导数的概念62459

合集下载

导数的概念与性质

导数的概念与性质

导数的概念与性质导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。

导数的概念由数学家高斯于18世纪提出,至今仍被广泛应用于各个领域。

本文将对导数的概念以及其性质进行论述。

一、导数的概念导数是用来描述函数在某一点处的变化率的数值。

设函数f(x)在点x=a处可导,那么函数在该点处的导数记作f'(a),表示函数在点x=a处的瞬时变化率。

导数可以用极限的概念来定义,即:f'(a) = lim (x→a) (f(x)-f(a))/(x-a)其中,f(x)表示函数f在点x处的取值。

导数的概念可以形象地理解为函数图像上某一点处切线的斜率。

当函数在某点处的导数存在时,说明函数在该点处是光滑的,即函数图像在该点处没有转折或断裂的情况。

二、导数的性质导数具有以下一些重要的性质:1. 导数的存在性:一般而言,函数在某点处的导数可能存在也可能不存在。

当函数在某点处的导数存在时,我们称其为可导,否则称其为不可导。

2. 导数与函数的关系:导数是描述函数变化率的工具,它与函数的关系密切。

如果函数在某一范围内的导数都存在,那么我们可以得到函数在该范围内的变化趋势。

3. 导函数的性质:如果函数f(x)在某一点处可导,那么它的导函数f'(x)就是由f(x)导出的一个新函数。

导函数具有以下性质: - 导函数是原函数的变化率函数,描述了原函数在各点处的变化率。

4. 导数的运算规则:导数满足一些基本的运算规则,使我们能够更方便地求解复杂函数的导数。

其中,常见的导数运算规则包括常数倍法则、和差法则、乘积法则和商积法则等。

5. 导数与函数图像:导数不仅可以解释函数的变化率,还能给出函数图像的一些重要信息。

例如,函数在某一点处的导数为正,则说明函数在该点处上升;导数为负,则说明函数在该点处下降。

三、导数的应用导数在各个领域都有广泛的应用,例如:1. 物理学中的运动学:导数可以描述物体的位置、速度和加速度之间的关系,帮助我们分析物体的运动规律。

导数简单知识点总结归纳

导数简单知识点总结归纳

导数简易知识点总结归纳导数是微积分学中一个分外重要的观点,也是计算速度变化及斜率的工具。

在微积分的进修中,导数是一个基础且重要的知识点。

通过了解导数的定义、性质和计算方法,我们可以更好地理解函数和曲线的特性,从而应用到各种实际问题中。

一、导数的定义导数可以理解为函数在某一点处的变化率。

详尽来说,对于函数 y = f(x),在点 x 处的导数表示为 f'(x),其定义如下:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim 表示当 h 趋近于0时的极限;h 是 x 的一个非零增量;f(x+h) - f(x) 表示增量;(f(x+h) - f(x)) / h 表示增量与 h 的比值。

当 h 趋近于0时,增量与 h 的比值就是导数。

二、导数的性质1. 基本性质:导数具有线性性质,即对于任意函数 f(x) 和常数 k,有以下性质:(a) (kf(x))' = kf'(x)(b) (f(x) + g(x))' = f'(x) + g'(x)2. 基本函数导数:(a) 常数函数 y = C 的导数为零:(C)' = 0(b) 幂函数 y = x^n 的导数为 nx^(n-1):(x^n)' =nx^(n-1)(c) 指数函数 y = a^x 的导数为 a^x * ln(a):(a^x)' = a^x * ln(a)(d) 对数函数 y = ln(x) 的导数为 1/x:(ln(x))' = 1/x3. 基本运算法则:(a) 乘法法则:(uv)' = u'v + uv'(b) 除法法则:(u/v)' = (u'v - uv') / v^2(c) 复合函数法则:(f(g(x)))' = f'(g(x)) * g'(x)三、导数计算方法1. 利用定义法计算导数:对于任意函数 f(x),可以利用定义法进行导数的计算。

