直接开平方法
一元二次方程的解题方法

一元二次方程的解题方法一、直接开平方法1. 方法原理- 对于形如x^2=p(p≥0)的一元二次方程,可以直接开平方得x = ±√(p)。
对于形如(ax + b)^2=p(p≥0)的方程,先开平方得ax + b=±√(p),然后再解关于x的一次方程。
2. 题目解析- 例:解方程x^2=9。
- 解:根据直接开平方法,因为x^2=9,所以x=±√(9),即x = 3或x=-3。
- 例:解方程(x - 1)^2=4。
- 解:先开平方得x - 1=±√(4),即x - 1=±2。
- 当x - 1 = 2时,x=2 + 1=3;- 当x - 1=-2时,x=-2 + 1=-1。
二、配方法1. 方法原理- 对于一元二次方程ax^2+bx + c = 0(a≠0),将方程左边配成完全平方式(x+(b)/(2a))^2的形式。
具体步骤为:先将二次项系数化为1(方程两边同时除以a),然后把常数项移到方程右边,再在方程两边加上一次项系数一半的平方,最后用直接开平方法求解。
2. 题目解析- 例:解方程x^2+6x - 7 = 0。
- 解:- 首先将常数项移到右边,得到x^2+6x=7。
- 然后在方程两边加上一次项系数一半的平方,因为一次项系数6,一半为3,平方是9,所以方程变为x^2+6x + 9=7 + 9,即(x + 3)^2=16。
- 接着用直接开平方法,x+3=±√(16),x + 3=±4。
- 当x+3 = 4时,x=4 - 3 = 1;当x+3=-4时,x=-4 - 3=-7。
三、公式法1. 方法原理- 对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a},其中b^2-4ac叫做判别式,记作Δ。
当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
一元二次方程解法知识整理

知识点 3 用判别式判断一元二次方程的根
对一元二次方程: ax2 + bx +c = 0(a≠0) •b2 - 4ac > 0时,方程有两个不相等的实数根. •b2 - 4ac = 0时,方程有两个相等的实数根. •b2 - 4ac < 0时,方程没有实数根. 我们把 b2 - 4ac 叫做一元二次方程 ax2 + bx +c = 0(a≠0), 的根的判别式,用符号“Δ”来表示.
有两个不等的实数根x1= p ,x2=- p; (2) 当p=0时,方程有两个相等的实数根x1=x2=0; (3) 当p<0时,因为对任意实数x,都有x2≥0,
所以方程无实数根.
知识点 1 直接开平方法
知识点 1 直接开平方法 用直接开平方法解一元二次方程的步骤(三步法):
变形
将方程化为“含未知数的完全平方式=非负常数” 的形式
若方程的右边为非负数,则两边开平方求得方程 的根
知识点 3 用配方法解二次项系数为1的一元二次方程
字母表述:用配方法解形如x2 + px + q = 0的一元二次方程
①将常数项移到方程的右边.(注意:移项变号)
x2 + px = -q
②两边都加上一次项系数一半的平方.(注意:两边都加)
x2 + px + ( p )2 = ( p )2 - q
列方程(一般找出能够表达应用题主干含义的一个相等关系,
列
列代数式表示相等关系中的各个量,即方程)
解 求出所列方程的解
验 检验方程的解是否正确,能否保证实际问题有意义
答 根据题意,选择合理的答案作答
知识点 2 面积问题
解决面积问题可应用“等积变形”,若图形不规则应割或补成规 则图形,分散的图形应通过平移使之成为一个图形,以便求解
21.2.2直接开平方法和配方法

