夜轻舞朝白重炙飞了个白眼,转头朝坐在马车前の夜平说道. …… 望山跑死马,虽然远远就可以看到高高地落神山,但是车队在疾驰一个多小时之后才在众公子女主の终于赶到山脚之下. "原地休整,给他们玩半个小时吧!" 夜青牛淡淡の 声音从马车内传出,各马车内长老齐齐淡淡一笑,都下令停止了前行,而马车内の公子女主们,早就在马车停止の那一刻,跳下了马车,准备下去好好观察一下这闻名已久の落神山. 白重炙也微微一笑,跟着夜轻舞の脚步,跳下马车,准备朝落神山那边走去.好好观察一下这让父亲夜刀陨落の绝 地. 只是…当他刚跳下马车の时候,竟然感觉身体竟然比平常中了许多倍般,一股巨力猛然朝他身子压下,脚落地の时候,他の腿不由自主の一弯,险些坐在了地上,而且身体血液也感觉流动の缓慢了几分,胸口一阵气闷,浑身不舒服. "什么情况?敌袭?" 白重炙第一时间,战气高速运转,战智 直接合体,全身四顾开始探查起四周の情况起来. 只是…四周并没有出现陌生人,而他发现同时下地の夜轻舞和风紫花草,也是脸惊容,正紧张の四处观望着,显然他们也遇到了同时の情况. "哎呀!" 这时龙水流,刚刚跳下马车,估计是下得太仓促,竟然没站稳,直接一屁股坐在了地上.而他 也在第一时间从手中掏出了剑,开始紧张の四处观望起来. "都别紧张…"龙赛男慢条斯文の从另外一辆马车上走了下来,看着剑拔弩张の众人,微微一笑道:"这是落神山奇妙の环境之一,这里の重力是平常の地方の十倍,你们适应一下就没事了!" "额…"白重炙也利马反应过来,好像夜青 牛早上和他说过,这里重力比平常地方强,他当时还没怎么在意,只是没想到,这里の重力竟然达到这么恐怖の地步.在马车上没注意到,此刻下来竟然让人感觉行走都困难,而且刚才一跳,血液都感觉逆流一般,浑身不舒服. 此刻龙赛男一提醒,白重炙连忙解除战智合体,战气运转几个周天,开 始调整身体状态起来.夜青牛和这么多帝王境在一旁,如果有人来刺杀の话,他们早就发现了.而此刻他们依旧安静の坐在马车上,就
总复习三空间与图形

三角形按边分
等腰三角形
不等边三角形
普通:等腰三角形 两边相等、两角相等
特殊:等边三角形 三边相等、三角相等
不等边三角形
等腰三角形
等边三角形
确定平面上某个点的确切位置:
首先,要确定一个参照点,参照点 不同,该点的位置描述也就不同。
第二,要描述平面上一个点的位置, 除了明确该点与参照点的方向关系, 还要明确该点到参照点的位置。
北 确定方向
3号
西
1号 参照点
东
起点
30º 2号
1号点在起点正西方向300米处
南
2号点在起点东偏南30°方向300米处
3号点在起点正北方向200米处
100米 1厘米表示的实际距离
在下表中适当的空格内填上“√”,再说一说几种 三角形之间的关系和区别。
图形名称 等腰三角形 等边三角形 锐角三角形
三条边 都相等
总复习(三)空间与图形
北 确定方向
3号
西
1号 参照点
东
起点
30º 2号
1号点在起点正西方向300米处
南
2号点在起点东偏南30°方向300米处
3号点在起点正北方向200米处100米 源自厘米表示的实际距离锐角三角形
3个锐角
三角形按角分 钝角三角形 1个钝角、2个锐角
直角三角形
1个直角、2个锐角
钝角三角形 锐角三角形 直角三角形
√
有两边相等 有一个角 是直角
√
直角三角形
√
钝角三角形
只有两 个锐角
有三个锐角
√ √
√ √
√
有一个直角,有两条边相等。 只有两个锐角,没有直角。 三个角相等。 没有直角和钝角。
中考第一轮复习第四讲几何空间和图形

1.直线、射线、线段的联系与区别 直线
射线
相似处
都是直的,射线和线段都是直线的一部分
线段
端点 延伸方向
0个 向两方 无限延伸
____1____个 向一方无限
延伸
___2_____个 不可向任何一方
无限延伸
图形
表示方法
直线 AB(BA)或直 线a
射线 AB 或射 线a
线段 AB(BA)或线 段a
2.角
(1)角的分类:锐角、直角、钝角、平角、________.
周角
(2)角的度量:以“度”为单位,把 1 个周角分成 360 等份,
每 一 份 叫 做 1°的 角 , 则 1°= __6_0___′ = _3_60_0___″ , 1′ =
__60____″.
(3)角平分线及其性质: ①定义:一条射线把一个角分成两个相等的角,这条射线
B.60°
C.30°
规律方法:在平行线与相交线的角度计算中,主要运用:
①两直线平行,同位角相等,内错角相等,同旁内角互补;
②对顶角相等;③余角、补角性质.
