倍压整流原理

合集下载

全波倍压整流的原理及应用

全波倍压整流的原理及应用

全波倍压整流的原理及应用1. 引言全波倍压整流是一种常见的电力电子领域的电路组成部分,其原理是利用二极管的导通特性,将输入的交流电转换为直流电。

本文将介绍全波倍压整流的原理及其应用。

2. 全波倍压整流的原理全波倍压整流电路由以下几部分组成:•变压器:将输入的交流电压进行降压操作,提供合适的电压给后续的电路使用。

•整流电路:由四个二极管组成的整流桥,将输入的交流电转换为单向传导的直流电。

•滤波电路:使用电感和电容等元件将直流电中的脉动成分滤除,得到更为稳定的直流电输出。

•调压电路:根据需要,对直流电进行进一步的调节,以满足实际应用的要求。

在工作过程中,交流电先经过变压器降压,然后通过整流桥进行整流,得到单向传导的直流电。

接下来,直流电经过滤波电路进行滤波,去除脉动成分,得到稳定的直流电输出。

最后,经过调压电路调节输出电压,以满足实际应用的需求。

3. 全波倍压整流的应用全波倍压整流电路广泛应用于各种电力电子设备和电子产品中。

以下是一些常见的应用场景:3.1 电源供应器全波倍压整流电路作为电源供应器的核心部件,为各种电子设备提供稳定的直流电源。

它可以将输入的交流电转换为所需的直流电,并经过滤波和调压等处理,确保电子设备正常运行。

3.2 交流电动机驱动在交流电动机驱动系统中,全波倍压整流电路将输入的交流电转换为直流电,供给电动机运行所需的直流电源。

通过调节输出电压,可以控制电动机的转速和运行方向。

3.3 充电器全波倍压整流电路还广泛应用于各类充电器中,如手机充电器、笔记本电脑充电器等。

它能够将输入的交流电转换为适当的直流电,为电子设备的电池充电提供所需的电能。

3.4 逆变器在逆变器中,全波倍压整流电路被用作直流电源,通过逆变操作将直流电转换为交流电。

逆变器广泛应用于太阳能发电系统、风能发电系统等领域,将直流能源转换为可供交流电器设备使用的电能。

4. 总结全波倍压整流电路是一种常用的电力电子电路,利用二极管的导通特性将输入的交流电转换为直流电。

倍压整流电路原理

倍压整流电路原理

倍压整流电路原理该电路由三个部分组成:变压器、整流电路和滤波电路。

1.变压器:变压器是倍压整流电路的关键组件。

它由一个主线圈和一个辅助线圈组成。

主线圈与输入电压相连接,输出电压由辅助线圈接收。

2.整流电路:整流电路用于将交流输入信号转换为直流输出信号。

它由一个二极管桥和负载电阻组成。

二极管桥连接在辅助线圈和负载电阻之间,用于将交流信号转换为单向电流。

3.滤波电路:滤波电路用于过滤整流电路输出信号中的脉动。

它由电容器和负载电阻组成。

电容器具有存储电荷的性质,当直流电流通过时,电容器会充电并储存能量,从而平滑输出电压。

1.输入交流电压通过主线圈进入变压器,与辅助线圈感应产生高电压。

2.高电压信号经过二极管桥,四个二极管对输入信号进行整流,将交流信号转换为单向电流。

3.经过整流的信号进入滤波电路,电容器通过存储电荷的方式平滑输出电压,并减小脉动。

4.最后,平滑的直流输出电压被负载电阻连接,供电给外部电路。

在导通时期,输入信号的波峰电压在二极管桥的脉冲输出之前被整流,电容器开始充电,并存储能量。

负载电阻从电容器中提取电能,输出电压接近输入信号的峰值。

在截止时期,输入信号的波峰电压低于电容器的存储电压。

在这种情况下,二极管桥不再导通,电容器开始放电,为负载电阻提供电能,输出电压略低于输入信号的峰值。

通过重复这个过程,倍压整流电路可以实现输出电压的倍增。

总结起来,倍压整流电路利用变压器、整流电路和滤波电路将交流输入信号转换为直流输出信号,并将输出电压提高为输入电压的倍数。

其中,变压器负责将主线圈的交流电压转换为辅助线圈的高电压,整流电路将辅助线圈输出的交流信号转换为单向电流,滤波电路则用于平滑输出电流中的脉动。

倍压整流电路在实际应用中具有较大的经济效益和实用价值。

