二次函数最优化问题

合集下载

二次函数知识点全总结初中

二次函数知识点全总结初中

二次函数知识点全总结初中二次函数是代数学中的重要内容,也是中学数学中的重要内容之一。

在学习二次函数时,不仅要掌握它的基本概念和性质,还要掌握它的图像、方程和应用等方面的知识。

下面对二次函数的知识点进行全面总结。

一、二次函数的基本概念和性质1. 二次函数的定义二次函数是形如f(x) = ax² + bx + c (a≠0)的函数,其中a、b、c为常数。

二次函数的自变量x的最高次数是2,因此称为二次函数。

2. 二次函数的图像二次函数的图像通常是一个开口向上或向下的抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的开口方向由二次项的系数a决定。

3. 二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, f(-b/2a))。

顶点的横坐标为-x轴上的对称轴,纵坐标为抛物线的最低值或最高值。

4. 二次函数的对称轴对称轴是过顶点并垂直于x轴的直线,对称轴的方程为x = -b/2a。

5. 二次函数的零点二次函数与x轴相交的点称为零点,其坐标为(x, 0)。

二次函数的零点可以由解二次方程ax² + bx + c = 0得到。

6. 二次函数的凹凸性凹凸性是指二次函数的图像的形状,当a>0时,抛物线开口向上,图像是凹的;当a<0时,抛物线开口向下,图像是凸的。

二、二次函数的图像与性质1. 二次函数图像的平移二次函数y = ax² + bx + c的图像平移,一般可以通过改变常数c来实现。

当c>0时,图像上移;当c<0时,图像下移。

常数b则可以控制图像的水平平移。

2. 二次函数图像的伸缩二次函数图像的伸缩可以通过改变系数a来实现。

当|a|>1时,图像纵向伸缩;当0<|a|<1时,图像纵向压缩。

系数b则可以控制图像的水平伸缩。

3. 二次函数的最值对于二次函数y = ax² + bx + c,当a>0时,最小值为f(-b/2a),最大值为正无穷;当a<0时,最大值为f(-b/2a),最小值为负无穷。

二次函数的优化问题分析

二次函数的优化问题分析

二次函数的优化问题分析二次函数是高中数学中的重要内容,它在数学建模、优化问题等应用中经常遇到。

本文将分析二次函数的优化问题,并探讨如何通过优化方法求解。

1. 二次函数的定义和性质二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数,且a ≠ 0。

它的图像是一个抛物线,开口方向由a的正负决定。

二次函数的性质包括:对称轴、顶点、开口方向等。

这些性质在解决优化问题时非常重要。

2. 二次函数的最值问题对于二次函数f(x),我们常常需要求解其最值问题,即求函数在特定区间内的最大值或最小值。

这类问题在实际应用中很常见,比如求解某个物体的最大射程、成本最小化等。

3. 求解最值问题的常用方法(1)关于x的性质法:通过分析二次函数的对称轴和顶点,确定函数的最值点。

(2)导数法:通过计算函数的导数,求得函数的极值点。

对于二次函数来说,也可以利用导数法求解最值问题。

4. 实例分析假设有一个开口向上的抛物线函数f(x) = x^2 + 3x - 4,我们要找出该函数在定义域[-5, 5]上的最大值和最小值。

首先,我们可以通过求导数的方法来解决最值问题。

求导得到f'(x) = 2x + 3,令f'(x) = 0,解得x = -1.5。

将x = -1.5带入原函数f(x),得到f(-1.5) = 2.75。

所以,函数f(x)在定义域[-5, 5]上的最大值为2.75。

同时,我们可以通过对称轴的方法来求解最值问题。

二次函数的对称轴公式为x = -b / (2a)。

将函数f(x)代入公式,得到x = -3 / (2 * 1) = -1.5。

同样,将x = -1.5带入原函数f(x),得到f(-1.5) = 2.75。

通过以上两种方法,我们得出函数f(x)在定义域[-5, 5]上的最大值和最小值都为2.75。

5. 二次函数优化在实际问题中的应用二次函数的优化方法不仅仅在数学课堂上使用,它在实际问题中应用广泛。

二次函数 通解

二次函数 通解

二次函数通解中的特定函数一、定义二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c是常数,且a 不等于0。