总结导数的知识点归纳

总结导数的知识点归纳

总结导数的知识点归纳一、导数的概念1. 导数的定义导数是描述函数在某一点处的变化率的概念。

如果函数f(x)在点x处可导,那么它的导数表示为f'(x),即函数f(x)在点x处的导数为f'(x)。

导数可以理解为函数曲线在该点处的切线的斜率,它描述了函数在该点附近的变化情况。

2. 函数的可导性函数在某一点可导,意味着该点处函数曲线存在切线,并且切线的斜率存在有限值。

如果函数在某一点处可导,那么该点也称为函数的导数存在的点。

函数在某一点处可导的充分必要条件是该点处函数的左极限和右极限存在且相等。

3. 导数的图像解释函数的导数可以理解为函数曲线在该点处的切线斜率。

当函数曲线上升时,导数为正;当函数曲线下降时,导数为负;当函数曲线水平时,导数为零。

函数曲线的凸凹性可以通过导数的正负来判断。

二、导数的性质1. 可导函数与连续函数可导函数必定是连续函数,但是连续函数不一定可导。

可导函数的导数在其定义域内连续,也就是说,可导函数的导数也是连续函数。

2. 导数的四则运算函数的导数满足四则运算的性质。

设函数f(x)和g(x)在点x处可导,那么它们的和、差、积、商的导数分别为(f+g)' = f' + g',(f-g)' = f'-g',(fg)' = f'g + fg',(f/g)' = (f'g - fg') / g^2。

3. 复合函数的导数复合函数的导数可以通过链式法则来求导。

设函数y=f(u)和u=g(x)都可导,那么复合函数y=f(g(x))的导数为f'(g(x))g'(x)。

4. 高阶导数函数的导数也可以再求导,得到的导数称为原函数的高阶导数。

高阶导数的符号表示一阶导数的凸凹性。

三、导数的计算方法1. 导数的基本求导法则导数的基本求导法则包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数的导数以及反三角函数的导数等。

导数的概念和定义

导数的概念和定义

导数的概念和定义导数的概念和定义导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。

在实际应用中,导数可以用来求解函数的最大值、最小值、拐点等问题。

本文将从以下几个方面详细介绍导数的概念和定义。

一、导数的基本概念导数是函数在某一点处的变化率,也可以理解为函数在该点处的切线斜率。

具体地说,设函数y=f(x),则它在x=a处的导数定义为:f'(a) = lim (f(x) - f(a)) / (x - a) (x → a)其中,“lim”表示极限,“(x-a)”表示自变量x沿着无限接近于a但不等于a的方向逼近时所取得的差值,“f(x)-f(a)”表示因变量y沿着这个方向所取得的差值。

二、导数的几何意义从几何角度来看,函数在某一点处的导数等于该点处切线斜率。

具体地说,设函数y=f(x),则它在x=a处切线斜率k为:k = lim (f(x) - f(a)) / (x - a) (x → a)当自变量x沿着无限接近于a但不等于a的方向逼近时,切线斜率k即为导数f'(a)。

因此,导数可以用来描述函数在某一点处的变化率。

三、导数的符号表示通常情况下,我们用f'(a)来表示函数y=f(x)在x=a处的导数。

其中,f'表示函数的导数运算符,被称为“d/dx”或“dy/dx”。

四、导数的计算方法求解函数在某一点处的导数需要使用极限运算。

具体地说,可以通过以下几种方法来计算函数在某一点处的导数:1. 使用极限定义法:根据导数的定义公式,将自变量沿着无限接近于该点但不等于该点的方向逼近,并求出其极限值。

2. 使用公式法:对于常见函数(如幂函数、指数函数、对数函数等),可以直接使用其导数公式进行计算。

3. 使用运算法则:对于复合函数和多项式函数等复杂函数,可以使用求导法则(如加减乘除法则、链式法则等)进行计算。

五、导数存在的条件有些函数在某些点处可能不存在导数。

具体地说,一个函数在某一点处存在导数需要满足以下两个条件:1. 函数在该点附近存在连续性;2. 函数在该点附近存在斜率有限的切线。

导数的定义解释

导数的定义解释

导数的定义解释在数学中,导数是描述函数变化的重要概念,它表示函数增长率,既可以描述数字函数也可以描述几何函数,是数学进行求解和分析的基础。

导数的定义解释如下:1、定义:函数f(x)的n阶导数是指在变量x上,使函数的变化量(即增量)与x的变化量(即增量)的比值关系趋于某一常数,即定义为n阶导数的函数。

2、解释:函数f(x)的n阶导数,是指表示函数f(x)对变量x的变化量之比率的函数。

通俗点讲,就是当变量x发生变化时,函数f(x)所发生的变化量和x变化量之比例所确定的量。

3、形式:此量可以表示为函数f(x)的n次微分式:f(x)的n阶导数=f((n)(x)/dxn上式中,dx表示变量x的微小变化量,即对变量x进行微分的步长,dx的数值等于变量x的变化量/微分次数,微分次数即n。

