高考物理全国卷专题04 曲线运动常考模型(原卷版)
高考物理一轮课件:专题4-曲线运动(含答案)

mv02
得初速度大小v0= 2μgl v2 =4.0 m/s
B组 统一命题·课标卷题组
4.(2018课标Ⅲ,17,6分)在一斜面顶端,将甲、乙两个小球分别以v和 v 的速度沿同一方向水平
2
抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 ( ) A.2倍 B.4倍 C.6倍 D.8倍
v0乙
=
v v
2
=2
1
,选项A正确。
5.(2017课标Ⅰ,15,6分)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略 空气的影响)。速度较大的球越过球网,速度较小的球没有越过球网;其原因是 ( ) A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大 C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大
高考物理 (北京市专用)
专题四 曲线运动
五年高考
考点一 运动的合成与分解 抛体运动
A组 自主命题·北京卷题组
1.(2018北京理综,20,6分)根据高中所学知识可知,做自由落体运动的小球,将落在正下方位 置。但实际上,赤道上方200 m处无初速下落的小球将落在正下方位置偏东约6 cm处。这一现 象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力” 与竖直方向的速度大小成正比。现将小球从赤道地面竖直上抛,考虑对称性,上升过程该 “力”水平向西,则小球 ( ) A.到最高点时,水平方向的加速度和速度均为零 B.到最高点时,水平方向的加速度和速度均不为零 C.落地点在抛出点东侧 D.落地点在抛出点西侧
2.(2013北京理综,19,6分,0.55)在实验操作前应该对实验进行适当的分析。研究平抛运动的实 验装置示意如图。小球每次都从斜槽的同一位置无初速释放,并从斜槽末端水平飞出。改变 水平板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹。某同学设想 小球先后三次做平抛,将水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间 距。若三次实验中,小球从抛出点到落点的水平位移依次为x1、x2、x3,机械能的变化量依次为 ΔE1、ΔE2、ΔE3,忽略空气阻力的影响,下面分析正确的是 ( )
高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试曲线运动1.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g取若北小球运动的角速度,求此时细线对小球的拉力大小。
【答案】【解析】【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。
专题04 曲线运动-高考物理真题分类解析(2017-2019)

专题04 曲线运动 (解析版) 近3年高考物理试题分类解析江苏省特级教师 戴儒京1.2019年全国2卷19题.如图(a ),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。
某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v 表示他在竖直方向的速度,其v-t 图像如图(b )所示,t 1和t 2是他落在倾斜雪道上的时刻。
则A .第二次滑翔过程中在竖直方向上的位移比第一次的小B .第二次滑翔过程中在水平方向上的位移比第一次的大C .第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D .竖直方向速度大小为v 1时,第二次滑翔在竖直方向上所受阻力比第一次的大 【答案】19.BD【解析】根据“面积法”求位移,从图可以看出第二次滑翔过程中在竖直方向上的位移比第一次的大,A 错误;平均加速度tva =_,12v v <,但12t t >,所以_12_a a <,C 错误;根据“斜率法”求加速度,从图可以看出,竖直方向速度大小为v 1时,加速度12a a <,根据牛顿定律mfg a -=,所以12f f >,D 正确;因为第二次滑翔过程中在竖直方向上的位移比第一次的大,并且αtan y=x(α为斜面倾角),所以第二次滑翔过程中在水平方向上的位移比第一次的大,B 正确。