在二次函数中,x的最高次数为2,因此它是一个二次方程。

二、用途二次函数在数学和实际应用中具有广泛的应用。

它们可以描述许多自然现象和物理现象,并且在工程、经济学和计算机科学等领域中也有重要的作用。

下面将介绍一些常见的应用。

1. 抛物线二次函数图像呈现出抛物线形状,因此抛物线问题是讨论二次函数最常见的应用之一。

例如,在物理学中,抛体运动可以通过一个简单的二次函数来描述。

当我们抛出一个物体时,它会沿着一个抛物线轨迹运动。

2. 最优化问题在经济学和工程学中,我们经常需要解决最优化问题,即找到使得某个目标函数取得最大或最小值的变量值。

很多时候这个目标函数可以通过一个二次函数来表示。

例如,在生产成本分析中,我们希望找到生产规模使得总成本最小化的最优解。

3. 调和振动在物理学中,谐振子是一个重要的概念。

它可以用一个二次函数来描述,其中x表示物体的位移,而函数的形状则描述了物体在平衡位置附近的振动情况。

4. 图像处理二次函数在图像处理中也有广泛的应用。

例如,在图像变换和滤波中,我们可以使用二次函数来调整图像的亮度、对比度和锐化等特征。

三、工作方式二次函数通解中的特定函数包括顶点形式和标准形式两种。

它们分别具有不同的特点和用途。

1. 顶点形式顶点形式是二次函数通解中的一种特定函数表示方式,它可以通过完全平方公式将一般形式转换为顶点形式。

顶点形式为f(x) = a(x - h)^2 + k,其中(h, k)是抛物线的顶点坐标。

这种表示方式更直观地显示了抛物线的顶点位置和对称轴信息。

特点:•抛物线的开口方向由a值决定,当a大于0时抛物线开口向上,当a小于0时抛物线开口向下。

•顶点坐标(h, k)表示抛物线的最低点或最高点,也是对称轴的中点。

•对称轴是垂直于x轴的一条直线,通过顶点,并将抛物线分为两个对称的部分。

二次函数的应用问题

二次函数的应用问题

二次函数的应用问题二次函数是一种常见的代数函数,它的一般形式为f(x) = ax² + bx + c,其中a、b、c都是实数且a ≠ 0。

由于二次函数具有抛物线的形状,因此在各种实际问题中都能够找到应用。

本文将介绍二次函数在现实生活中的一些典型应用问题,并通过具体案例来解析解决方法。

问题一:飞行物体高度计算假设有一架飞机以初速度v₀从地面起飞,以固定的加速度a直线上升,问它在时间t后的高度h为多少?解决方法:根据牛顿第二定律,加速运动下飞机在t时刻的速度v可以表示为v = v₀ + at,高度h可以表示为h = v₀t + 1/2at²。

将其中的v带入,得到h = v₀t + 1/2a(v - v₀),代入飞机起飞时速度为0的条件,可得到简化的高度公式h = 1/2at²。

这就是一个二次函数,其中a为加速度,t为时间。

问题二:物体抛射问题假设有一个人以速度v₀把一个物体从一定高度h₀抛出,考察物体的运动轨迹。

解决方法:物体的垂直位移可以通过二次函数来表示。

首先,垂直方向上的受力只有重力,因此物体在下落过程中的运动可以描述为s = -1/2gt² +v₀t + h₀,其中s为垂直位移,g为重力加速度。

而在水平方向上,物体保持匀速运动,所以可以通过s = v₀x来描述其水平位移,其中x为时间。

问题三:最优化问题对于一个二次函数f(x) = ax² + bx + c,如何确定其在定义域内的最大值或最小值。

解决方法:对于给定的二次函数f(x),可以通过求取其导数f'(x)来确定最大值或最小值的位置。

当f'(x) = 0时,函数取得极值。

根据二次函数的性质,若a > 0,f(x)开口向上,则该极值为最小值;若a < 0,f(x)开口向下,则该极值为最大值。

问题四:实际应用问题二次函数还有很多其他实际应用,比如经济学中的成本、利润和产量问题,物理学中的速度、加速度和位移问题,以及几何学中的抛物线问题等等。

二次函数的优化问题解析与实例分析

二次函数的优化问题解析与实例分析

二次函数的优化问题解析与实例分析在数学中,二次函数是一种形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a ≠ 0。