D.45°
考点 3
角平分线、线段的垂直平分线的应用
例题:(2009 年肇庆节选)如图 4-1-8,在△ABC 中, AB=AC,∠A=36°,线段 AB 的垂直平分线交 AB 于点 D,交 AC 于点 E,连接 BE.
中考第一轮复习第四 讲几何空间和图形
三角形和四边形
第一讲 线、角、相交线和平行线
1.会比较角的大小,能估计一个角的大小,会计算角度的 和与差,认识度、分、秒,会进行简单换算.
2.了解角平分线及其性质. 3.了解补角、余角、对顶角,知道等角的余角相等、等角 的补角相等、对顶角相等. 4.了解垂直、垂线段等概念,了解垂线段最短的性质,体 会点到直线距离的意义.
中考总复习————空间与图形.doc
中考总复习————空间与图形涟水县第四中学 xxx二〇一〇年四月摘要:空间与图形是中考总复习一个重要组成部分,主要是三角形、四边形和圆,包含的内容比较广泛,重、难点多,在对这部分内容进行中考复习时,应注意对这部分内容的重点和难点的剖析,复习的策略,解题方法的归纳与总结,教师与学生都要做到心中有数,有的放矢,这样才能更好的来迎接中考。
关键词:中考复习策略方法空间与图形是中考总复习一个重要组成部分,主要是三角形、四边形和圆,包含的内容比较广泛,重、难点多,纵观这几年的淮安市中考题及各省市的中考试题,空间与图形在中考试题中占了相当大的比例。
在对这几部分内容进行中考复习时,应注意对这几部分内容的重点和难点的剖析,有的放矢,教师与学生都要做到心中有数,这样才能更好的来迎接中考。
下面对这块知识的复习谈谈自己的一些体会:一、本块内容的中考命题趋势及重、难点剖析空间与图形主要包括三角形、四边形和圆等内容,是中考的重点内容。
近年来在各省市的中考试题中,题量虽然有所下降,但题型更加新颖。
从题型上看,填空、选择题注重基础知识和基本技能的考查,解答题加大了知识的横向与纵向联系及应用问题的考查力度,突出一个“变”字;从试题内容上看,由原来的传统试题转为从生活中选材,出现了许多更贴近生活的新颖试题,突出一个“新”字。
其中三角形的有关性质及全等三角形、相似三角形的判定和性质、四边形的性质、特殊四边形的判定和性质以及圆的相关内容都是空间与图形的重要内容,尤其图形变换更是空间与图形的重点和难点。
在中考中出现了许多与之相关的开放探索性问题,以及与函数等知识构建的综合题,对综合运用能力的考查有所加强。
二、复习本块内容的具体做法(一)、抓中考数学命题走势的几个“点”把握重点知识,凸现思想方法;根植现行教材,激活数学思维;借助课堂教学,培养探究能力;延拓传统题型,开发创新题型1、把握重点知识,凸现思想方法近年来中考数学命题改革的又一个发展趋势是:除了着重考查学生的基础知识外,还十分重视对数学思想方法的考查。
(浙江专用)2019年中考数学总复习第六章空间与图形6.3图形的相似(讲解部分)素材(pdf)
9 a 时ꎬ Pꎬ Q 两点间的距离 ( 用含 2
(2) ①画出一个正确的图形即可. 如图.
解题导引 (1) (2) 观察 图形 观察 图形 ң 利用 SAS 证明 三角形全等 利用相似三角形 的判定定理证明相似 ң ң 利用相似 的性质 ң
②8 个.
ң
画出的一个格点三角形如图所示.
等量代换ꎬ
等线段代换
分类 讨论
方形网格ꎬ设顶点在这些小正方形顶点的三角形为格点三角形. 与әABC 全等( 画出一个即可ꎬ不需证明) ꎻ
(2) 先由题意得知所求作三角形的各边长ꎬ再画图. 解析㊀ (1) ①当әAMNʐәABC 时ꎬ有 AM MN = . AB BC ȵ M 为 AB 的中点ꎬAB = 2 5 ꎬʑ AM = 5 .
用排除法可排除 A㊁C㊁Dꎬ故选 B. 答案㊀ B
解析 ㊀ 因图中 әABC 是一个钝角为 135ʎ 的钝角三角形ꎬ
方法二㊀ 利用相似三角形列代数式的方法解题
㊀ ㊀ 在解题过程中要关注几何图形和相似的性质ꎬ 尤其是要能 够通过相似得到比例式ꎬ 从而将未知线段用含字母的代数式表 示出来. 另外ꎬ 要熟练掌握等线段代换㊁ 等比代换㊁ 等量代换等 技巧. 例 2㊀ 如图ꎬәABC 和 әDEF 是两个全等的等腰直角三角 形ꎬøBAC = øEDF = 90ʎ ꎬәDEF 的顶点 E 与 әABC 的斜边 BC 的中点重合. 将әDEF 绕点 E 旋转ꎬ旋转过程中ꎬ线段 DE 与线段 AB 相交于点 Pꎬ线段 EF 与射线 CA 相交于点 Q. әBPEɸәCQEꎻ
ң 找线段间的关系
利用勾股定理 表示两点距离
解析㊀ (1) 证明:ȵ әABC 是等腰直角三角形ꎬ ʑ AB = ACꎬøB = øC = 45ʎ. ȵ AP = AQꎬ ʑ BP = CQ. ȵ E 是 BC 的中点ꎬ ʑ BE = CE.
