旋转导向钻井技术介绍

合集下载

探讨石油定向井钻井中的旋转导向技术

探讨石油定向井钻井中的旋转导向技术

探讨石油定向井钻井中的旋转导向技术
石油定向井钻井是指在地下岩层中垂直钻井的基础上,利用钻井工具的旋转引导石油
井筒在地下进行曲线或水平方向的钻探。

旋转导向技术是石油定向井钻井过程中使用的一
种关键技术,它通过控制井干内钻杆的旋转角度,使得井筒在地下形成一定的弧度或水平
延伸。

早期定向钻井是利用钻杆的弯曲特性来导航,但该技术存在限制,如钻杆易断、难以
控制等问题。

随后,随着石油工业对井眼定向控制的需求不断增加,石油定向井的钻井技
术不断创新,出现一系列的新型旋转导向技术,如测井绳技术、旋转搅拌技术、磁性导向
技术、超声波测量技术等,这些技术的出现使得定向井钻井技术水平得到了较大提高。

目前,最广泛应用的旋转导向技术为磁性导向技术,它是一种基于地球磁场的定向钻
井技术。

该技术利用井内的磁钢体感应地球磁场,在钻井过程中通过检测磁场强度和方向
以确定井筒的位置、方向和倾角。

这种技术具有测量精度高、可靠性好、适应性强等优点,在定向井钻井中得到了广泛应用。

但该技术也存在一些问题,如井筒旋转速度过快会影响
精度、磁场干扰等问题。

另外,超声波测量技术也是一种旋转导向技术,它利用超声波的传播特性来探测井筒
的位置和方向。

该技术具有无需环境磁场、精度高等优点,但是需要在井内安装传感器,
成本较高,应用范围相对较窄。

因此,在实际应用中,石油定向井钻井的旋转导向技术应根据钻井井筒的深度、地质
条件、工艺要求等因素来选择最适合的技术。

随着石油工业对井眼定向控制的要求不断提高,未来旋转导向技术也将不断发展创新,为定向井钻井提供更加精准、高效的技术支
持。

探讨石油定向井钻井中的旋转导向技术

探讨石油定向井钻井中的旋转导向技术

探讨石油定向井钻井中的旋转导向技术
石油定向井钻井中的旋转导向技术是一种利用钻头旋转方向实现井壁方向控制的技术,它是石油钻井技术中的一种重要手段。

通过对井深、井径、井角以及井底地层属性等进行
预测,使用旋转导向技术可以使钻井方向到达预定地点,实现石油开采目标的达成。

在石油定向井钻井中,旋转导向技术涉及到多种技术手段,其中最常用的是旋转惯性
导向技术。

这种技术通过钻头旋转产生的离心力,使钻具倾向一侧,从而完成对井壁方向
的控制。

旋转惯性导向技术需要根据现场地质条件以及钻井需要进行不同程度的调整,包
括调整方向指向、调整旋转速度等。

在旋转导向技术中,还有一种重要的技术手段是旋转振动导向技术。

这种技术通过振
动作用力,使得钻头朝向某一侧倾斜,从而造成钻具的方向偏移,随后通过控制振动的强
弱和频率,调整钻具前进方向和偏转角度。

这种技术对于垂直井深较浅的场合更为适用。

除了上述两种技术,还有一种叫作“泵压导向”技术。