所以选BD.2. 2019年天津卷10题.(16分)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功。
航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。
为了便于研究舰载机的起飞过程,假设上翘甲板BC 是与水平甲板AB 相切的一段圆弧,示意如图2,AB 长1150m L =,BC 水平投影263m L =,图中C 点切线方向与水平方向的夹角12θ=︒(sin120.21︒≈)。
若舰载机从A 点由静止开始做匀加速直线运动,经6s t =到达B 点进入BC 。
2020年高考物理《解题模型》之力学篇-专题04 曲线运动与万有引力定律(含答案解析)

2020年高考物理《解题模型》之力学篇专题04 曲线运动与万有引力定律一、模型解读模型一竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”。
2.绳、杆模型涉及的临界问题绳模型杆模型常见类型均是没有支撑的小球均是有支撑的小球过最高点的临界条件由rmvmg2=得:grv=临由小球恰能做圆周运动得v临=0讨论分析(1)过最高点时,grv≥2NmvF mgr+=,绳、轨道对球产生弹力2NmvF mgr=-(2)不能过最高点时,grv<,在到达最高点前小球已经脱离了圆轨道(1)当v=0时,F N=mg,F N为支持力,沿半径背离圆心(2)当grv<<0时,2NmvF mgr-+=,F N背向圆心,随v的增大而减小(3)当grv=时,F N=0(4)当grv>时,2NmvF mgr+=,F N指向圆心并随v的增大而增大3.竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同.(2)确定临界点:gr,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模v临型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F合=F向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.模型二双星系统模型1.模型特点(1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F1=F2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力。
(2)“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等。
高考物理高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理高考物理曲线运动常有题型及答题技巧及练习题 (含答案)一、高中物理精讲专题测试曲线运动1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q1m A gL10(J)(ⅱ)当知足0.2≤μ≤0.A3和小车能共速,产生的热量为时,Q11m A v121m A M v2,解得 Q2=2J 222.如下图,水平桌面上有一轻弹簧,左端固定在 A 点,自然状态时其右端位于B点.D 点位于水平桌面最右端,水平桌面右边有一竖直搁置的圆滑轨道MNP,其形状为半径R=0.45m 的圆环剪去左上角 127 °的圆弧, MN 为其竖直直径, P 点到桌面的竖直距离为R, P 点到桌面右边边沿的水平距离为 1.5R.若用质量 m1= 0.4kg 的物块将弹簧迟缓压缩到C 点,开释后弹簧恢还原长时物块恰停止在 B 点,用同种资料、质量为m2= 0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点后其位移与时间的关系为x= 4t﹣ 2t 2,物块从 D 点飞离桌面后恰巧由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为 m2的物块在 D 点的速度;(2)判断质量为 m2=0.2kg 的物块可否沿圆轨道抵达M 点:(3)质量为 m2= 0.2kg 的物块开释后在桌面上运动的过程中战胜摩擦力做的功.