4、说明:从定义中可以看出,当函数f(x)变化时,函数f(x)的n阶导数可以看作是函数f(x)和变量x变化量之比例,也即函数f(x)关于变量x的变化率。

简单来说,导数是一种特征量,它可以对函数表达式进行更为细致的分析,可以表示函数的变化趋势,从而为数学求解和分析提供更多的有效信息。

以下为一个简单的例子,关于求解一元函数的最大值和最小值:已知函数f(x)=3x3+2x2+x+1求f(x)的最大值和最小值解:f(x)的一阶导数为f(x)=3x2+4x+1设f(x)= 0,得3x2+4x+1=0解得x=-1/6,x=-2又得f(-1/6)=-4/27,f(-2)=-17/2即函数f(x)在x=-1/6处取得最大值f(-1/6)=-4/27,在x=-2处取得最小值f(-2)=-17/2由此可见,导数在数学求解和分析中起着非常重要的作用,因此,对导数的定义解释也是十分重要的。

以上就是关于“导数的定义解释”的全部内容,希望能够帮助到大家。

在数学中,导数的概念非常重要,为我们的求解和分析提供了更多有效的信息,因此,要深入理解导数的定义解释,从而运用自如。

导数的概念定义

导数的概念定义

导数的概念定义导数是微积分中的一个重要概念,它描述了函数在某一点处的变化率。

导数的概念定义可以从几何和代数两个方面来进行解释。

一、几何意义几何意义上,导数可以理解为函数图像在某一点处的切线斜率。

具体来说,设函数y=f(x),在x=a处有导数,则该点切线的斜率即为f'(a)。

当x靠近a时,函数值f(x)也会越来越接近于f(a),此时切线斜率也会越来越接近于f'(a)。

因此,导数可以用来描述函数在某一点附近的变化情况。

二、代数意义代数意义上,导数可以理解为函数在某一点处的极限值。

具体来说,设函数y=f(x),在x=a处有导数,则该点导数的定义式为:f'(a)=lim(x->a){(f(x)-f(a))/(x-a)}这个式子表示当x无限接近于a时,(f(x)-f(a))/(x-a)的极限值即为该点导数。

这个极限值可以看作是函数在该点处微小增量与自变量微小增量之比的极限值。

三、符号表示通常情况下,我们用dy/dx或y'来表示函数y=f(x)的导数。

其中,dy/dx表示y关于x的导数,y'表示函数f(x)的导数。

四、求导法则求导法则是计算导数的基本方法。

以下是常用的求导法则:1. 常数函数的导数为0。

2. 幂函数的导数为其指数乘以系数。

3. 指数函数的导数为其自身乘以ln(a)。

4. 对数函数的导数为其自变量倒数。

5. 三角函数和反三角函数的导数可以通过公式推出。

6. 复合函数求导需要使用链式法则或者换元法等方法。

五、应用1. 导数可以用来求解最值问题。

当函数在某一点处取得最大值或最小值时,该点处必须满足其切线斜率为0或不存在。

因此,我们可以通过计算函数在每个可能取得最值的点处的导数来确定最值点。

2. 导数可以用来分析曲线形状。

通过计算不同点处的斜率,我们可以了解曲线在不同位置上升或下降程度以及拐点位置等信息。

3. 导数还有其他应用,如牛顿迭代法、泰勒展开式等。

导数—搜狗百科

导数—搜狗百科

导数—搜狗百科导数导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

导数亦名纪数、微商(微分中的概念),是由速度变化问题和曲线的切线问题(矢量速度的方向)而抽象出来的数学概念,又称变化率。

如一辆汽车在10小时内走了 600千米,它的平均速度是60千米/小时。

但在实际行驶过程中,是有快慢变化的,不都是60千米/小时。

为了较好地反映汽车在行驶过程中的快慢变化情况,可以缩短时间间隔,设汽车所在位置s与时间t的关系为:那么汽车在由时刻t 0变到t 1这段时间内的平均速度是:当 t 1无限趋近于t 0时,汽车行驶的快慢变化就不会很大,平均速度就近似等于t 0时刻的瞬时速度,因而就把此时的极限作为汽车在时刻t 0的瞬时速度,即,这就是通常所说的速度。