它是利用钻压的方向和强度来
控制钻头方向,通过将一定量的内部泥浆泵入钻具中,产生一定的流量,通过流量来控制
钻头的方向,从而实现钻井方向的控制。

总的来说,石油定向井钻井中的旋转导向技术,是钻井技术中的一种重要手段。

它的
使用可以使石油开采更为高效,同时也可以减少地质风险。

在使用旋转导向技术之前,需
要根据现场地质条件和钻井需求的研究,选择最为符合实际要求的技术手段,从而实现钻
井方向的控制。

旋转导向钻井技术介绍-图文

旋转导向钻井技术介绍-图文

旋转导向钻井技术介绍-图文引言近十几年来,水平井、大位移井、多分支井等复杂结构井和“海油陆采”的迅速发展。

为了节约开发成本和提高石油产量,对那些受地理位置限制或开发后期的油田,通常通过开发深井、超深井、大位移井和长距离水平井来实现,进而造成复杂结构的井不断增多。

目前通行的滑动钻井技术已经不能满足现代钻井的需要。

于是,自20世纪80年代后期,国际上开始加强对旋转导向钻井技术的研究;到90年代初期,旋转导向钻井技术已呈现商业化。

国外钻井实践证明,在水平井、大位移井、大斜度井、三维多目标井中推广应用旋转导向钻井技术,既提高了钻井速度,也减少了钻井事故,从而降低了钻井成本。

旋转导向钻井技术是现代导向钻井技术的发展方向。

旋转导向钻井法是在用转盘旋转钻柱钻井时随钻实时完成导向功能。

钻进时的摩阻与扭阻小、钻速高、钻头进尺多、钻井时效高、建井周期短、井身轨迹平滑易调控。

此外,其极限井深可达15km,钻井成本低。

旋转导向钻井技术的核心是旋转自动导向钻井统,如图1所示。

它主要由地面监控系统、地面与井下双向传输通讯系统和井下旋转自动导向钻井系统3部分组成。

1、地面监控系统旋转导向钻井系统的地面监控系统包括信号接收和传输子系统及地面计算存储分析模拟系统,有的还具有智能决策支持系统。

旋转导向钻井系统的主要功能通过闭环信息流监视并随钻调控井身轨迹,其关键技术是从地面发送到井下的下行控制指令系统。

2、地面与井下双向传输通讯系统目前已提出的信号传输方式有4种,即钻井液脉冲、绝缘导线、电磁波和声波。

通过比较分析,笔者发现这4种传输方式各有优缺点和应用局限,如表1所示。

3、井下旋转自动导向钻井系统井下旋转自动导向钻井系统是旋转自动导向系统的核心,它主要由3部分构成,即测量系统、导向机构、CPU和控制系统。

(1)测量系统测量系统主要用于监测井眼轨迹的井斜、方位及地层情况等基本参数,使钻井过程中井下地质参数、钻井参数和井眼参数能够实时测量、传输、分析和控制。

导向钻井技术的原理和应用

导向钻井技术的原理和应用

导向钻井技术的原理和应用导向钻井技术(Directional drilling),又称水平井钻井技术,是一种通过改变钻井井斜角度和方向的方法,来达到在地下水平方向波动井眼的目的。