中考第一轮复习(二)——几何篇 第五章 空间与图形
中考第一轮复习(二)——几何篇第五章 空间与图形微专题1全等三角形的简单证明(1)—中考热点考点精练精练1直接运用三个条件证全等1.如图,△ABC 与△DEF 中,AB =DE ,AC =DF ,∠A =∠D ,求证:△ABC ≌△DEF .FE DC B A精练2先证一个条件,再证全等,最后证结论2.如图,点C ,F ,E ,B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.FFD C BA3.如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF .D AF B CE G4.如图,B ,E ,C ,F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE ,求证:AB ∥DE .FE C D A B精练3先证全等,再加(减)公共边(角)证结论5.如图,A ,D ,B ,E 四点顺次在同一条直线上,AC =DF ,BC =EF ,∠C =∠F ,求证:AD =BEEBCD FA6.如图,∠A =∠E ,∠B =∠D ,BC =DC ,求证:∠BCD =∠ACECDAB E微专题2 全等三角形的简单证明(二)考点精练◆精练1 先证全等,再证平行(垂直)1.如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .FE DC A2.如图,AB =AC ,BD =CD ,求证:AD ⊥B C.A精练2 先加(减)公共边(角)证一个条件,再证全等3.如图,已知AB =AC ,∠B =∠C ,∠DAB =∠EAC ,求证:△ABE ≌△AC D.DCBA◆精练3 先用平行(垂直)证一个条件,再证全等4.如图,四边形ABCD 中,AB ∥CD ,AB =CD ,求证:△ABC ≌△CD A.CB A5.如图,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD =CE ,求证:△ABD ≌△ACE .E D CA精练4 先证两个条件,再证全等6.如图,B ,F ,C ,E 四点在同一直线上,BF =CE ,AB =DE ,AB ∥DE ,求证:△ABC ≌△DEF .FE D CB A精练5 用“HL ”证全等7.如图,AC ⊥BC ,AD ⊥BD ,AC =AD ,求证:∠ABC =∠AB D.DCB A微专题3 相似三角形的简单证明与计算(一)——第23题第(1)问考点一 运用判定定理证明相似1.如图,正方形ABCD 中,点E ,F ,G 分别在线段AB ,BC ,CD 上,且∠EFG =90°. 求正:△EBF ∽△FCG .F EDC B AG2.已知:如图,AD ,BC 交于点O ,AO ⋅DO =CO ⋅BO .求证:△ABO ∽△CDO .OCB A3.如图,在Rt △ABC 中,∠C =90°,ED ⊥AB 于点D ,求证:△ADE ∽△ACB .E D C A4.如图,在△ABC 中,CE ⊥AB 于点E ,BF ⊥AC 于点F ,求证:△AFE ∽△ABC .FE C BA考点二 用相似证比例式和等积式5.如图,△ABC 的高AD ,BE 交于点F ,求证:AF BF =EF FD .FE6.已知:如图,Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的高,若AC =6,BC =8.(1)求证:АС2=АD ⋅АВ.(2)求线段AD ,BD ,CD 的长.D C BA微专题4 相似三角形的简单证明与计算(二)——第23题第(1)问考点1 判断是否相似1.已知:如图,D ,E 分别是△ABC 两边AB ,AC 上的点,试问在下列条件下△ADE 与△ACB 是否相似.并说明理由.(1)∠AED =∠B ;(2)∠A =60°,∠C =70°,∠AED =50°;(3)AD =3,BD =5,AE =4,EC =2.ED C BA2.如图,AB ⋅AE =AD ⋅AC ,且∠1=∠2,判断△ABC 与△ADE 是否相似?21E D CA考点二 利用相似证角相等3.如图,在△ABC 和△ADE 中,AB AD =BC DE =AC AE ,点B ,D ,E 在一条直线上. (1)求证:∠BAD =∠EAC ;(2)若AB AC =23,BD =2,求EC 的长.B CDE考点三 等线段代换证相似4.如图,P 为△ABC 边BC 上的中线AD 上的一点,且BD 2=PD AD ,求证:△ADC ∽△CDP .AB C D P微专题5 相似三角形的简单证明与计算(三)——第23题第(1)问考点1 求相似三角形面积(比)1.如图,点D 是△ABC 的边BC 上一点,AB =8,AD =4,∠DAC =∠B.如果△ABD 的面积为30,求△ACD 的面积.AB CD2.如图,在平行四边形ABCD 中,点E 为边AD 的中点,连接AC ,BE 交于点O .(1)求S △AOE :S △COB ;(2)连接BD 交AC 于点F ,求S △AOE :S △BOF .A B C D EFO考点二 求相似三角形周长比3.两个相似三角形的面积比为1:9,则它们的周长比为_________.考点三 利用相似求比值.4.