二次函数在优化问题中扮演着重要的角色,其在现实生活中的应用也十分广泛。

本文将探讨二次函数的优化问题,并通过实例分析来加深对其应用的理解。

一、二次函数的基本性质二次函数的图像为一个抛物线,其基本性质如下:1. 首先,二次函数的开口方向由系数a的正负决定。

当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

2. 其次,二次函数的顶点是抛物线的最低或最高点,由顶点坐标(-b/2a, f(-b/2a))表示。

顶点坐标对于优化问题的解析至关重要。

3. 此外,当Δ = b^2 - 4ac > 0时,二次函数存在两个不同的实根;当Δ = 0时,二次函数存在一个重根;当Δ < 0时,二次函数无实根,图像与x轴无交点。

基于以上性质,我们可以利用二次函数的图像特性来解决优化问题。

二、二次函数的优化问题解析二次函数的优化问题主要包括两种类型:极大值问题和极小值问题。

而求解这些问题的关键在于找到二次函数的极值点,也即抛物线的顶点。

以下是解析二次函数优化问题的一般步骤:1. 首先,写出二次函数的表达式,即f(x) = ax^2 + bx + c。

2. 求出二次函数的导数f'(x)。

由于二次函数是二次多项式,其导数为一次多项式。

3. 令f'(x) = 0,解得极值点x0。

4. 将x0带入原函数f(x)中,得到最优解f(x0)。

此时,x0对应二次函数的顶点,也即优化问题的解。

三、实例分析为了更好地理解二次函数的优化问题,我们通过一个实例进行分析。

假设某物体从一定高度h0自由落下,受到重力的作用,其下落距离s与时间t的关系可以表示为s(t) = -4.9t^2 + h0。

现在我们的目标是求解物体下落的时间,使得下落距离最大。

1. 首先,根据题目要求,我们写出二次函数的表达式s(t) = -4.9t^2 + h0,其中a = -4.9。

《二次函数与约束最优化问题》

《二次函数与约束最优化问题》

《二次函数与约束最优化问题》
《二次函数与约束最优化问题》是运用微积分理论来解决实际经济学,管理学,工程学,运筹学等领域的一类问题。

其解答依赖于一般数学算法原理,主要是极大极小点的理论,点,线及平面的解法,以及拉格朗日乘子法,然后是Kuhn-Tucker方程,Lagrange函数和Karush-Kuhn-Tucker条件等。