导向钻井技术通过控制钻头的运动,实现在地下进行位置、角度和航向的精确调整。

它的原理和应用广泛,可以在地下钻孔中取得更好的结果。

导向钻井技术的原理基于多种原理和注入钻井工艺的结合。

首先,通过引入方向钻井工具(如扭曲土工钻)可以改变钻铤方向的角度。

通过调整工具的旋转角度和力量,可以引导钻台在井斜方向移动,从而最终达到水平钻探的目的。

其次,通过适当的钻井液系统以及利用重钢球或倾斜模块,可以控制钻铤的角度和方向。

此外,借助技术进展和先进的感应技术,现代导向钻井系统经常使用传感器和测量工具来监测钻探过程中的方位和位置。

这些传感器可以提供导向钻井师所需的数据,以使整个过程保持稳定和控制。

1.油气开采:导向钻井技术在油气开采中广泛应用,可以在地下受限地区实现地层的最大有效开发。

通过水平或倾斜钻井,可以将井眼穿过油气藏层,以提高生产效率和产量。

此外,导向钻井技术还可以通过选择合适的路径,避开地下障碍物,使油气井的路径更加有效和经济。

2.水井钻探:导向钻井技术在水井钻探中也有广泛应用。

通过水平钻井技术,可以在地下水井中取得更好的水源。

通过控制钻井井斜角度和方向,可以钻出更多的水管,提供更多的水资源。

3.基础工程:导向钻井技术在基础工程中可以实现精确钻孔和钢筋混凝土结构中的导管穿越。

通过控制钻井井斜角度和方向,可以在地下准确定位,避开其他地下设施和地质障碍。

4.矿产勘探:导向钻井技术在矿产勘探中也有很大的应用潜力。

通过水平钻井技术,可以在地下开采矿石和矿藏资源,并提高开采效率。

总的来说,导向钻井技术的原理基于钻铤角度的调整和工具位置的控制。

通过引入方向钻井工具、调整钻井液系统、使用传感器和测量工具等先进技术,可以实现钻井的精确控制和地下导向。

旋转导向系统和地质导向钻井简介

旋转导向系统和地质导向钻井简介


地质参数







钻井工程参数
自然伽玛 电阻率
声波 倾角
LWD/FEWD
密度
孔隙度
轨迹空间位置
井斜 方位 工具面
MWD
钻井参数
钻压 扭矩 压力
PWT
可视化三 维地质体
模型
导向
数据 处理
随钻测 量系统
地质导向 软件系统
曲线对比和 模型修正
7.2 地质导向钻井简介
三、地质导向钻井的概念
地质导向钻井就是在钻井过程中通过随钻测量多种地质和工 程参数对所钻地层的地质参数进行实时评价和对比,根据 评价对比结果而调整控制井眼轨迹,使之命中最佳地质目 标并在其中有效延伸。
旋转导向、地质导向钻井简介
• 7.1 旋转导向系统简介 • 7.2 地质导向钻井简介
7.1 旋转导向系统简介
一、导向钻井代初期发展起来的 一项钻井新技术,代表了钻井技术发展的最高水平。
LWD
斜 向 器
井 下 马
MWD
弯 外 壳 马
旋 革命性 转 进步

达 WLMWD 达 向
30' 40' 50' 60' 70' 80' 90' 2000' 年代
滑动导向
7.1 旋转导向系统简介
二、旋转导向钻井的主要优点
• 提高了机械钻速; • 增强了井眼清洁效果; • 增强了井眼轨迹控制精度和
灵活性; • 减少了起下钻次数; • 井眼规则、光滑; • 克服极限位移限制。
7.1 旋转导向系统简介
7.1 旋转导向系统简介
三、旋转导向系统的进展