如图,在△ABC 中,DE ∥BC ,点D ,E 分别在AB ,AC 边上,已知AD =4DB ,求DE BC的值.A DE5.如图,F 是△ABC 的边BC 上一点,DE ∥BC 交AF 于点G ,若AD DB =34,求GE CF 的值. ACD E G微专题6 相似三角形的简单证明与计算(四)——第23题第(1)问考点一 利用A 型或反A 型相似求边1.如图,在△ABC 中,∠B =∠AED ,AB =5,AD =4,CE =8.(1)求证:△ADE ∽△ACB ;(2)求AE 的长.AB CDE2.如图,在△ABC 中,AB =6cm ,AD =4cm ,AC =5cm ,且AD AB =AE AC . (1)求AE 的长;(2)等式AD BD =AE EC 成立吗?并说明理由. AC DE考点二 利用X 型或反X 型求边3.如图,在菱形ABCD 中,点E 为边CD 上的一点,AE 的延长线交BC 的延长线于点F ,若AB =4,CF =1,求CE 的值.AB C DEF考点三 其它相似4.如图,等边△ABC 中,AB =4,BP =1,∠APE =60°,求CE 的长.A B CP E微专题7 相似三角形的简单证明与计算(五)——第23题第(1)问1.如图,在△ABC 中,点P 为边AB 上一点,若∠ACP =∠B ,求征:AC 2=AP AB .AB CP2.如图,在△ABC 中,AD 平分∠BAC ,E 是AB 边上一点,CE 交AD 于F ,且CF =CD ,求证:△ACF ∽△ABD .AB C D EF3.如图,在△ABC 中,D 为BC 上一点,BD =CD ,AD =AC ,E 为AB 上一点,AD 交CE 于点F ,BE =CE ,求证:AF =DF .B ACD EF4.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,F 为AD 上一点,且BF =BD ,BF 的延长线交AC 于点E ,求证:AB ⋅AD =AF ⋅A C.AB C D EF5.如图,在△ABC 中,AB <BC ,BD 平分∠ABC 交AC 于D ,E 、F 分别是AB 、BC 边上的点,EF 与BD 交于点G ,若∠BAC =90°,EF ⊥BC ,求证:BG BD =BE BC . AB C D EF G微专题8 相似三角形的简单证明与计算(六)——第23题第(1)问1.如图,在△ABC 中AB =AC ,D 、E 分别是BC 、AC 边上的点,且BD =2CD ,AE =CE ,求DE AD的值. AE2.如图,在Rt △ABC 中,∠ACB =90°,点E 为BC 的中点,CF ⊥AE 于点F ,求证:EF AF =22EC AC .ABCE F3.如图,在△ABC中,AB=AC,D是AC边上一点,DE⊥BC于点E,AD=CD,求BEBC的值.ADE4.如图,在△ABC中,D、E分别为BC、AB上一点,连接DE,若DB=DE,∠ACB=90°,求证:BEDE =2BCAB. AB CDE5.如图,在△ABC中,AB=AC,D是AB的中点,E、F是AC上的动点,EF=12AC,若BF⊥AC,求证:CF CA=12BC2.A B C微专题9 相似三角形的简单证明与计算(七)一线三等角型——第23题第(1)问1.如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 、E 分别是BC 、AC 上一点,且∠ADE =45°,求证:AD 2=AB ·AE .AB CD E2.如图,在△ABC 中,AB =AC ,∠BAC =90°,点P 在边AB 上,点Q 在CA 的延长线上,∠PEQ =45°,求证:△BPE ∽△CEQ .AC PE Q3.如图,在等腰三角形ABC 中,∠BAC =120°,AB =AC ,点D 是BC 边上的一个动点(不与B ,C 重合),在AC 上取一点E ,使∠ADE =30°,求证:△ABD ∽△DCE .AB C D E4.如图,在△ABC 中,点D 、E 分别是边BC 、AC 上的点,且∠ADE =∠B ,若∠B =∠C ,求证:AB ⋅CE =BD ⋅C D.AB C D E微专题10 相似三角形的简单证明与计算(八)多边形中的相似——第23题第(1)问1.如图,在菱形ABCD 中,∠ABC =60°,E 是射线CB 上一点,F 是CD 上一点,且∠EAF =120°,求证:AE AF =AB CF . A B C DE F2.如图,在菱形ABCD中,∠A=120°,M是AB的中点,求证:cos∠AMD=ADMD.AB C DM3.如图,在四边形ABCD中,BC<AD,AD∥BC,点E在边AB上,AB=8,AD=6,∠DCE=∠B=90°,BC=3,求AE的长.A CD4.如图,在正五边形ABCDE中,AC与BE相交于点P,求证:AB2=AP A C.A BCDEP5.如图,在正五边形ABCDE中,AD,CE交于点F.(1)判断四边形ABCF的形状,并予以证明;(2)连接BD,交CE于点P,求PFAB的值.AB EFP微专题11三角函数(一)解直角三角形考点精练精练1锐角三角函数的定义1.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sin A等于()A.35B.45C.34D.43 CAB2.