【答案】( 1) 2.25m/s (2)不可以沿圆轨道抵达M 点(3)2.7J【分析】【详解】(1)设物块由 D 点以初速度 v D做平抛运动,落到P 点时其竖直方向分速度为:v y2gR2 100.45 m/s=3m/svy4tan53 °v D3所以: v D= 2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg=m v2,R解得: v gR 3 2m/s 2物块抵达P 的速度:v P v D2v2y32 2.252m/s=3.75m/s若物块能沿圆弧轨道抵达M 点,其速度为v M,由 D 到 M 的机械能守恒定律得:1m2v M21m2v P2m2g 1 cos53R22可得: v M20.3375 ,这明显是不行能的,所以物块不可以抵达M 点(3)由题意知 x= 4t - 2t2,物块在桌面上过 B 点后初速度 v B= 4m/s ,加快度为:a4m/s2则物块和桌面的摩擦力:m2 g m2 a可得物块和桌面的摩擦系数:0.4质量 m10.4kg的物块将弹簧迟缓压缩到C点,开释后弹簧恢还原长时物块恰停止在B=点,由能量守恒可弹簧压缩到 C 点拥有的弹性势能为:E p m1gx BC 0质量为 m2=0.2kg 的物块将弹簧迟缓压缩到 C 点开释,物块过 B 点时,由动能定理可得:E p m2 gx BC 1m2v B2 2可得, x BC2m在这过程中摩擦力做功:W1m2gx BC 1.6J 由动能定理, B 到 D 的过程中摩擦力做的功:W 21m2v D21m2v02 22代入数据可得:W2= - 1.1J质量为 m2=0.2kg 的物块开释后在桌面上运动的过程中摩擦力做的功W W1W2 2.7J即战胜摩擦力做功为 2.7 J.3.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q 【答案】 (1)11m / s (2)9m / s(3)72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R22解得: v C9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.4.如下图,在竖直平面内固定有两个很凑近的齐心圆形轨道,外圆ABCD圆滑,内圆的上半部分 B′C′粗D糙′,下半部分 B′A′光D滑.一质量′m=0.2kg 的小球从轨道的最低点 A 处以初速度 v0向右运动,球的直径略小于两圆间距,球运动的轨道半径R=0.2m,取g=10m/s2.(1)若要使小球一直紧贴着外圆做完好的圆周运动,初速度v0起码为多少?(2)若 v0=3m/s ,经过一段时间小球抵达最高点,内轨道对小球的支持力F C=2N,则小球在这段时间内战胜摩擦力做的功是多少?(3)若 v0=3.1m/s ,经过足够长的时间后,小球经过最低点 A 时遇到的支持力为多少?小球在整个运动过程中减少的机械能是多少?(保存三位有效数字)【答案】( 1)v0= 10m/s(2) 0.1J ( 3) 6N; 0.56J【分析】【详解】(1)在最高点重力恰巧充任向心力mg mv C2R从到机械能守恒2mgR1mv02 -1mv C222解得v010m/s(2)最高点mv C'2mg - F CR从 A到 C用动能定理-2mgR - W f 1mv C'2-1mv02 22得 W f =0.1J(3)由 v0 =3.1m/s< 10m/s 于,在上半圆周运动过程的某阶段,小球将对内圆轨道间有弹力,因为摩擦作用,机械能将减小.经足够长时间后,小球将仅在半圆轨道内做来去运动.设此时小球经过最低点的速度为v A,遇到的支持力为F A12mgR mv Amv2AF A - mgR得 F A =6N整个运动过程中小球减小的机械能E 1mv02 - mgR 2得 E =0.56J5.如下图,水平实验台 A 端固定, B 端左右可调,将弹簧左端与实验平台固定,右端有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连结),弹簧压缩量不一样时,将滑块弹出去的速度不一样.圆弧轨道固定在地面并与一段动摩擦要素为0.4 的粗拙水平川面相切D 点, AB 段最长时, BC两点水平距离x BC=0.9m, 实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m,θ =37,°已知 sin37 =0°.6, cos37 =0.°8.