这实际上是由平均速度类比到瞬时速度的过程(如我们驾驶时的限“速” 指瞬时速度)。

[1]导数另一个定义:当x=x 0时,f'(x 0)是一个确定的数。

这样,当x变化时,f'(x)便是x的一个函数,我们称他为f(x)(关于x)的导函数(derivative function),简称导数。

物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。

如:导数可以表示运动物体的瞬时速度和加速度(就直线运动而言,位移关于时间的一阶导数是瞬时速度,二阶导数是加速度),可以表示曲线在一点的斜率,还可以表示经济学中的边际和弹性。

[1]以上说的经典导数定义可以认为是反映局部欧氏空间的函数变化。

为了研究更一般的流形上的向量丛截面(比如切向量场)的变化,导数的概念被推广为所谓的“联络”。

有了联络,人们就可以研究大范围的几何问题,这是微分几何与物理中最重要的基础概念之一。

注意:1.f'(x)<0是f(x)为减函数的充分不必要条件,不是="">0是f(x)为减函数的>2.导数为零的点不一定是极值点。

导数的概念

导数的概念

导数一 导数的概念 (一)导数的定义1.导数的原始定义:设函数)(x f y =在0x x =处附近有定义,如果0→∆x 时,y ∆与x ∆的比x y ∆∆(也叫函数的平均变化率)有极限即xy∆∆无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即xx f x x f x f x ∆-∆+=→∆)()(l im )(0000/2导函数的定义:如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对应着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f , 称这个函数)(/x f 为函数)(x f y =在开区间内的导函数,简称导数。

(二)导数的实际意义:1.导数的几何意义:/0()f x 是曲线)(x f y =上点()(,00x f x )处的切线的斜率如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为)(()(00/0x x x f x f y -=-2.导数的物理意义:导数是物体变速直线运动的瞬时速度,也叫做瞬时变化率。

(三)概念部分题型:1.利用定义求函数)(x f y =的导数 主要有三个步骤:(1)求函数的改变量()(x f x x f y -∆+=∆(2)求平均变化率xx y ∆=∆∆ (3)取极限,得导数/y =()f x '=xyx ∆∆→∆0lim2.利用导数的实际意义解题主要有两种:求切线方程和瞬时速度,考试重点为求切线方程。

二 导数的运算(一)常见函数的导数 1.0='C 2.1)(-='n nnx x3.xx e e =')( 4.a a ax xln )(='5.1(ln )x x'=6.ax e x x a a ln 1log 1)(log =='7.x x cos )(sin =' 8.x x sin )(cos -=' (二)导数的四则运算1.和差:()u v u v '''±=±2.积:v u v u uv '+'=')(3.商:2)(vv u v u v u '-'=' (三)复合函数的导数:1.运算法则复合函数导数的运算法则为:[]()()()f g x f g g x '''=⋅2.复合函数的求导的方法和步骤:求复合函数的导数一定要抓住“中间变量”这一关键环节,然后应用法则,由外向里一层层求导,注意不要漏层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章导数与微分本章教学目标与要求理解导数的概念,会利用导数定义求导数。

了解导数的物理意义(速度),几何意义(切线的斜率)和经济意义(边际),掌握基本初等函数的导数公式,导数的四则运算法则,复合函数求导法则。

掌握反函数和隐函数求导法,对数求导法。

理解可导性与连续性的关系。

了解高阶导数的概念,会求简单函数的高阶导数。

理解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分。

本章教学重点与难点1.导数概念及其求导法则;2.隐函数的导数;3.复合函数求导;4.微分的概念,可微和可导的关系,微分的计算§2.1 导数的概念教学目的与要求1.理解函数导数的概念及其几何意义.2.掌握基本初等函数的导数,会求平面曲线的切线和法线.3.了解导数与导函数的区别和联系.4.理解左右导数的概念、可导与连续的关系.教学重点与难点1. 函数导数的概念、基本初等函数的导数2. 函数导数的概念、利用定义求函数在某一点的导数一、引例导数的思想最初是由法国数学家费马(Fermat)为研究极值问题而引入的,但与导数概念直接相联系的是以下两个问题:已知运动规律求速度和已知曲线求它的切线.这是由英国数学家牛顿(Newton)和德国数学家莱布尼茨(Leibniz)分别在研究力学和几何学过程中建立起来的.下面我们以这两个问题为背景引入导数的概念.1.瞬时速度思考:已知一质点的运动规律为)(t s s =,0t 为某一确定时刻,求质点在0t 时刻的速度。