倍压整流电路原理

倍压整流电路原理

倍压整流电路原理
倍压整流电路是一种非常常见的电路结构,它可以将低电压转换为高电压。

它通常用于直流发电机的控制,也用于电脑,照明,发射机和各种汽车电子控制电路。

倍压整流电路的研究非常重要,因为它和电源领域有着千丝万缕的关系。

倍压整流电路的工作原理主要是通过一系列的变压器,电容器,可调变压器,继电器,二极管和其他电子元件来实现。

其中变压器是核心部件,它可以将低电压变换成高电压,而可调变压器可以调整高电压的幅度。

当输入电压为低压时,变压器将其转换为高压;当输入电压为高压时,可调变压器可以调整其幅度以稳定输出电压。

二极管是倍压整流电路的另一个重要部件,它可以让电流从一个方向流经,从而实现整流。

二极管有五个组成部分,它们是基极,源极,集电极,集电极漏导,和发射极漏导。

它们可以把负电荷收集到发射极,从而防止它们从基极流经。

继电器是倍压整流电路中的另一重要部件,它可以使电路中的元件产生变化。

继电器的结构有两种类型:单级继电器和多级继电器。

单级继电器只能提供一种输出;多级继电器可以提供多种输出,可以实现逐步放电,准备多层次的稳态电压。

此外,电容器也是倍压整流电路中必不可少的部件,它可以抑制电路中的抖动,使电流流量稳定。

电容器的工作原理是把电流换成电压,使输出电压更加平稳。

总之,倍压整流电路可以将低电压转换成高电压,而其中的变压
器,二极管,继电器和电容器是其核心部件。

它们的工作原理是通过互相作用来实现变压和整流,抑制抖动,调整电压幅度,以实现高压输出。

因此,对倍压整流电路研究非常重要,它为电源和汽车电子控制电路提供了有效的解决方案。

倍压整流电路原理?

倍压整流电路原理?

倍压整流电路是一种用于将交流电源转换为具有较高直流电压的电路。

它通常由交流输入、变压器、整流桥和滤波电路组成。

整流桥是倍压整流电路的核心部件,它由四个二极管组成,形成一个桥式结构。

根据电压极性的不同,二极管将正半周或负半周的交流信号转换为单向的直流信号。

倍压整流电路的工作原理如下:
1. 交流输入:将交流电源连接到倍压整流电路的输入端。

2. 变压器:交流电压经过变压器降压或升压,以提供适合整流桥工作的电压。

3. 整流桥:交流电压经过变压器后,输入到整流桥。

整流桥由四个二极管组成,将交流信号转换为单向的直流信号。

- 当输入信号的电压极性为正时,D1 和D2 二极管导通,允许电流通过,而D3 和D4 二极管则被反向极化,阻止电流通过。

- 当输入信号的电压极性为负时,D3 和D4 二极管导通,允许电流通过,而D1 和D2 二极管则被反向极化,阻止电流通过。

4. 滤波电路:经过整流桥的输出是脉动的直流信号。

为了平滑输出电压,需要添加一个滤波电路来去除脉动部分。

滤波电路一般由电容器组成,它可以储存电荷并平滑输出电压波形。

5. 输出电压:滤波电路将脉动的直流信号转换为平滑的输出电压,输出端即可获取到较高的直流电压。

需要注意的是,倍压整流电路只能将交流电源电压转换成具有较高的直流电压,但输出电流通常较小。

此外,倍压整流电路还可以根据需要添加稳压电路来控制输出电压的稳定性。

倍压整流电路应用广泛,例如在通信设备、电子器件、电源适配器等领域中常见。

它具有简单、高效、稳定的特点,可以为各种设备提供所需的高直流电压。

倍压整流电路原理讲解

倍压整流电路原理讲解

倍压整流电路原理讲解
倍压整流电路是一种简单有效的电路,它在电源输出端输出一个比输入电压更高的电压,其原理是通过利用开关电路的原理,将低压的输入电压转换为更高的电压。

倍压整流电路的组成由恒定阻抗、正反变换以及调节器组成,其工作原理如下:首先,恒定阻抗电路负责通过放大增加电流,由此产生了放大倍数,然后由正反变换电路将低压输入电压反转为更高的输出电压,其中包括电流变换器、压降变换器和旋转变换器的基础电路结构;最后,调节器将反转的高压输出电压经过调节,以保持输出电压恒定不变。