达成以下问題:(1)轨道尾端 AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B=3m/s ,求落到 C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上持续滑行 2m, 求滑块在圆弧轨道上对 D 点的压力大小:(3)经过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰巧无碰撞从 C 点进入圆弧轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离 .【答案】(1) 45°( 2) 100N (3) 4m/s 、0.3m【分析】(1)依据题意 C 点到地面高度h C R Rcos3700.08m从 B 点飞出后,滑块做平抛运动,依据平抛运动规律:h h C1gt 22化简则 t0.3s依据 x BC v B t可知 v B3m / s飞到 C 点时竖直方向的速度v y gt 3m / s所以 tan v y1 v B即落到圆弧 C 点时,滑块速度与水平方向夹角为45°(2)滑块在 DE 阶段做匀减速直线运动,加快度大小fg am依据 v E2v D22ax DE联立两式则 v D4m / s在圆弧轨道最低处F N mg m v D2R则 F N 100N ,即对轨道压力为100N.(3)滑块弹出恰巧无碰撞从 C 点进入圆弧轨道,说明滑块落到 C 点时的速度方向正好沿着轨迹该出的切线,即tan v y v0因为高度没变,所以 v y v y3m / s ,370所以 v04m / s对应的水平位移为x AC v0 t 1.2m所以缩短的AB 段应当是x AB x AC x BC0.3m【点睛】滑块经历了弹簧为变力的变加快运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;波及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动联合等时性研究.6.如下图 ,粗拙水平川面与半径R 1.6m 的圆滑半圆轨道BCD在 B 点光滑连结,O点是半圆轨道 BCD 的圆心,B、O、D三点在同一竖直线上,质量m2kg 的小物块 (可视为质点)静止在水平川面上的A点 .某时辰用一压缩弹簧(未画出 )将小物块沿AB方向水平弹出 ,小物块经过 B 点时速度大小为10m/s(不计空气阻力).已知x AB10m ,小物块与水平川面间的动摩擦因数=0.2 ,重力加快度大小g10m/s2求:.(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作使劲的大小;(3)小物块走开最高点后落回到地面上的地点与 B 点之间的距离.【答案】 (1)140J (2)25N (3)4.8m【分析】(1)设压缩弹簧的弹性势能为E P,从A到B依据能量守恒,有E P 1mv B2mgx AB 2代入数据得 E P140J(2)从 B 到 D,依据机械能守恒定律有1mv B21mv D2mg 2R22在 D 点,依据牛顿运动定律有Fmg m vD2R代入数据解得 F25N由牛顿第三定律知,小物块对轨道作使劲大小为25N(3)由 D 点到落地址物块做平抛运动竖直方向有2R 1 gt22落地址与 B 点之间的距离为x v D t代入数据解得x 4.8m点睛:此题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,重点是确立运动过程,剖析运动规律,选择适合的物理规律列方程求解.7.如下图,轨道ABCD的 AB 段为一半径R= 0.2 m 的圆滑 1/4 圆形轨道, BC段为高为h=5 m 的竖直轨道, CD 段为水平轨道.一质量为 0.2 kg 的小球从 A 点由静止开始下滑,抵达B 点时速度的大小为 2 m/s,走开 B 点做平抛运动 (g= 10 m/s2),求:(1)小球走开 B 点后,在CD 轨道上的落地址到 C 点的水平距离;(2)小球抵达 B 点时对圆形轨道的压力大小;(3)假如在 BCD 轨道上搁置一个倾角θ=45°的斜面(如图中虚线所示),那么小球走开B 点后可否落到斜面上?假如能,求它第一次落在斜面上的地点距离 B 点有多远.假如不可以,请说明原因.【答案】(1)2 m(2)6 N(3)能落到斜面上,第一次落在斜面上的地点距离B点 1.13 m【分析】①.小球走开 B 点后做平抛运动,h 1gt 2 2x v B t解得: x2m所以小球在CD 轨道上的落地址到 C 的水平距离为2m②.在圆弧轨道的最低点B,设轨道对其支持力为N由牛二定律可知:N mg m v2BR代入数据,解得N3N故球抵达 B 点时对圆形轨道的压力为3N③.由①可知,小球必定能落到斜面上依据斜面的特色可知,小球平抛运动落到斜面的过程中,其着落竖直位移和水平位移相等v B t1gt 2,解得:t 0.4s2则它第一次落在斜面上的地点距 B 点的距离为S2v B t 0.8 2m .8.如下图,在圆滑水平桌面EAB上有质量为m=2 kg的小球P 和质量为M= 1 kg 的小球 Q, P、 Q 之间压缩一轻弹簧(轻弹簧与两小球不拴接),桌面边沿 E 处搁置一质量也为M =1 kg 的橡皮泥球S,在 B 处固定一与水平桌面相切的圆滑竖直半圆形轨道。