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,cos∠AED=.ED O BAC3.如图,在△ABC中,∠C=90°,若cos A=45,则tan A=,tan B=.CAB精练2特殊角的三角函数值4.(1)sin30°=,cos60°=,tan45=.(2)3sin60°-2cos30°-tan60°=.5.在△ABC中,∠A,∠B为锐角,若sin A +-cos B)2=0,则∠C=度.精练3解直角三角形及其实际应用6.如图,在△ABC中,∠C=90°,∠A=35°,AB=m,则BC的长为.B A C7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程队乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地间的距离为mBAC8.一艘轮船在小岛A的北偏东60方向距小岛80海里的B处,沿正西方向航行4小时后到达小岛的北偏西45°的C处,则该船行驶的平均速度为海里/时.60°45°ABC9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高A D.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为13(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.A BCPM微专题12三角函数(二)与三角函数有关的证明与计算(1)—第23题第(1)问考点1转化法求三角函数值1.如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的高,下列线段的比值等于cos A 的值的有哪些? ⑴AD AC ;⑵AC AB ;⑶BD BC ;⑷CD BC. A D C2.如图,在Rt △ABC 中,∠C =90°,AB =6,AC =2,CD ⊥AB 于点D ,设∠ACD =α,求cos α的值.AB C D3.如图,Rt △ABC 中,∠ACB =90°,D 为AB 中点,过点A 作CD 的垂线交CD 于点H ,交CB 于点E ,求证:sin ∠B =CH AC. HAE DB C4.如图,∠ACB =90°,AD 平分∠BAC 交AC 于点D ,过点D 作DE ⊥AB ,垂足为点E , 求证:CD AB AC=tanB . C BDEA考点2 作高构造直角三角形求三角函数值5.如图,在6×6的正方形网格中,△ABC 的顶点都在小正方形的顶点上,求tan ∠BAC 的值.ABC微专题13 三角函数(三)与三角函数有关的证明与计算(2)—第23题第(1)问考点 1设参法求三角函数1.如图,在Rt △ABC 中,∠C =90°,点B 在CD 上,且BD =BA =2AC ,求tan ∠DAC 的值.AB CD2.如图,点E 为矩形ABCD 的边AD 上一点,AD =4ED ,CD =2ED ,过点E 作EC 的垂线交AB 于点F ,求tan ∠ECF 的值.AB FC E D考点2 已知三角函数求边和角3.如图,在△ABC 中,∠B 为锐角,AB =3AC =5,tan C =34,求边BC 的长.A B4.如图,在△ABC 中,AD 是BC 边上的高,AB =5,AD =4,BC =3+(1)BD 的长为 ,sin ∠ABC = .(2)求∠DAC 的度数.AB C D5.如图,AD 是△ABC 的中线,tan B =15,cos C,AC求:(1)BC 的长;(2)∠ADC 的正弦值.A CB D微专题14 三角形和四边形中的角度计算(一)—中考热点考点精练精练1 平行线与三角形中的角度计算1.如图,直线a ∥b ,直线c 与直线a ,b 分别交于D ,E ,射线DF ⊥直线c ,则图中与∠1互余的角有 个.ba c 1DE F2.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为( )A .45°B .30°C .20°D .15°213.如图,在△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC =CD =BD =BE ,∠A =50°,则∠CDE = .BCD A E4.如图,AB =AC ,BC =BD =DE =AE ,则∠A 的度数是 .A B D CE精练2 平行四边形中的角度计算5.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE ,若AE =AB ,则∠EBC 的度数为 .BD E CA6.如图,在□ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD ’E 处,AD 与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED ’的大小为 .F D'AB CED7.如图,在矩形ABCD 中,E 为边AB 的中点,将△CBE 沿CE 翻折得到△CFE ,连接AF ,若∠EAF =70°,那么∠BCF = 度.AD FB C E8.