整流电路通常用于调节电压的大小,调节电压的大小可以达到稳定输出和节省能源的效果。

它也可以用作电源调节、照明调节、电机调节等,对于需要电路设计的应用方面有着重要的作用。

在实际应用中,倍压整流电路有许多优点。

首先,它具有耐用性强、结构简单等特点,使用起来非常方便;其次,它可以实现自动调节和无限调节,使用者可以根据实际需要调整输出电压;最后,倍压整流电路的精度高,可以实现稳定的输出,且节省能源。

倍压整流电路有着重要的应用价值,尤其在电源调节、照明调节、电机调节等方面的应用。

此外,倍压整流电路可以根据实际需要调节电压大小,可以实现输出稳定。

但是,倍压整流电路也有一些局限性,如调节范围有限、损耗大等,这些局限性在实际应用中需要特别注意。

无论是电源调节、照明调节、电机调节还是其他领域的应用,倍
压整流电路都具有重要的意义,有助于提高输出精度和节约能源。

可以看出,倍压整流电路是一种简单有效的电路,具有重要的应用价值,且能够满足不同类型的应用需求。

倍压整流的原理及应用

倍压整流的原理及应用

倍压整流的原理及应用1. 引言倍压整流是一种常用的电力变换技术,其通过适当的电路设计和控制,使得输入电压经过整流和滤波后,输出电压比输入电压高倍数的电源。

本文将介绍倍压整流的原理以及其在各个领域中的应用。

2. 倍压整流的原理倍压整流的原理基于电路中的电感和电容元件,通过这些元件的耦合和能量存储释放来实现电压的倍增。

下面将介绍两种常见的倍压整流电路。

2.1 Cockcroft-Walton电路Cockcroft-Walton电路是一种经典的倍压整流电路,它由多个二极管和电容器组成。

电路通过交替充电和放电的方式,在电容器上积累电荷并将电压逐级倍增。

以下是Cockcroft-Walton电路的工作原理:•输入交流电源经过第一个二极管和电容器,电容器开始充电。

•当输入电压的极性发生变化时,第一个二极管截断,第二个二极管开始导通。

•当第二个二极管导通时,电容器的电荷转移到下一个电容器中。

这样,电荷逐级传递,电压倍增。

•最后,通过多个级联的电容器,输出电压得到倍增。

2.2 电感倍压整流器电感倍压整流器是另一种常见的倍压整流电路,它通过电感耦合和磁能的储存释放实现电压倍增。

以下是电感倍压整流器的工作原理:•输入交流电压通过一个变压器进行降压,并通过一个整流桥进行整流。

•整流后的电压经过电感耦合到输出电路中,电感储存磁场的能量。

•当输入电压的极性发生变化时,电感释放储存的能量,输出电压实现倍增。

•重复以上步骤,使得输出电压稳定在倍压倍数的水平。

3. 倍压整流的应用倍压整流技术在电子设备和工业领域中有广泛的应用,以下将介绍几个常见的应用领域。

3.1 数据中心数据中心需要高稳定性和高效率的电源供应。

倍压整流技术能够将输入电压倍增,提供稳定的电压输出。

同时,由于倍压整流器的高效性,它能够提供更高的能量转换效率,降低能源消耗。

3.2 太阳能发电太阳能发电系统通常需要将太阳能板输出的低电压升高到适合输送的电压等级。

倍压整流技术能够满足这一需求,实现太阳能电能的高效转换和输送。

倍压整流电路原理

倍压整流电路原理

倍压整流电路原理1倍压整流电路倍压整流电路是一种简单而常用的电路,用于从交流电源中获得一个固定的直流电压,它主要由高压和低压部分组成,各自具有完整的变换电路,因此又被称为双桥型整流电路。