高考物理曲线运动试题(有答案和解析)含解析

高考物理曲线运动试题(有答案和解析)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【全国高考】2020年物理试题分项解析:专题04-曲线运动(含答案)

2020年高考试题精编版分项解析专题04 曲线运动1.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的()A. 时刻相同,地点相同B. 时刻相同,地点不同C. 时刻不同,地点相同D. 时刻不同,地点不同【来源】2018年全国普通高等学校招生统一考试物理(江苏卷)【答案】 B点睛:本题以平抛运动为背景考查合运动与分运动的关系及时刻和位置的概念,解题时要注意弹射管沿光滑竖直轨道向下做自由落体运动,小球弹出时在竖直方向始终具有跟弹射管相同的速度。
2.根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置。
但实际上,赤道上方200m处无初速下落的小球将落在正下方位置偏东约6cm处,这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比,现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球A. 到最高点时,水平方向的加速度和速度均为零B. 到最高点时,水平方向的加速度和速度均不为零C. 落地点在抛出点东侧D. 落地点在抛出点西侧【来源】2018年全国普通高等学校招生统一考试物理(北京卷)【答案】 D【解析】AB、上升过程水平方向向西加速,在最高点竖直方向上速度为零,水平方向上有向西的水平速度,且有竖直向下的加速度,故AB错;CD、下降过程向西减速,按照对称性落至地面时水平速度为0,整个过程都在向西运动,所以落点在抛出点的西侧,故C错,D正确;故选D点睛:本题的运动可以分解为竖直方向上的匀变速和水平方向上的变加速运动,利用运动的合成与分解来求解。
3.滑雪运动深受人民群众的喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中A. 所受合外力始终为零B. 所受摩擦力大小不变C. 合外力做功一定为零D. 机械能始终保持不变【来源】2018年全国普通高等学校招生同一考试理科综合物理试题(天津卷)【答案】 C动员运动过程中速率不变,质量不变,即动能不变,动能变化量为零,根据动能定理可知合力做功为零,C 正确;因为克服摩擦力做功,机械能不守恒,D错误;【点睛】考查了曲线运动、圆周运动、动能定理等;知道曲线运动过程中速度时刻变化,合力不为零;在分析物体做圆周运动时,首先要弄清楚合力充当向心力,然后根据牛顿第二定律列式,基础题,难以程度适中.4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。
专题4 曲线运动(力学部分)(原卷版)

专题4 曲线运动一、选择题(1-3题为单项选择题,4-10为多项选择题)1.如图所示,固定半圆弧容器开口向上,AOB是水平直径,圆弧半径为R,在A、B两点,分别沿AO、BO方向同时水平抛出一个小球,结果两球落在了圆弧上的同一点,从A点抛出的小球初速度是从B点抛出小球初速度的3倍,不计空气阻力,重力加速度为g,则)()A.从B点抛出的小球先落到圆弧面上B.从B点抛出的小球做平抛运动的时间为3R gC.从A点抛出的小球初速度大小为332gRD.从A点抛出的小球落到圆弧面上时,速度的反向延长线过圆心O2.如图所示,光滑轨道由AB、BCDE两段细圆管平滑连接组成,其中圆管AB段水平,圆管BCDE段是半径为R的四分之三圆弧,圆心O及D点与AB等高,整个管道固定在竖直平面内。
现有一质量为m。
初速度0102gRv 的光滑小球水平进入圆管AB。
设小球经过管道交接处无能量损失,圆管内径远小于R。