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OF A 的度数是( )A .15°B .20°C .25°D .30°AB C DE F微专题15 三角形和四边形中的角度计算(二)—中考调考热点典例精讲类型1 运用方程的思想求角度【例1】如图,在Rt △ABC 中,∠ACB =90°,D 、E 是边AB 上的点,AC =AE ,BC =BD ,DF ⊥CD 交直线CE 于点F ,若∠EDF -∠BCE =10°,则∠B 的度数为 .B CEF A D类型2 借助辅助圆求角度【例2】一副三角板如图所示摆放,含45°角的三角板的斜边与含30°角的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是 .ABDE【例3】如图,在△ABC 中,∠BAC =50°,AB =AC ,点D 是△ABC 外的一点,且AD =AB ,AE 平分∠CAD 交BD 于点E ,则∠AEB 的度数为 .CD E类型3图形位置状态的变化—分类讨论思想的渗透【例4】以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.【例5】在□ABCD中,AD=BD,BE是AD边上的高,若∠EBD=24°,则∠A的度数是.【例6】已知矩形ABCD的对角线相交于点O,AE平分∠BAD交矩形的边于点E,若∠CAE=15°,则∠BOE的度数为.典题精练1.如图,点E是菱形ABCD的边AD的延长线上一点,AE=AC,CE=CB,则∠B的度数为.A B CDE2.如图,点O是菱形ABCD的对角线的交点,∠AED=90°,若∠ADC=130°,则∠OED的度数为.3.如图,在四边形ABCD中,AB=AC=CD,M,N分别是BC,AD的中点,若∠B=26°,则∠MND的度数为.ABC DNM4.在□ABCD中,对角线AC,BD相交于点O(AC<DB),点E是BD上的一点,OC=OE,若∠DAC=42°,∠DBC=26°,则∠ACE的度数为.5.在正方形ABCD中,E是AB的中点,EF⊥AB,且EF,直线CF交BD于点O,则∠DOC的度数为.6.在等腰Rt△ABC中,∠BAC=90°,AD∥BC且BD=BC,则∠CDB的度数为.7.以线段AB为斜边作直角△ABC和直角△ABD,直线AD与BC相交于点E,若CD=m,AB=2m,则∠AEB的度数为.8.在△ABC中,点I是内心,点O是外心,若∠BOC=128°,则∠BIC的度数为.微专题16圆的基础(一)角度计算考点精练精练1利用圆周角,圆内接四边形转化角1.(课本90页第13题改)如图,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=.2.如图,在⊙O中,AB=BC,点D在⊙O上,∠CDB=25°,则∠AOB的度数为.503.如图,点A,B,C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为4.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为.精练2利用切线的性质转化角5.(课本P122第1(3)题改)如图,P A,PB分别与⊙O相切于A,B两点,若P A=AB,则∠C=.6.如图,AB是⊙O的直径,弦CD⊥AB,过CD延长线上一点E作⊙O的切线,切点为F 点,若∠BOF=50°,则∠E的度数为507.如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为点D,AB=BC=2,则∠AOB=度,A精练3利用直径对直角转化角8.如图,AB为⊙O的直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°B精练4 构造圆求角度9.(课本80页例1改)如图,四边形ADCF 中,∠AFC =90°,E 为AD 的中点,CA =CD ,若∠D =70°,则∠AFE 的度数为 .A FD E微专题17 圆的基础(二)切线的简单证明(1)—第21题第(1)问考点精练精练1 利用角度转化证垂直→切线1.如图,在Rt △ABC 中,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE ,求证:DE 是⊙O 的切线.精练2 利用全等证垂直→切线2.(课本90页第13题改)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 延长线于点F ,连接BF .求证:BF 是⊙O 的切线.A B精练3 利用平行转化角证垂直→切线3.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,⊙O 的弦AD 平行于O C .求证:DC 是⊙O 的切线.CB A DO4.如图,△ABC 中,∠ACB =90°,D 为AB 上一点,以CD 为直径的⊙O 交BC 于点E ,连接AE ,交⊙O 于点F ,连接DF ,∠CAE =∠ADF ,求证:AB 是⊙O 的切线.B精练4 利用勾股逆定理证垂直→切线5.如图,AB 为⊙O 的直径,点P 为AB 延长线上一点,点C 为⊙O 上一点,PC =8,PB =4,AB =12,求证:PC 是⊙O 的切线.