贝克休斯旋转导向原理

贝克休斯旋转导向原理

贝克休斯旋转导向原理贝克休斯旋转导向原理是指在石油钻井中,通过旋转钻具来实现钻井方向控制的一种方法。

该原理是由美国工程师贝克和休斯在20世纪30年代提出的,是钻井技术中的重要突破之一。

在传统的钻井方法中,钻井工具靠施加扭矩和推力来实现钻井,但是在某些情况下,需要改变钻井的方向,以便达到特定的目标。

贝克休斯旋转导向原理就是为了解决这一问题而提出的。

该原理的关键是利用钻杆的扭转来改变钻井方向。

在钻井过程中,通过在钻杆上加装一种叫做导向装置的工具,可以使钻杆在钻井过程中产生不同的方向偏差。

这种导向装置通常由可调节的导向翼片组成,可以根据需要进行调整。

当钻杆旋转时,导向装置会产生一个由切向力和摩擦力组成的向下施加的力,这个力会使钻杆发生弯曲,从而改变钻井方向。

通过调整导向装置的角度和位置,可以实现钻井方向的精确控制。

贝克休斯旋转导向原理的优点在于可以实现高精度的钻井方向控制。

相比传统的钻井方法,旋转导向技术可以实现更小的偏差角度和更精确的方向控制。

这对于一些需要在地下目标点附近进行操作的任务非常重要,比如在石油开采中需要在油层下方进行侧向钻井。

贝克休斯旋转导向原理也可以提高钻井的效率和安全性。

传统的钻井方法需要频繁地停工和更换钻具,而旋转导向技术可以减少停工时间,提高钻井的连续性。

同时,由于钻井方向的精确控制,可以避免一些潜在的危险情况,提高钻井作业的安全性。

贝克休斯旋转导向原理的应用范围非常广泛。

除了石油开采领域,旋转导向技术还可以应用于其他领域,比如地质勘探、水井钻探、盐井钻探等。

在这些领域中,旋转导向技术可以帮助钻井工程师更好地了解地下地层的情况,提高勘探和钻探的效率。

总的来说,贝克休斯旋转导向原理是钻井技术中一项重要的突破,通过旋转钻具来实现钻井方向控制。

该原理具有高精度、高效率和高安全性的优点,广泛应用于石油开采和其他领域。

随着技术的不断发展,相信旋转导向技术将会在未来的钻井领域中发挥更大的作用。

旋转导向钻井技术介绍

旋转导向钻井技术介绍


静态偏置 指向式
Geo-Pilot
工具系统 外筒不旋

6.5°/30m


存在
216~ 311mm

存在
152~ 311mm

消除
149311mm

7
January 2010
Geo-Pilot® - 指向式旋转导向钻井系统
Geo-Pilot® 的外筒装有两个偏心环,一个位于另一个的内 部,该偏心环总成组成了精细、紧凑经久耐用的计算机控制 的偏心单元,两个偏心环驱动驱动轴偏离钻具中心,致使钻 头产生偏斜力,从而实现全部旋转的导向钻进模式。
3
January 2010
全套的解决方案
INCREASING DIFFICULTY
OF WELL
施工难度 增加
GXT™
Geo-Pilot® system
V-Pilot ™
EZ-Pilot™
Rotary Steerable Systems 旋转导向系统
GeoForce™
SlickBore®
AGM™
AGS™
• 90秒完成指令的发送并计算机确认、正常钻进 • 保养维护简便
13
January 2010
巡航模式
近钻头井斜表明工具 面和受力不需改变
近钻头数据回到允许 范围,GP工具自动 降低受力,阻止井斜 继续增大
90.0 90.0 90.0 90.0 90.0 89.8 89.7 89.6 89.7 89.8 89.9 90.0 90.0 90.0 90.0
7600系列
8-3/8” 8-1/2” 8-3/4” 9-1/2” 9-7/8” 10-5/8”
7.375”- 7.625”

旋转导向钻井技术(简版)

旋转导向钻井技术(简版)

扩大应用范围
03
旋转导向钻井技术的应用范围不断扩大,不仅适用于直井和斜
井,还可应用于水平井、分支井和多分支井的钻井作业。
旋转导向钻井技术的发展前景
技术创新
随着科技的不断进步,旋转导向钻井技术将不断创新和完善,提高 钻井效率和精度。
智能化发展
未来旋转导向钻井技术将与智能化技术相结合,实现钻井过程的自 动化和智能化,进一步提高钻井效率和安全性。
操作难度大
旋转导向钻井技术的操作 难度较大,需要专业技术 人员进行操作和维护。
维护保养成本高
旋转导向钻井技术的维护 保养成本较高,需要定期 进行检测和维修。
03
技术应用
旋转导向钻井技术在石油工业中的应用
水平井和复杂结构井的钻井
旋转导向钻井技术能够实现水平井和复杂结构井的高效钻井,提 高油藏的采收率。
案例概述
某研究机构致力于旋转导向钻井技术的研发,经过多年的 研究与实践,成功开发出具有自主知识产权的旋转导向钻 井系统。
技术研发
该研究机构在旋转导向钻井技术方面取得了多项突破,包 括高精度导航控制、钻头稳定器设计、信号传输技术等关 键技术。
成果与效益
该研究机构的旋转导向钻井技术成果得到了广泛应用,为 国内外石油公司提供了技术支持与解决方案,推动了该技 术的发展与进步。
地热能开发
在地热能开发领域,旋转导向钻 井技术有助于实现地热井的高效、 精确钻进。
地下水开采
在地下水开采领域,旋转导向钻 井技术能够优化井位布局,提高 开采效率。
旋转导向钻井技术的未来发展技术将不断 进行技术创新和改进,提高钻井精度和效率。
智能化与自动化
分析认为旋转导向钻井技术在该地区油气田开发中取得了良好的应用效 果,建议进一步推广该技术,提高油气勘探开发水平。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转导向钻井技术介绍
引言
近十几年来,水平井、大位移井、多分支井等复杂结构井和“海油陆采”的迅速发展。