小球直径略小于管内径,下列说法正确的是()A.小球通过E点时对外管壁的压力大小为2mgB.小球从B点到C点的过程中重力的功率不断增大C.小球从E点抛出后刚好运动到B点D.若将DE段圆管换成等半径的四分之一内圆轨道DE,则小球不能够到达E点3.如图所示,一个内壁光滑的34圆管轨道ABC竖直放置,轨道半径为R;O、A、D位于同一水平线上,A、D间的距离为R;质量为m的小球(球的直径略小于圆管直径),从管口A正上方由静止释放,要使小球能通过C 点落到AD 区,则球经过C 点时( )A .速度大小满足 22c gR v gR ≤≤B .速度大小满足0≤vC ≤gRC .对管的作用力大小满足12mg ≤F C ≤mg D .对管的作用力大小满足0≤F C ≤mg4.如图所示,用铰链将三个质量均为m 的小球A 、B 、C 与两根长为L 轻杆相连, B 、C 置于水平地面上.在轻杆竖直时,将A 由静止释放,B 、C 在杆的作用下向两侧滑动,三小球始终在同一竖直平面内运动.忽略一切摩擦,重力加速度为g .则此过程中( )A .球A 的机械能一直减小B .球A 落地的瞬时速度为2gLC .球B 对地面的压力始终等于32mg D .球B 对地面的压力可小于mg5.如图所示,倾角为θ的斜面上有A 、B 、C 三点,现从这三点分别以不同的初速度水平抛出一小球,三个小球均落在斜面上的D 点,今测得AB =BC =CD ,不计空气阻力,由此可以判断( )A .从A 、B 、C 处抛出的三个小球运动时间之比为3:2:1B .从A 、B 、C 处抛出的三个小球落在斜面上时速度与斜面的夹角相同C .从A 、B 、C 处抛出的三个小球的初速度大小之比为3 :2 :1D .从A 、B 、C 处抛出的三个小球距斜面最远时速度方向与水平方向夹角的正切值之比为3:2:1 6.如图所示,在一端封闭、长约1m 的玻璃管内注满清水,水中放一个红蜡做的小圆柱体R (R 视为质点).现将玻璃管轴线与竖直方向y 轴重合,在小圆柱体R 上升刚好到达匀速时的起点位置记为坐标原点O ,同时玻璃管沿x 轴正方向做初速度为零的匀加速直线运动.小圆柱体R 依次经过平行横轴的三条水平线上的、、A B C 位置,在、、OA AB BC 三个过程中沿y 轴方向的高度均相等,每个过程对应的水平位移的大小之比分别为123、、x x x ∆∆∆,机械能的变化量依次为123、、E E E ∆∆∆,动量的变化量大小依次为123、、p p p ∆∆∆.若小圆住体R 与玻璃管壁之间的相互作用力可忽略不计,则下面分析中正确的是( )A .1231:3:5::x x x ∆∆∆=,1231:3:5::E E E ∆∆∆=B .1231:4:9::x x x ∆∆∆=,1231:4:9::E E E ∆∆∆=C .1231:3:5::x x x ∆∆∆=,123::1:1:1p p p ∆∆∆=D .1231:4:9::x x x ∆∆∆=,123::1:2:3p p p ∆∆∆=7.两个质量分别为2m 和m 的小木块a 和(b 可视为质点)放在水平圆盘上,a 与转轴'OO 的距离为L ,b 与转轴的距离为2L ,a 、b 之间用长为L 的强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( )A .a 比b 先达到最大静摩擦力B .a 、b 所受的摩擦力始终相等C .2kg L ω=是b 开始滑动的临界角速度D .当23kg L ω=时,a 所受摩擦力的大小为53kmg 8.滑雪是冬奥会的比赛项目之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考物理二轮复习热点题型与提分秘籍专题04 曲线运动常考模型题型一曲线运动和运动的合成与分解【题型解码】1.曲线运动的理解(1)曲线运动是变速运动,速度方向沿切线方向;(2)合力方向与轨迹的关系:物体做曲线运动的轨迹一定夹在速度方向与合力方向之间,合力的方向指向曲线的“凹”侧.2.曲线运动的分析(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成.(2)根据合外力与合初速度的方向关系判断合运动的性质.(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵守平行四边形定则.【典例分析1】(多选)如图所示,质量为m的物块A和质量为M的重物B由跨过定滑轮O的轻绳连接,A 可在竖直杆上自由滑动。
当A从与定滑轮O等高的位置无初速释放,下落至最低点时,轻绳与杆夹角为37°。