在中学里我们学过平均速度ts∆∆,平均速度只能使我们对物体在一段时间内的运动大致情况有个了解, 这不但对于火箭发射控制不够,就是对于比火箭速度慢的多的火车、汽车运行情况也是不够的,火车上坡、下坡、转弯、穿隧道时速度都有一定的要求, 至于火箭升空那就不仅要掌握火箭的速度,而且要掌握火箭飞行速度的变化规律.不过瞬时速度的概念并不神秘,它可以通过平均速度的概念来把握.根据牛顿第一运动定理,物体运动具有惯性,不管它的速度变化多么快,在一段充分短的时间内,它的速度变化总是不大的,可以近似看成匀速运动.通常把这种近似代替称为“以匀代不匀”. 设质点运动的路程是时间的函数 )(t s ,则质点在 0t 到 t t ∆+0 这段时间内的平均速度为tt s t t s v ∆-∆+=)()(00可以看出它是质点在时刻0t 速度的一个近似值,t ∆越小,平均速度 v 与 0t 时刻的瞬时速度越接近.故当0→∆t 时,平均速度v 就发生了一个质的飞跃,平均速度转化为物体在0t 时刻的瞬时速度,即物体在 0t 时刻的瞬时速度为tt s t t s v v t t ∆-∆+==→∆→∆)()(limlim 000_(1)思考:按照这种思想和方法如何计算自由落体的瞬时速度? 因为自由落体运动的运动方程为:221gt s =, 按照上面的公式,可知自由落体运动在0t 时刻的瞬时速度为000202000000)21(lim 21)(21lim )()(lim )(0gt t g gt t gt t t g t t s t t s t v t t t =∆+=∆-∆+=∆-∆+=→∆→∆→∆。

这正是我们高中物理上自由落体运动的速度公式.2.切线的斜率思考:圆的的切线的定义是什么?这个定义适用于一般的切线吗?引导学生得出答案:与圆只有一个交点的直线叫做圆的切线,但这个定义只适用于圆周曲线,并不适用于一般的曲线.因此,曲线的某一点的切线应重新定义.(1)切线的概念曲线C 上一点M 的切线的是指:在M 外另取C 上的一点N ,作割线MN ,当点N 沿曲线C 趋向点M 时,如果割线MN 绕点M 转动而趋向极限位置MT ,直线MT 就叫做曲线C 在点M 处的切线。

简单说:切线是割线的极限位置。

这里的极限位置的含义是:只要弦长MN 趋于0,NMT ∠也趋向于0.(如图所示)(2)求切线的斜率设曲线C 为函数)(x f y =的图形,C y x M ∈),(00,则)(00x f y =,点00(,)N x x y y +∆+∆为曲线C 上一动点,割线MN 的斜率为:00()()tan f x x f x y x xϕ+∆-∆==∆∆ 根据切线的定义可知,当点N 沿曲线C 趋于M 时,即0x ∆→,割线的斜率趋向于切线的斜率。

也就是说,如果0x ∆→时,上式的极限存在,则此极限便为切线的斜率记为k ,即0000()()tan limlim x x f x x f x yk x xα∆→∆→+∆-∆===∆∆ (2)3.边际成本设某产品的成本C 是产量x 的函数()C C x ,试确定产量为0x 个单位时的边际成本。

用前两例类似的方法处理得:00()()C x x C x C x x+∆-∆=∆∆表示由产量0x 变到0x x +∆时的平均成本,如果极限 000()()lim x C x x C x C x x∆→+∆-∆=∆∆ (3) 存在,则此极限就表示产量为0x 个单位时成本的变化率或边际成本。