它能够将单相交流电转换成比有功电流输入电压要高数倍的反向电压输出,通常将输出电压整流之后就可以得到直流电压。

2原理倍压整流电路通过高压部分和低压部分组成,它们之间存在着精密的电气连接,且彼此作用互相影响。

低压部分将输入的单相交流电压转换成低压电压后,而高压部分则为输出倍压电压。

当低压部分结构变成桥式后,永磁变压器的空载受桥式结构的影响,作用在变压器的两个绕组上均有一个分布的反接电压,使其高压绕组接收的电压无法接近交流电压。

接着,在高压绕组上接地,这时变压器的输入端就变成低压端,而输出就变成高压端。

在变压器上,将低压端输入低压电压,由低压绕组把它变换成高压电压,在高压部分的变压器输出端,即输出倍压电压,随后再通过整流电路变成直流电压。

3应用倍压整流电路广泛用于聚光灯、X射线机、发动机驱动器以及电动系统,它们都需要高压才能正常工作,而倍压整流电路就非常适合我们在此类应用场合使用。

各种家电大多采用倍压整流电路技术,如电风扇、空调等,以此来实现交流电和直流电的转换,实现其高效运行的目的。

4改进为了改善整流电路的低效率问题,研究者出现了另一种改进的倍压整流电路,将组合式变压器改进为调整式变压器,能够有效地提高其转换的效率,同时也减少了热量的损耗。

另外,此类电路也可以采用半桥式整流电路来替换极性桥式整流电路,克服极性整流电路中热损失较大的问题。

传统的倍压整流电路在低频下会产生大量的噪声,研究者采用细分技术,把单一的变压器分割成多个变压器,并进行组合调整,使其能够更好地抑制低频噪声,并补偿系统中的相位失真,从而提高变压器性能。

总之,倍压整流电路的出现为我们的工程中的变压器技术提供了更加先进和高效的解决方案,让我们能够更好地控制其输出的电压,有效实现电压调整。

倍压整流原理

倍压整流原理

倍压整流电路倍压整流电路的实质是电荷泵。

最初由于核技术发展需要更高的电压来模拟人工核反应,于是在1932年由COCCROFT和WALTON提出了高压倍压电路,通常称为C-W倍压整流电路。

1、直流半波整流电压电路(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。

(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。

图1 直流半波整流电压电路(a)负半周(b)正半周图3 输出电压波形所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电路称为半波电压电路。

ab126计算公式大全正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。

2、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。

负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。

838电子由于C1与C2串联,故输出直流电压,V0=Vm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九江职业技术学院教案首页任课教师阵梓城职称教授备课日期本次授课的课题整流滤波电路课型讲授本次授课的目的和要求1.熟悉桥式整流电路组成、工作原理,会估算输出电压选用二极管2.掌握桥式整流电路二极管正确装接方法3.熟悉半波、桥式整流滤波电路的工作原理4.会估算输出电压,正确选择滤波电容和二极管本次授课的重点、难点及解决措施重点:桥式整流电路输出电压估算,二极管正确装接方法解决措施:结合波形图分析电路的工作原理,并与整流电路进行比较,对比讲解各种滤波电路的参数计算本次授课采用的教具挂图及参考书名称《模拟电子技术基础》周良权主编高教出版社《模拟电子技术基础》沈任元主编机械工业出版社课后作业内容与估计完成时间本此课的小结与改进措施复习半波整流,引入桥式整流。

完成教学任务第三十一次课整流滤波电路一、单相桥式整流电路单相桥式整流电路(Bridge rectifier)如图7.1.6所示,其中图b 为简化画法,图 c 为另一种画法。

1.电路工作原理(1)u2正半周u2瞬时极性a(+),b(-)。

二极管VD1、VD3正偏导通,VD2、VD4反偏截止。

导电回路为a→VD1→R L→VD3→b,负载上电压极性上正下负。

(2)u2负半周u2瞬时极性a(-),b(+)。

二极管VD1、VD3反偏截止,VD2、VD4正偏导通,导电回路为b→VD2→R L→VD4→a,负载上电压极性同样为上正下负。

(3)波形图u2、i D、u o及i L波形如图7.1.7所示。

图7.1.6 单相桥式整流电路图7.1.7 单相桥式整流电路波形图a)原理b)简化画法 c)另一种画法2.二极管正确接法错接二极管会形成很大短路电流而烧毁。

正确接法:共阳端和共阴端接负载,而另外两端接变压器二次绕组。

3.负载上电压、电流值及脉动系数的计算输出电压的平均值U o(A V)和电流平均值I L(A V)及系数等均与全波整流电路相同,即U O(A V)=0.9U2,I L(A V)=0.9U2/R L,γ=0.48。