二次函数与约束最优化问题是指当函数为二次函数时,考虑约束条件的情况,通过满足某些约束条件,即在有限范围内取得最佳解的方法。

一般来说,二次函数与约束最优化问题通常会有两种约束条件,即一般不等式约束和可行性约束。

其中,一般不等式约束可以具有很多不同形式,可以分为二次约束、参数限制等,而可行性约束是指求解问题所必须满足的条件,如条件不满足,则该问题的求解无意义。

解决二次函数与约束最优化问题的有效方法有很多,如通过乘子法,拉格朗日乘子法等求解约束条件,然后用最小二乘法和梯度法求解未约束最优化问题。

乘子法是一种约束条件最优化技术,是指在满足一定约束条件下,对目标函数最小值或最大值的搜索,是最优化的一种重要方法。

拉格朗日乘子法是求解约束条件最优化问题的通用方法,它使用最小化拉格朗日函数的乘子法迭代求解。

最小二乘法是求未约束的最优化问题的基本方法,它通过求解均方差的最小值来求解未约束的最优化问题。

梯度法是求解未约束最优化问题的一种重要方法,它使用梯度下降法来求解未约束的最优化问题,即沿着目标函数梯度的负方向搜索,从而找到极值点。

从以上可以看出,二次函数与约束最优化问题是一个把微积分理论应用到实际问题上的重要问题,它的解决方法多种多样,能够很好地帮助我们解决实际问题。

利用二次函数解决实际问题

利用二次函数解决实际问题

利用二次函数解决实际问题二次函数是数学中重要的一类函数,它具有许多应用于实际问题的能力。

通过解决二次函数相关的实际问题,我们可以更好地理解和应用这一数学工具。

本文将通过几个实际问题的案例,详细介绍如何利用二次函数解决这些问题。

案例一:抛物线的高度与水平距离的关系假设一个小球以一定的初速度从地面上抛出,并以二次函数描述它的高度与水平距离的关系。

首先,我们可以建立抛物线方程:h = ax² + bx + c其中,h为小球的高度,x为水平距离,a、b、c为常数。

当小球达到最高点时,它的速度为零,根据这一条件,可以求得抛物线的顶点坐标为(-b/2a,c-b²/4a)。

通过这一顶点坐标和给定的初速度,可以解得a、b、c的具体值。

有了这些参数,我们就能方便地计算小球在任意水平距离上的高度。

案例二:曲线拟合与数据预测在实际问题中,我们常常需要通过一些已知数据点来拟合出一个曲线,并利用这个曲线对未知数据进行预测。

二次函数是一种常用的曲线模型,因为它能很好地适应一些非线性的数据分布。

具体做法是,通过最小二乘法来求得二次函数的参数,使得拟合曲线与已知数据点之间的误差最小化。

然后,利用这个拟合曲线,我们就可以对未知数据进行预测。

这一方法在经济预测、气象预报等领域有着广泛的应用。

案例三:最优化问题二次函数也可以应用于最优化问题的求解。

以抛物线形式的二次函数为例,假设我们需要在一条直线上选择一个点,使得它到抛物线的距离最小。

这可以被看作是一个最优化问题,即求解抛物线与直线的最短距离。

我们可以通过求解二次函数和直线的交点来解决这个问题。

具体的求解过程利用了二次函数的性质和一些微积分的知识。

总结:通过上述几个案例,可以看出二次函数在实际问题中的广泛应用。

它可以用于描述抛物线的运动、拟合非线性数据以及求解最优化问题等。

通过解决这些实际问题,我们不仅巩固了对二次函数的理解,也提升了数学在实际应用中的能力。

因此,在学习和应用二次函数时,我们应该注重理论知识和实际问题的结合,这样才能更好地掌握和利用二次函数。

二次函数解决实际问题

二次函数解决实际问题

利用二次函数解决实际问题类型一:利用二次函数解决面积最值(面积优化问题)1、某广告公司设计一幅周长为20 m的矩形广告牌,设矩形的一边长为x m,广告牌的面积为S m2.(1)写出广告牌的面积S与边长x的函数关系式;(2)当x为何值时,广告牌面积S 最大?最大值为几?2、如图,有长为24 m的篱笆,一面利用墙(墙的最大可用长度a为10 m),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45 m2的花圃,AB的长是多少米?(2)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?4、明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?☆类型二、利用二次函数解决利润最值问题(利润优化问题)1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?利润最多为多少元?▲2、(讨论)某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?最大利润为多少?3、某种粮大户去年种植优质水稻360亩,今年计划增加承租x(100≤x≤150)亩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题10 二次函数最优化问题
阅读与思考
数学问题中常见的一类问题是:求某个变量的最大值或最小值;在现实生活中,我们经常碰到一些带有“最”字的问题,如投入最少、效益最大、材料最省、利润最高、路程最短等,这类问题我们称之为最值问题,解最值问题的常见方法有:
1.配方法
由非负数性质得()02≥±b a . 2.不等分析法
通过解不等式(组),在约束条件下求最值. 3.运用函数性质
对二次函数()02≠++=a c bx ax y ,若自变量为任意实数值,则取值情况为:
(1)当0>a ,a b x 2-=时,a b ac y 442-=最小值 ;
(2)当0<a ,a b x 2-=时,a
b a
c y 442
-=最大值 ;
4.构造二次方程
利用二次方程有解的条件,由判别式0≥∆确定变量的取值范围,进而确定变量的最值.
例题与求解
【例1】当x 变化时,分式12
15
632
2++++x x x x 的最小值是 .
(全国初中数学联赛试题)
解题思路:因分式中分子、分母的次数相等,故可将原分式用整式、真分式的形式表示,通过配方确定最小值.
【例2】已知1≤y ,且12=+y x ,则223162y x x ++的最小值为( )
A.
719 B. 3 C. 7
27 D. 13 (太原市竞赛试题)
解题思路:待求式求表示为关于x (或y )的二次函数,用二次函数的性质求出最小值,需注意的是变量x 、y 的隐含限制.