微专题18 圆的基础(三)切线的简单证明(2) -------第21题第(1)问 考点精炼精炼1 利用角平分线性质证d =r1.如图,△ABC 中,AB =AC ,以BC 的中点O 为圆心的圆与AB 边相切于点D ,求证:⊙O 与边AC 相切ACB2.如图,在四边形ABCD 中,AD ∥BC ,AD 切⊙O 于点A ,DO 平分∠ADC ,求证:CD 与⊙O 相切C精练2 利用矩形证d =r3.如图,点O 为正方形ABCD 对角线AC 上一点,以O 为圆心,OA 长为半径的⊙O 与BC 相切于点M ,求证:CD 是⊙O 的切线CDM精练3 利用全等证d =r4、如图,同心圆O ,大圆的弦AB =CD ,且AB 是小圆的切线,切点为E ,求证:CD 与 小圆相切AD精练4 利用中位线证d =r5、如图,四边形ABCD 中,∠A =∠ABC =90°,AD +BC =CD ,以AB 为直径作⊙O ,求证:CD 与⊙O 相切.B微专题19圆的基础(四)证线段关系---第21题第(1)问考点精练精练1 相等关系1、如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E,求证:MD=MECB精练2 倍分关系2、如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB边相切于点CDE,与BC交于点F,FH⊥AB,求证:EH=12F C精练3和差关系3、如图,O为四边形ABCD的外接圆,CB=CD,CE⊥AB于点E,求证:AE=BE+ADC精练4 位置关系4、如图,BD为⊙O的直径,点C为⊙O为一点,CA,CB是⊙O的切线,A、B为切点,连接AD,求证:AD∥OCC5、如图,AB为⊙O的直径,CD切⊙O于点D,E为AB上一点,连接AD、CE,且∠A=∠C,求证:CE⊥AB90°-12AB微专题(20)圆的基础(五)证角度关系---第21题第(1)问考点精练精练1 相等关系1、如图,△ABC内接于O,AC为⊙O的直径,PB为⊙O的切线,点B为切点,OP∥AB,交⊙O于点D,交BC于点E,连接BD,求证:BD平分∠PBCA BC DEPO2、如图,AB 是⊙O 的直径,C 为⊙O 上的一点,BD 和过点C 的切线CD 垂直,垂足为D 。
广东省中考数学总复习 第二部分 空间与图形 第四章 图形的认识(一)课时16 基本几何图形的认识课件
(3)同角或等角的补角____相__等____,同角或等角的余角 ___相__等_____. 8. 垂直、垂线、垂线段: (1)两条直线相交所成的四个角,如果有一个角是直角,那 么称这两条直线__互__相__垂__直__,其中的一条直线叫做另一条直 线的____垂__线____,它们的交点叫做___垂__足_____. 平面内,过 一点__有__且__只__有__一条直线垂直于已知直线. (2)垂线段公理:直线外一点与直线上各点连接的所有线段 中,___垂__线__段__最__短___. 9. 平行线:在同一平面内,_永__不__相__交___的两条直线叫做平行
线.直线a平行直线b,可记作a_____∥_____b.
10. 平行线的性质: (1)两直线平行,同位角__相__等______. (2)两直线平行,内错角___相__等_____. (3)两直线平行,同旁内角___互__补_____. (4)平行公理:经过直线外一点,_有__且__只__有___一条直线与已 知直线平行. 11. 平行线的判定: (1)同位角____相__等____,两直线平行. (2)内错角___相__等_____,两直线平行. (3)同旁内角___互__补_____,两直线平行. (4)___平__行__于___同一条直线的两直线平行. (5)在同一平面内,___垂__直__于___同一条直线的两直线平行.
A. ∠2=60°
B. ∠3=60°
C. ∠4=120°
D. ∠5=40°
5. (2015广州)如图2-4-16-6,AB∥CD,直线l分别与AB, CD相交,若∠1=50°,则∠2的度数为____5_0_°__.
解题指导: 本考点的题型一般为选择题或填空题,难度较低. 解此类题的关键在于掌握平行线的性质定理.熟记以下要点: 两直线平行,同位角相等/内错角相等/同旁内角互补.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、视图与投影
1.三视图 ①主视图 从正面看到的图 ②左视图 从左面看到的图
左视图 从左面看到的图
到从 俯 上 的面 视 图看 图
③俯视图 从上面看到的图
风淋室 klcfilter
空调过滤器 gdklc
主视图
2.画“三视图” 的原则
中考复习
准备好了吗? 时刻准备着!
净化设备 空气过滤器 高效过滤器 KLC超净工作台 KLC传递窗 KLC洁净棚 高效空气过滤器 风淋室 广州金田瑞麟净化设备制造有限公司 klcfilter gd-klc
风淋室 klcfilter
空调过滤器 gdklc
课程标准及学习目标
风淋室 klcfilter 空调过滤器 gdklc
光线可以看成是从一点出发的光线, 像这样的光线所形成的投影称为中 心投影. ⑥皮影和手影都是在灯光照射下形 成的影子. ⑦像眼睛的位置称为视点. ⑧由视点出发的线称为视线. ⑨两条视线的夹角称为视角. ⑩看不到的地方称为盲区.