4.整流二极管的选择选择二极管时,I F≥I D =1/2 I L(A V)=0.45U2/R L,U RM≥U DM=2U2〔例7.1.1〕某直流负载电阻为10Ω,要求输出电压U O=24V,采用单相桥式整流电路供电。

(1)选择二极管(2)求电源变压器的变比与容量。

解:(1)根据题意可求得负载电流I L=U O/R L=24V/10Ω=2.4A二极管平均电流为I D=1/2 I L=1.2A变压器二次电压有效值为U2=U O/0.9=24V/0.9=26.6V在工程实际中,变压器二次侧压降及二极管的导通压降,变压器二次电压大约照理论计算值需提高10%,即U2=26.6V×1.1=29.3V二极管最大反向电压U RM=2U2=2×29.3V=41.1V查阅附录表A-2,选用2CZ56型,它的额定正向电流I F=3A,最高反向工作电压查阅分档标志,选择2CZ56C型,U RM=100V留有裕量。

从表中可知,该二极管要求安装80mm×80mm×1.5mm铝板作为散热器,是为防止二极管过热而损坏。

(2)变压器变比n=220V/29.3V=7.5可以证明变压器二次电流有效值I2=I L/0.9≈2.4A/0.9=2.67A电源变压器伏安容量U2I2=29.3V×2.67A=78.231V A≈79V A考虑到小功率变压器效率,一般取η=0.8,则U2I2=79V A/0.8=98.75V A≈99V A选容量为100VA、二次侧电压、电流有效值为30V/3A的变压器。

二、硅桥式整流器简介为使用方便,工厂生产出硅单相半桥整流器和硅单相桥式整流器。

半桥整流器为二个二极管串接后封装引出三个引脚。

单相桥式整流器又称桥堆,其外形如7.1.8所示。

其中标有“~”引脚为交流电源输入端,其余两脚接负载。

图中标注尺寸单位为:mm。

图7.1.8 常用桥式整流器 a)QL1~6型 b)QL51型(自学)倍压整流电路原理二极管倍压整流电路(Voltage doubler rectifer )如图7.1.9所示。

1.工作原理设电源变压器二次电压u 2=2U 2sin ωt ,电容初始电压为零。

图7.1.9 倍压整流电路(1)当u 2正半周a 端瞬时极性为正,b 端为负,二极管VD 1导通,C 1充电,u C1≈2U 2,极性右正左负。

(2)当u 2为负半周a 负b 正,VD 1反偏截止,VD 2正偏导通,C 2充电,u C2=2U 2+ u C1≈22U 2,极性右正左负。

(3)当u 2再次为正半周VD 1、VD 2反偏截止,VD 3正偏导通,C 3充电,u c3=22U 2+22U 2-u C1≈22U 2,极性右正左负。

(4)当u 2再次为负半周VD 1、VD 2、VD 3均反偏截止,VD 4正偏导通,C 4充电,u C4≈22U 2,极性右正左负。

依次类推,若在图中e 、f 点后面按照图示结构接二极管和电容时,则每个电容都将充电至22U 2,极性均右正左负。

2.输出电路接法:(1)=o u 23U 2,负载接e 、b 两节点。

(2) =o u 24U 2,负载接f 、a 两节点。

在以上分析中,均未考虑电容放电的影响,而实际应用时,当接上负载后,电容将要对负载放电,使输出电压降低。

3.适用场合倍压整流电路仅适用于负载电流很小的场合。

4.元器件选择RM U 22U 2;C 1的耐压值≥N U 2U 2,其余电容的耐压值≥N U 22U 2,电容值可按式τd =R L C ≥(3~5)T /2估算。

三、 滤波电路1.采用滤波电路的缘由及功用整流电路输出的电压是脉动的,含有较大的脉动成分。

这种电压只能用于对输出电压平滑程度要求不高的电子设备中,如电镀、蓄电池充电设备等。

滤波电路(Filter )的作用:保留整流后输出电压的直流成分,滤掉脉动成分,使输出电压趋于平滑,接近于理想的直流电压。

2.分类常用的滤波电路有电容滤波电路(Capacitance filter )、电感滤波(Inductance filter )和RC-π型滤波电路等。

(一)半波整流电容滤波电路 1)电路组成与工作原理注意:(1)二极管导通与否由u C 和u 2共同决定。

(2)放τ>>充τ半波整流电容滤波电路如图1.4.1a 所示。

设u 2(0)=0,在0~t 1期间,二极管VD 正偏导通,电流分成两路:①i L ,②i c充。

因充电时间常数τ充=τrc =(r //R L )C ≈rC ,很小,u C 快速上升,在t 1时刻,u C 达到峰值2U 2,其中,r 为二极管导通时的正向电阻及变压器二次绕组直流电阻之和。