【例3】()2
13
22+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实
数对(a ,b ).
解题思路:本题通过讨论a ,b 与对称轴0=x 的关系得出结论.
【例4】(1)已知2
1
1-+-=x x y 的最大值为a ,最小值b ,求22b a +的值.
(“《数学周报》杯”竞赛试题)
(2)求使()168422+-++x x 取得最小值的实数x 的值.
(全国初中数学联赛试题)
(3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值.
(“我爱数学”初中生夏令营数学竞赛试题)
解题思路:解与二次根式相关的最值问题,除了利用函数增减性、配方法等基本方法外,还有下列常用方法:平方法、判别式法、运用根式的几何意义构造图形等.
【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?
(河南省竞赛试题)
解题思路:设铁路与公路的交点为C ,AC =x 千米,BC =y 千米,AD =n 千米,BD =m 千米,又设铁路每千米的运费为a 元,则从A 到B 的运费
()
ay m y n a S 222+--=,通过有理化,将式子整理为关于y 的方程.
【例6】(1)设r x ,1+r x ,…,k x (r k >),为k -r +1个互不相同的正整数,且x r +x r +1+…+x k =2003,求k 的最大可能值.
(香港中学竞赛试题)
(2)a ,b ,c 为正整数,且432c b a =+,求c 的最小值.
(全国初中数学联赛试题)
解题思路:对于(1),因r =1,对k -r +1= k -1+1=k 个正整数x 1,x 2,…,x k ,不妨设x 1<x 2<…<x k =2013,可见,只有当各项x 1,x 2,…,x k 的值愈小时,才能使k 愈大(项数愈多),通过放缩求k 的最大值;对于(2),从
()()222
b a
c a c
=+-入手.
能力训练
A 级
1.已知三个非负数a ,b ,c ,满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为___________,最大值为 .
2.多项式p =2x 2-4xy +5y 2-12y +13的最小值为 .
3.已知x ,y ,z 为实数,且x +2y -z =6,x -y +2z =3,那么x 2+y 2+z 2的最小值为 .
(“希望杯”邀请赛试题)
4.若实数a ,b ,c ,满足a 2+b 2+c 2=9,则代数式(a -b )2+(b -c )2+(c -a )2的最大值为 ( )
(全国初中数学联赛试题)
5.已知两点A (3,2)与B (1,-1),点P 在y 轴上且使P A +PB 最短,则P 的坐标是( )
A.(0,2
1
-) B.(0,0) C.(0,
611) D.(0,4
1-)
(盐城市中考试题)
6.正实数x ,y 满足1=xy ,那么4
4411y x +的最小值为( ) A.
21 B. 85 C. 1 D. 4
5
E. 2
(黄冈市竞赛试题)
7.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示).
(1)根据图象,求一次函数b kx y +=的解析式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元. ①试用销售单价x 表示毛利润;
②试问:销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?
(南通市中考试题)
8.方程()()06122=-+-+m x m x 有一根不大于1-,另一根不小于1, (1)求m 的取值范围;
(2)求方程两根平方和的最大值与最小值.
(江苏省竞赛试题)
9.已知实数a ,b 满足122=++b ab a ,求22b ab a +-的最大值与最小值.
(黄冈市竞赛试题)
10.已知a ,b ,c 是正整数,且二次函数c bx ax y ++=2的图象与x 轴有两个不同的交点A ,B ,若点A ,B 到原点的距离都小于1,求a +b +c 的最小值.
(天津市竞赛试题)
11.某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结
论:第x 天应付的养护与维修费为()⎥⎦

⎢⎣⎡+-50014
1x 元.
(1)如果将设备从开始投入使用到报废所需的养护与维修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数.
(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?
(河北省竞赛试题)
B 级
1.a ,b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是 .
2.设x ,y ,z 都是实数,且满足x +y +z =1,xyz =2,则z y x ++的最小值为 .
3.如图,B 船在A 船的西偏北45°处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离为 km .
(全国初中数学竞赛试题)


A
B
4.若a ,b ,c ,d 是乘积为1的四个正数,则代数式a 2+b 2+c 2+d 2+ab
+bc +ac +ad +bd +cd 的最小值为( )
A. 0
B. 4
C. 8
D. 10
(天津市竞赛试题)
5.已知x ,y ,z 为三个非负实数,且满足3x +2y +z =5,x +y -z =2. 若s =2x +y -z ,则s 的最大值与最小值的和为( )
A. 5
B.
423 C. 427 D. 4
35
(天津市选拔赛试题)
6.如果抛物线()112----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值为( )
A.1
B.2
C.3
D.4
7.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?
(“祖冲之杯”邀请赛试题)。

相关文档
最新文档