风淋室 klcfilter 空调过滤器 gdklc
做一做
12
复习题
风淋室 klcfilter 空调过滤器 gdklc
(8)视图与投影 ①会画基本几何体(直棱柱、圆柱、圆 锥、球 ) 的三视图 ( 主视图、左视图、俯 视图),会判断简单物体的三视图,能根 据三视图描述基本几何体或实物原型。 ②了解直棱柱、圆锥的侧面展开图, 能根据展开图判断和制作立体模型。 ③了解基本几何体与其三视图、展开 图 ( 球除外 ) 之间的关系;通过典型实例, 知道这种关系在现实生活中的应用(如物 体的包装)。
做一做
15
复习题
6.画出下列几何体的三种视图:
正三棱柱
空心四棱柱
正三棱锥
六棱柱
风淋室 klcfilter 空调过滤器 gdklc
做一做
16
复习题
7.补全下列几何体的三视图:
主 视图
左 视图
主视图
左视图
俯 视图
驶向胜 利彼岸
俯视图
风淋室 klcfilter
空调过滤器 gdklc
做一做
17
(7)尺规作图 ①完成以下基本作图:作一条线段等于已 知线段,作一个角等于已知角,作角的平分 线,作线段的垂直平分线。 ②利用基本作图作三角形:已知三边作三 角形;已知两边及其夹角作三角形;已知两 角及其夹边作三角形;已知底边及底边上的 高作等腰三角形。 ③探索如何过一点、两点和不在同一直线 上的三点作圆。 ④了解尺规作图的步骤,对于尺规作图题, 会写已知、求作和作法(不要求证明)。
风淋室 klcfilter 空调过滤器 gdklc
一、基本作图及其数学语言
1.尺规作图限定作图工具只有圆规和没有 刻度的直尺. 2.基本作图 ⑴作一条线段等于已知线段; 作线段AB=a. ⑵作一个角等于已知角; 作∠ABC=∠α. ⑶作已知角的平分线; 作∠ABC的平分线BP. ⑷作线段的垂直平分线; 作线段AB的垂直平分线CD.
左视图
主视图 俯视图
①位置:
左视图
高
高 平 齐
长 长对正
②大小:
长对正,高平齐,宽
相等.
③虚实:
宽相等
宽
在画图时,看的见部
分的轮廓通常画成实 线,看不见部分的轮 廓线通常画成虚线.
俯视图
风淋室 klcfilter
空调过滤器 gdklc
3.投影
①物体在光线的照射下,会在地面或墙
风淋室 klcfilter 空调过滤器 gdklc
⑸已知三边,两边夹角,两角夹边,斜边直角 边作三角形,底边和底边上的高作等腰三角 形. ①作△ABC,使AB=c,BC==a,AC=b. ②作△ABC,使AB=c,BC==a,∠ABC=∠α. ③作△ABC,使AB=c,∠CAB=∠α ∠CBA=∠β. ④作△ABC,使AB=c,BC==a,∠ACB=900. ⑤作△ABC,使AB=AC,BC==a,AD⊥BC于D,且 AD=h. 3.作图题的一般步骤: ①已知,②求作,③分析,④作法,⑤证明,⑥ 讨论.
复习题
8.确定图中光源的类型,位置和第三物体的影子.
C
A E BF D
M
N
驶向胜 利彼岸
风淋室 klcfilter
空调过滤器 gdklc
做一做
18
E
复习题
9. 如图 , 光源 O 踞墙 10m, 木 棒 AB 长 2m, 当 AB 在光源与 M 墙壁正中间时 ,AB 在墙壁 上的投影是多 ? 当 AB 向光 源移动 2.5m(CD 的位置 ) 时 P , 它在墙壁上的投影又是 多少? 分别求出木棒在 AB,CD 位置时盲区的面积.
风淋室 klcfilter 空调过滤器 gdklc
④观察与现实生活有关的图片 ( 如照片、 简单的模型图、平面图、地图等 ) ,了解并 欣赏一些有趣的图形 ( 如雪花曲线、莫比乌 斯带)。 ⑤通过背景丰富的实例,知道物体的阴影 是怎么形成的,并能根据光线的方向辨认实 物的阴影 ( 如在阳光或灯光下,观察手的阴 影或人的身影)。 ⑥了解视点、视角及盲区的涵义,并能在 简单的平面图和立体图中表示。 ⑦通过实例了解中心投影和平行投影。
1.画出下列几何体的三种视图:
2.画出下列几何体的三种视图:
风淋室 klcfilter
空调过滤器 gdklc
做一做
13
复习题
3.(1)确定图(1)中路灯灯泡的位置,并画出此时小 赵在路灯下的影子;
灯泡
Байду номын сангаас
小赵的影子
旗杆的影子
(2)画出图(2)中旗杆在阳光下的影子.
风淋室 klcfilter 空调过滤器 gdklc
壁上留下它的影子,这就是投影现象. ②太阳光线可以看成平行光线,像这样 的光线所形成的投影称为平行投影. ③在同一时刻,物体高度与影子长度成 比例 ④物体的三视图实际上就是该物体在 某一平行光线(垂直于投影面的平行光 线)下的平行投影.
风淋室 klcfilter 空调过滤器 gdklc
⑤探照灯,手电筒,路灯,和台灯的
做一做
14
复习题
4.如图(1),小明站在残墙前,小亮在残墙后面活动, 双不被小明看见.请在图(1)的俯视图(2)中画出小 亮的活动区域.
盲区
盲区
5.分组活动:设计并实施一个应用影子或盲区的活 动,撰写一份活动报告,阐明活动的目的,要求,过 程,结论及相关思考.
风淋室 klcfilter 空调过滤器 gdklc