二极管的工作状态由变化的u 2与u C 决定。

t 1时刻,u 2=u C =2U 2,VD 反偏截止。

C 向R L 放电,τ放=τRC =R L C 。

R L >>r ,τRC >>τrc ,故放电过程缓慢,u C下降缓慢,因二极管阳极电位却随u 2迅速下降,使二极管在一段时间内处于截止状态。

当u 2自负半周向正半周上升,在t 2时刻,u 2>u C , VD 又开始导通,向电容C 迅速充电,在t 2~t 3期间,u o 波形按图7.2.1b 中B ~C 段变化。

到t3时刻,u C=u2,二极管又截止,C又对R L放电。

2)波形图综上所述,画出的输出电压u o亦即电容C上电压u C波形如图1.4.1b所示。

图7.2.1 半波整流滤波电路及波形a)电原理图 b)波形图3)电容滤波作用的物理意义电容C对直流分量相当于开路,而对输出电流中的基波及更高次谐波,只要C足够大,X C可以很小,相当于短路,使输出波形趋于平滑。

4)U O(A V)与I D(A V)估算电路输出直流电压平均值为U O(A V)=(1~1.1)U2一般取U O(A V)=U2,流过二极管的平均电流为I D(A V)≈U2/R L5)二极管选择在二极管截止时,二极管承受的最大反向电压为变压器二次绕组电压和电容器充电电压之和,故选二极管时U RM≥U DM=22U2在实际工作时,冲击电流较大,故选用二极管时,一般选I F=(2~3)I D。

(二)单相桥式整流电容滤波电路1.电路组成及工作原理单相桥式整流电容滤波电路如图7.2.2所示。

其工作原理与半波整流滤波电路基本相同,不同的是输出电压是全波脉动直流电,无论u2是正半周还是负半周,电路中总有二极管导通,在一个周期内,u2对电容充电二次,电容对负载放电的时间大大缩短,输出电压波形更加平滑。

2.波形图及U O(A V) 估算波形如图1.4.2b 所示,图中虚线为不接滤波电容时的波形,实线为滤波后的波形,输出电压为U O(A V)≈1.2U 2在电容滤波电路中,若负载电阻开路,U O =2U 2。

3.滤波电容选择滤波电容按式τ=R L C ≥(3~5)T/2选取。

其中,T 是交流电的周期。

滤波电容数值一般在几十微到几千微法,视负载电流大小而定,其耐压值应大于输出电压值,一般取1.5倍左右,且通常采用有极性的电解电容。

4.滤波电容装接注意事项在滤波电容装接过程中,切不可将电解电容极性接反,以免损坏电解电容或电容器发生爆炸。

5.电容滤波电路特点及适用场合电容滤波电路简单,输出电压U o 较高,脉动较小。

但外特性差,适用于负载电压较高,负载变动不大的场合。

图7.2.2 单相桥式整流电容滤波电路图及波形图 a)电路图 b)波形图[例7.2.1 ]有一单相桥式整流电容滤波电路如图7.2.2所示,市电频率为f =50H Z ,负载电阻400Ω,要求直流输出电压U O =24V ,选择整流二极管及滤波电容。

解:(1)选择二极管 03.04002242)(=Ω⨯==VR U I LAV O D A ,I F =(2~3)I D =(60~90)mA∵U O =1.2U 2 ∴U 2=U O /1.2=20V二极管承受的最高反向电压 U RM =2U 2=202V=28.2V查阅手册或本书附录表B-2,2CZ52 型I F =100mA ,查阅电压分档标志,2CZ52B 的最高反向工作U RM 为50V ,符合要求。

(2)选择滤波电容取R L C =5×T /2,R L C =5×0.02/2 S=0.05S已知 R L =400Ω,所以 C =0.05/R L =0.05S/400Ω=1.25×10-6F=125μF 电容器耐压值 U cn=1.5U O =36V取标称值耐压50V 、电容量200μF 或500μF 的电解电容。

四、RC -π型滤波电路 1.电路组成RC -π型滤波电路如图7.2.4所示。

相关文档
最新文档