思考:上述三个问题的结果有没有共同点?上述两问题中,第一个是物理学的问题,第二个是几何学问题,第三个是经济学问题,分属不同的学科,但问题都归结到求形如xx f x x f x ∆-∆+→∆)000()(lim(4)的极限问题.事实上,在学习物理学时会发现,在计算诸如物质比热、电流强度、线密度等问题中,尽管其背景各不相同,但最终都归化为讨论形如(4)的极限问题.为了统一解决这些问题,引进“导数”的概念.二、导数的定义1.导数的概念定义 设函数)(x f y =在点0x 的某邻域内有定义,当自变量x 在点0x 处取得增量x ∆(点x x ∆+0仍在该邻域内)时,函数相应地取得增量)()(00x f x x f y -∆+=∆,如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(lim lim0000存在,则这个极限叫做函数)(x f 在点0x 处的导数,记为00)(),(,0'x x x x x x dxx df dxdyx f y ==='或当函数)(x f 在点0x 处的导数存在时,就说函数)(x f 在点0x 处可导,否则就说)(x f 在点0x 处不可导.特别地,当0→∆x 时,∞→∆∆xy,为了方便起见,有时就说)(x f y =在点0x 处的导数为无穷大.关于导数有几点说明:(1)导数除了定义中的形式外,也可以取不同的形式,常见的有h x f h x f x f h )()(lim)(0000-+='→00)()(lim)(0x x x f x f x f x x --='→(2)00()()f x x f x y x x+∆-∆=∆∆反映是自变量 x 从0x 改变到0x x +∆时,函数()f x 的平均变化速度,称为函数()f x 的平均变化率;而导数'00()lim x y f x x∆→∆=∆反映的是函数()f x 在点0x 处的变化速度,称为函数()f x 在点0x 处的变化率。

2.导函数的概念上面讲的是函数在某一点处可导,如果函数)(x f y =在开区间I 的每一点都可导,就称函数)(x f y =在开区间I 内可导,这时,I x ∈∀,都对应)(x f 的一个确定的导数值,就构成一个新的函数,这个函数叫做)(x f y =的导函数,记作:dxx df dx dy x f y )(),(,''或。

即,导函数的定义式为:x x f x x f y x ∆-∆+='→∆)()(lim0或.)()(lim )(0hx f h x f x f h -+='→在这两个式子中,x 可以取区间I 的任意数,然而在极限过程中,x 是常量,x ∆或h 才是变量;并且导数)(0'x f 恰是导函数)('x f 在点0x 处的函数值.3.单侧导数的概念我们知道在极限有左、右极限之分,而导数实质是一个“比值”的极限。

因此,根据左右极限的定义,不难得出函数左右导数的概念。

定义 极限x x f x x f x ∆-∆+-→∆)()(lim 000和xx f x x f x ∆-∆++→∆)()(lim 000分别叫做函数)(x f 在点0x 处的左导数和右导数,记为)(0x f -'和)(0x f +'.如同左、右极限与极限之间的关系,显然:函数)(x f 在点0x 处可导的充分必要条件是左导数)(0x f -'和右导数)(0x f +'都存在并且相等.还应说明:如果)(x f 在开区间),(b a 内可导,且)(a f +'和)(b f -'都存在,就说)(x f 在闭区间],[b a 上可导.三、按定义求导数举例1.根据定义求函数的导数的步骤根据导数的定义可以总结出求函数某一点的步骤为: ① 求增量:)()(x f x x f y -∆+=∆② 算比值:xx f x x f x y ∆-∆+=∆∆)()( ③ 求极限:xyy x ∆∆='→∆0lim2.运用举例例1 求C y =的导数(C 为常数). 解 求增量0=-=∆C C y 作比值0=∆∆xy取极限 0lim0=∆∆→∆xyx所以 0)('=C 即常量的导数等于零.例2 求函数)(+∈=N x x y n的导数.解 n n n n n x x x n n x nxx x x y )()(!2)1()(221∆++∆-+∆=-∆+=∆--Λ, 121)(!2)1(---∆++∆-+=∆∆n n n x x x n n nx x y Λ, 10'lim -→∆=∆∆=n x nx xyy ,即1')(-=n n nx x注意:以后会证明当指数为任意实数时,公式仍成立,即)(.)(1R x x ∈='-μμμμ例如:xx 21)('=,2'11)(x x -=-例3 求x x f sin )(=的导数. 解 hx h x h x f h x f x h h sin )sin(lim )()(lim)(sin 00'-+=-+=→→x h h h x h cos 22sin )2cos(lim 0=•+=→ 即x x cos )(sin '=.用类似方法,可求得x x sin )(cos '-=.例4 求)1,0(log ≠>=a a x y a 的导数.解 hx hh x h x y a h a a h )1(log lim log )(log lim 00'+=-+=→→00log (1)11lim limlog (1)xa h a h h hh x h x x xx→→+==+e xa log 1=所以e xx a a log 1)(log '=特别地,当e a =时,有xx 1)(ln '=四、导数的几何意义由前面对切线问题的讨论及导数的定义可知:函数)(x f y =在点0x 处的导数)(0'x f 在几何上表示曲线)(x f y =在点M ()(,00x f x )处的切线的斜率。

相关文档
最新文档