为了节约开发成本和提高石油产量,对那些受地理位置限制或开发后期的油田,通常通过开发深井、超深井、大位移井和长距离水平井来实现,进而造成复杂结构的井不断增多。

目前通行的滑动钻井技术已经不能满足现代钻井的需要。

于是,自20世纪80年代后期,国际上开始加强对旋转导向钻井技术的研究;到90年代初期,旋转导向钻井技术已呈现商业化。

国外钻井实践证明,在水平井、大位移井、大斜度井、三维多目标井中推广应用旋转导向钻井技术,既提高了钻井速度,也减少了钻井事故,从而降低了钻井成本。

旋转导向钻井技术是现代导向钻井技术的发展方向。

旋转导向钻井技术
旋转导向钻井法是在用转盘旋转钻柱钻井时随钻实时完成导向功能。

钻进时的摩阻与扭阻小、钻速高、钻头进尺多、钻井时效高、建井周期短、井身轨迹平滑易调控。

此外,其极限井深可达15 km,钻井成本低。

旋转导向钻井技术的核心是旋转自动导向钻井统,如图1所示。

它主要由地面监控系统、地面与井下双向传输通讯系统和井下旋转自动导向钻井系统3部分组成。

1、地面监控系统
旋转导向钻井系统的地面监控系统包括信号接收和传输子系统及地面计算存储分析模拟系统,有的还具有智能决策支持系统。

旋转导向钻井系统的主要功能通过闭环信息流监视并随钻调控井身轨迹,其关键技术是从地面发送到井下的下行控制指令系统。

2、地面与井下双向传输通讯系统
目前已提出的信号传输方式有4种,即钻井液脉冲、绝缘导线、电磁波和声波。

通过比较分析,笔者发现这4种传输方式各有优缺点和应用局限,如表1所示。

3、井下旋转自动导向钻井系统
井下旋转自动导向钻井系统是旋转自动导向系统的核心,它主要由3部分构成,即测量系统、导向机构、CPU和控制系统。

(1)测量系统测量系统主要用于监测井眼轨迹的井斜、方位及地层情况等基本参数,使钻井过程中井下地质参数、钻井参数和井眼参数能够实时测量、传输、分析和控制。

它经历了随钻测量(MWD)、随钻测井(LWD)、随钻地震(SWD)、随钻地层评价测试技术(FEMWD)和地质导向技术(GST)几个阶段。

(2)导向机构导向机构代表了目前导向技术的先进水平。

按原理不同,导向机构原理可分为:
①导向力原理。

推力式(或称偏置式)旋转导向工具和指向式旋转导向工具。

推力式旋转导向工具是通过侧向力推靠钻头来改变钻头的井斜和方位。

而指向式旋转导向工具是预先定向给钻头一个角位移,通过为钻头提供一个与井眼轴线不一致的倾角来使钻头定向造斜。

②控制原理。

可变径稳定器式旋转导向工具和调制式旋转导向工具。

前者是先通过电磁阀调节在伸缩块上的液压,以使导向力矢量满足所需导向目标;再通过定向控制系统进行方位与井斜的控制(图2)。

而后者是通过调节涡轮发电机负载电流改变涡轮发电机绕组回路阻抗,以使携带高强度永磁铁的涡轮叶片与稳定平台内的扭矩线圈耦合产生不同的电磁转矩和加速度,进而使旋转换向阀保持一个相对于井壁的固定角度,即工具面角,最终实现控制轴在受控状态下的运动状态改变(图3)。

③套筒旋转与否原理。

全旋转导向工具和不旋转套筒旋转导向工具。

全旋转导向工具与井壁动态接触,其旋转控制阀在垂直井段随钻柱一起旋转。

不旋转套筒旋转导向工具与井壁静态接触,其外套不随钻柱旋转。

(3)CPU和控制系统CPU和控制系统是整个系统的信息处理和管理中心,它接受来自各个传感器的信号,并依据特定的数据处理方法和控制规律,来控制可调稳定块的伸缩,从而改变钻头的运动轨迹,以达到预设的要求。

CPU 运行的控制算法(包括控制器设计、模型辨识以及状态估计等)是智能钻井的关键部分。

可见,CPU运行的控制算法、传感器技术和变径机构的开发是构成可变径稳定器的三大组成部分。

旋转导向钻井工具
旋转导向钻井工具是旋转导向钻井系统的核心,决定了旋转导向钻井系统的工作特色和工作能力。

1、典型井下闭环旋转导向钻井工具
1.1MRST的组成及工作原理
调制式旋转导向钻井工具(MRST)属于推靠式旋转导向钻井工具(图4)。

由于其钻柱与井壁之间不存在静止点,因此,在钻井过
程中更可体现旋转钻井的优越性。

调制式旋转导向钻井系统导向力
的大小和方向主要是由稳定平台控制的。

当需要最大导向力时,稳
定平台控制轴就带动上盘阀旋转,使上盘阀稳定在预定方向,控制
上盘阀高压孔方向恒定。

在钻柱旋转过程中,每个“巴掌”依次在该
方向附近伸出拍打井壁,导向机构对井壁的作用力就是这些拍打力
的合力。

这个合力的反力就是钻柱受到的导向力,方向沿着上盘阀
预定方向的反方向。

当不需要导向时,稳定平台带动上盘阀以和钻
柱具有不同的某一转速匀速转动,这时“巴掌”均匀拍打井壁四
周,导向工具可控制的液压导向力的合力就等于零,此时导向工具
呈中性工作状态,达到稳斜效果。