已知sin37°=0.6,cos37°=0.8,不计一切摩擦,下列说法正确的是()A.物块A下落过程中,A与B速率始终相同B.物块A释放时的加速度为gC.M=2m D.A下落过程中,轻绳上的拉力大小始终等于Mg【典例分析2】(2019·江西宜春市第一学期期末)如图所示是物体在相互垂直的x方向和y方向运动的v-t 图象.以下判断正确的是()A.在0~1 s内,物体做匀速直线运动B.在0~1 s内,物体做匀变速直线运动C.在1~2 s内,物体做匀变速直线运动D.在1~2 s内,物体做匀变速曲线运动【提分秘籍】1.解决运动的合成和分解的一般思路(1)明确合运动和分运动的运动性质。
(2)明确是在哪两个方向上的合成或分解。
(3)找出各个方向上已知的物理量(速度、位移、加速度)。
(4)运用力与速度的方向关系或矢量的运算法则进行分析求解。
2.关联速度问题的解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。
常见的模型如图所示。
【突破训练】1.(2019·安徽皖中名校联盟高三第一次模拟联考)如图所示,在一张白纸上,用手平推直尺沿纵向匀速移动,同时让铅笔尖靠着直尺沿横向匀加速移动,则笔尖画出的轨迹应为()2.(2019·西藏昌都四中二模)(多选)如图甲所示,在杂技表演中,猴子沿竖直杆向上运动,其vt图象如图乙所示,同时人顶杆沿水平地面运动的xt图象如图丙所示。
若以地面为参考系,下列说法中正确的是()A .猴子的运动轨迹为直线B .猴子在2 s 内做匀变速曲线运动C .t =0时猴子的速度大小为8 m/sD .t =2 s 时猴子的加速度为4 m/s 23. (2019·福建厦门市第一次质量检查)在演示“做曲线运动的条件”的实验中,有一个在水平桌面上向右做直线运动的小铁球,第一次在其速度方向上放置条形磁铁,第二次在其速度方向上的一侧放置条形磁铁,如图所示,虚线表示小铁球的运动轨迹.观察实验现象,以下叙述正确的是( )A .第一次实验中,小铁球的运动是匀变速直线运动B .第二次实验中,小铁球的运动类似平抛运动,其轨迹是一条抛物线C .该实验说明做曲线运动物体的速度方向沿轨迹的切线方向D .该实验说明物体做曲线运动的条件是物体受到的合外力的方向与速度方向不在同一直线上4.(2019·陕西宝鸡市高考模拟检测(二))如图所示的机械装置可以将圆周运动转化为直线上的往复运动.连杆AB 、OB 可绕图中A 、B 、O 三处的转轴转动,连杆OB 在竖直面内的圆周运动可通过连杆AB 使滑块在水平横杆上左右滑动.已知OB 杆长为L ,绕O 点沿逆时针方向做匀速转动的角速度为ω,当连杆AB 与水平方向夹角为α,AB 杆与OB 杆的夹角为β时,滑块的水平速度大小为( )A.ωL sin βsin αB.ωL cos βsin αC.ωL cos βcos αD.ωL sin βcos α题型二 平抛运动和类平抛运动的规律及应用【题型解码】1.基本思路处理平抛(或类平抛)运动时,一般将运动沿初速度方向和垂直于初速度方向进行分解,先按分运动规律列式,再用运动的合成求合运动.2.两个突破口(1)对于在斜面上平抛又落到斜面上的问题,其竖直位移与水平位移之比等于斜面倾角的正切值.(2)若平抛运动的物体垂直打在斜面上,则物体打在斜面上瞬间,其水平速度与竖直速度之比等于斜面倾角的正切值.【典例分析1】(2019·湖北八校联合二模)在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图所示。
由此可知( )A .小球从A 到B 再到C 的整个过程中机械能守恒B .电场力大小为2mgC .小球从A 到B 与从B 到C 的运动时间之比为2∶1D .小球从A 到B 与从B 到C 的加速度大小之比为2∶1【典例分析2】(2019·黑龙江齐齐哈尔市联谊校期末)如图所示,D 点为固定斜面AC 的中点.在A 点和D 点分别以初速度v 01和v 02水平抛出一个小球,结果两球均落在斜面的底端C .空气阻力不计.设两球在空中运动的时间分别为t 1和t 2,落到C 点前瞬间的速度大小分别为v 1和v 2,落到C 点前瞬间的速度方向与水平方向的夹角分别为θ1和θ2,则下列关系式正确的是( )A.t 1t 2=2 B.v 01v 02=2 C.v 1v 2= 2 D.tan θ1tan θ2=12【提分秘籍】破解平抛(类平抛)运动问题的六大要点(1)建立坐标系,分解运动将平抛运动分解为竖直方向的自由落体运动和水平方向上的匀速直线运动,而类平抛运动分解的方向不一定在竖直方向和水平方向上。
(2)各自独立,分别分析(3)平抛运动是匀变速曲线运动,在任意相等的时间内速度的变化量Δv相等,Δv=gΔt,方向恒为竖直向下。
(4)平抛(或类平抛)运动的推论①任意时刻速度的反向延长线一定通过此时水平位移的中点。