MRST液压控制阀采用上、下盘
阀结构,上盘阀与稳定平台控制轴相连接,它只有一个弧形长孔形
状的高压阀孔。

下盘阀与钻柱本体连接,随MRST外壳及钻柱一起
旋转,它有3个互成120°圆心角的等直径低压孔(泄流孔),见图
5。

图4调制式旋转导向钻井工具图
图5液压控制上、下盘阀图
1.2Geo-Pilot的组成及工作原理
Geo-Pilot是一种不旋转套式导向工具(图6)属于指向式旋转导向钻井工具。

它不是靠偏心稳定器的翼肋推靠井壁偏置钻头进行导
向,而是靠不旋转套与万向短节之间的一套偏心机构使万向轴偏置,从而为钻头提供了一个与井眼轴线不一致的倾角,产生导向作用。


机构由几个可控制的偏心环组合而成,当井下自动控制完成偏心环
组合之后,该机构将相对于不旋转套固定,从而始终将万向轴向固定
方向偏置,为钻头提供一个方向固定的倾角。

图6Geo-Pilot旋转导向钻井工具图
2、新型指向式旋转导向钻井工具结构与导向原理
2.1 底部钻具组合(BHA)及导向原理
新型指向式旋转导向钻井工具BHA结构(图7)由4个部分组成,分别是:枢轴稳定器、水力偏置系统、MWD总成和钻柱稳定器。

其中,MWD总成包括:CPU、存储器、螺线型电导管、随钻测量仪(MWD)及控制电路和传感器。

该指向式旋转导向钻井工具(图8)包含两个尤为重要的组成部分:一个是近钻头稳定器(枢轴稳定器),该稳定器由不锈钢材料组成,拥有4个螺旋形刀锋翼肋且相互“环布”连接,并为旋转中心轴提供固定支点;另一个是水力偏置机构,也可看着是一个特殊的“稳定器”,因为它是由不旋转外套筒、电子马达和放射状偏心环组成,并且在不旋转外套筒上安装有3个水力驱动“巴掌”,旋转中心轴位于不旋转外套筒内依次穿过偏置系统和近钻头稳定器。

动力模块电子马达位于中心轴和不旋转套筒之间与控制电路相连。

图7新型指向式旋转导向钻井工具BHA结构简图
图8新型指向式旋转导向钻井工具图
导向原理
正常情况下,中心轴与外套筒中心线重合(图9-Ⅰ)。

钻井的过程中,该新型指向式旋转导向钻井工具中的控制电路CPU接收到MWD总成中相关高端传感器传输的信号(比如:井斜、方位),然后经由螺线形电导管传输给动力模块电子马达,电子马达给放射状水力偏置系统提供动力,安装在不旋转套筒外部的“巴掌”伸出与井壁接触,同时安装在其内部的偏心环旋转。

在“巴掌”和近钻头稳定器支点共同作用下,钻头形成一偏角,即中心轴与不旋转套筒中心线形成一定角度(图9-Ⅱ)。

在偏心环作用下,将连接着钻头的中心轴向固定方向偏置,为钻头提供一个方向的固定的倾角,从而使钻头的钻井方向发生改变,对井斜和方位进行纠正(见图9-Ⅲ)。

其中,钻头偏移角度不仅可调,而且在钻井过程中将钻杆传递的扭矩和钻压实时传递给钻头。

同时,控制电路把信号转化成泥浆脉冲信号,上传给地面控制系统进行分析。

其导向原理如图10所示。

图9新型指向式旋转导向钻井工具导向流程图
图10新型指向式旋转导向钻井工具导向原理简图。

相关文档
最新文档