②设在任意时刻瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tanθ=2tanφ。
(5)求解平抛(或类平抛)运动的技巧①处理平抛(或类平抛)运动的基本方法是把运动分解为相互垂直的匀速直线运动和匀加速直线运动,通过研究分运动达到研究合运动的目的。
②要善于确定平抛(或类平抛)运动的两个分速度和分位移与题目呈现的角度之间的联系,这往往是解决问题的突破口。
(6)建好“两个模型”①常规的平抛运动及类平抛模型。
②与斜面相结合的平抛运动模型。
a.从斜面上水平抛出又落回到斜面上:位移方向恒定,落点速度方向与斜面间的夹角恒定,此时往往分解位移,构建位移三角形。
b.从斜面外水平抛出垂直落在斜面上:速度方向确定,此时往往分解速度,构建速度三角形。
【突破训练】1.(2019·山东滨州二模)如图所示,在竖直平面内有一曲面,曲面方程为y=x2,在y轴上有一点P,坐标为(0,6 m)。
从P点将一小球水平抛出,初速度为1 m/s。
则小球第一次打在曲面上的位置为(不计空气阻力)()A.(3 m,3 m) B.(2 m,4 m) C.(1 m,1 m) D.(1 m,2 m)2.(2019·江苏泗阳县第一次统测)如图所示,某同学由O点先后抛出完全相同的3个小球(可将其视为质点),分别依次垂直打在竖直木板M、N、P三点上.已知M、N、P、O四点距离水平地面高度分别为4h、3h、2h、h.不计空气阻力,以下说法正确的是()A.击中P点的小球动能最小B.分别到达M、N、P三点的小球的飞行时间之比为1∶2∶3C.分别到达M、N、P三点的小球的初速度的竖直分量之比为3∶2∶1D.到达木板前小球的加速度相同3.(2019·山东青岛二模)如图,两小球P、Q从同一高度分别以v1和v2的初速度水平抛出,都落在了倾角θ=37°的斜面上的A点,其中小球P垂直打到斜面上,则v1、v2大小之比为()A.9∶8 B.8∶9 C.3∶2 D.2∶34.(2019·广东深圳一模)如图所示,将一小球从固定斜面顶端A以某一速度水平向右抛出,恰好落到斜面底端B。
若初速度不变,对小球施加不为零的水平方向的恒力F,使小球落到AB连线之间的某点C,不计空气阻力。
则()A.小球落到B点与落到C点所用时间相等B.小球落到B点与落到C点的速度方向一定相同C .小球落到C 点时的速度方向不可能竖直向下D .力F 越大,小球落到斜面的时间越短题型三 圆周运动问题【题型解码】1.基本思路(1)受力分析,明确向心力的来源,确定圆心以及半径.(2)列出正确的动力学方程F =m v 2r =mrω2=mωv =mr 4π2T 2. 2.技巧方法竖直平面内圆周运动的最高点和最低点的速度通常利用动能定理来建立联系,然后结合牛顿第二定律进行动力学分析.【典例分析1】(2019·陕西省汉中一模)(多选)如图所示,两物块A 、B 套在水平粗糙的CD 杆上,并用不可伸长的轻绳连接,整个装置能绕过CD 中点的轴OO ′转动,已知两物块质量相等,杆CD 对物块A 、B 的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块A 到OO ′轴的距离为物块B 到OO ′轴距离的两倍。
现让该装置从静止开始转动,使转速逐渐增大,从绳子处于自然长度到两物块A 、B 即将滑动的过程中,下列说法正确的是( )A .B 受到的静摩擦力一直增大 B .B 受到的静摩擦力是先增大后减小再增大C .A 受到的静摩擦力是先增大后减小D .A 受到的合外力一直在增大【典例分析2】(2019·河北衡水武邑中学四模)(多选)如图甲所示,半径为R 、内壁光滑的圆形细管竖直放置,一可看做质点的小球在圆管内做圆周运动,当其运动到最高点A 时,小球受到的弹力F 与其在A 点速度平方(即v 2)的关系如图乙所示。
设细管内径可忽略不计,则下列说法正确的是( )A .当地的重力加速度大小为R bB .该小球的质量为a bR C .当v 2=2b 时,小球在圆管的最低点受到的弹力大小为7aD .当0≤v 2<b 时,小球在A 点对圆管的弹力方向竖直向上【提分秘籍】1.圆周运动问题的求解步骤(1)审清题意,确定研究对象,明确物体做圆周运动的平面。
(2)分析清楚物体的受力情况,找清楚是哪些力充当向心力。
(3)分析清楚物体的运动状态,如线速度、角速度、周期、轨迹半径等。
(4)根据牛顿第二定律列方程求解。
2.圆周运动的一些典型模型的处理方法【突破训练】1.(2019·江苏宿迁一调)如图所示,半径为R 的半球形容器固定在水平转台上,转台绕过容器球心O 的竖直轴线以角速度ω匀速转动。