5 2 )2
(4) x 2
2 3
x ( (1)2 )=(x-
3
1 3
)2
例1:解下列方程
(1)x2 6x 3 0 (2)3x2 1 2x (3)3x2 6x 4 0
解下列方程
(1)x2 10 x 9 0
(3)3x2 6x 4 0
(2)x2 x 7 0 4
例 2 (1) 证明:无论x为何值 二次三项式
2x2 3x 4 必是正数
(2) 设m为任意实数,求代数式
7m 10m2 4 的范围
练习
1. 用配方法说明:不论k取何实数,多 项式k2-3k+5的值必定大于零.
2 求代数式 3x2 x 1 的最小值
3、用22cm的铁丝围成一个矩形.(1)若 矩形面积为30平方厘米,求矩形的相邻两 边长.(2)能围成面积为32平方厘米的矩 形吗?为什么? 作业:
拓展空间 例1 用配方法解一元二次方程
(1)mx2 (m 1)x 1 0 (2)ax2 (a2 1)x a 0
同步练习
(1)3x2 11x 4, (2) y2 (1 2 3) y 3 3 0 (3)x2 (2m 1)x m2 m 0 (4)mx2 (mn 1)x n 0(m 0)
1 x2 4
2 x2 27
3
【直接开平方法】一般地,对于形如x2=a(a≥0)的方程,
根据平方根的定义,可解得 x1 a , x2 a
这种解一元二次方程的方法叫做直接开平方法。
例1.解方程
(1)2x2 4, (2)3x2 1 0 9
练1. 解下列方程: (1) x2 =50 (2)y2- 81=0 (3)9x2-5=3 (4)16x2-49=0
直接开平方法

①
把方程①写成x =9, 这表明x是9的平方根, 因此 或 x 9 x 9 , 即 x=3 或 x=-3.
这种解一元二次方程的方法,叫作直接开平方法.
例1 解4x2 -25=0.
解:
原方程可以写成 x2 25 . 4 直接开平方,得 x 25 或 x 25 , 4 4 即
x1 5 , x2 5 . 2 2
x2 36
-36=0.
2
解: 原方程可以写成
x 3
直接开平方,得
2
36
x 3 36 或 x 3 36 x1 6 3 x2 6 3
即
x1 3
或 x2 9
(4) 解9(1-2x) -16=0. . 解: 原方程可以写成
例2
解:
(x+1)2 -2=0.
原方程可以写成 = 直接开平方,得 x+1 或 解得 x+1 = =
2 -2
(x+1)2
2 , .
.
x1= -1+ 2 ,x2= -1- 2 .
练习一
解下列方程: (1)9x2-49=0; (3)(x+3)2-36=0; (2)36-x2=0; (4)9(1-2x)2-16=0.
(1) 解9x2 -49=0.
解: 原方程可以写成
49 x 9
2
直接开平方,得
49 49 x1 或 x2 9 9 7 即 或x 7 x1 2 3 3
(2) 解 36-x2 =0.
解: 原方程可以写成
- x 2 -36
x 2 36
直接开平方,得
x1 36
即
或 或
2用配方法求解一元二次方程

4.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2配方正 确的是 ( )
A.(x-p)2=5
B.(x-p)2=9
C.(x-p+2)2=9 D.(x-p+2)2=5
答案 B ∵x2-6x+q=0可配方为(x-p)2=7,即(x-p)2-7=0,则x2-6x+q=2可配 方为(x-p)2-7=2,即(x-p)2=9.故选B.
的长为
cm.
答案 6
解析 设小矩形的长为x cm,则小矩形的宽为(8-x)cm, 根据题意得x[x-(8-x)]=24. 解得x=6或x=-2(舍去). 故小矩形的长为6 cm.
3.某养牛场的一边靠墙,墙长25 m,另三边用栅栏围成,现有材料可制作 栅栏40 m. (1)养牛场的面积能达到200 m2吗?若能,请求出养牛场的长和宽,若不能, 请说明理由; (2)能围成面积为250 m2的养牛场吗?请说明理由.
一移
通过配成完全平方式来解一元二次方程的方法,叫做配方法 将常数项移到方程等号的右边
步骤
二除 三配 四开
如果二次项系数不是1,将方程两边同时除以二次项系数,将其化为1
方程两边都加上一次项系数一半的平方,将方程左边配成完全平方式 如果方程的右边是一个非负数,就可以直接开平方解方程;如果是一个负数,则原方程
2
程无解,∴不能围成面积为250 m2的养牛场.
一、选择题 1.(2017天津河北汇森中学模拟,8,★★☆)用配方法解下列方程,配方正 确的是 ( ) A.2y2-4y-4=0可化为(y-1)2=4 B.x2-2x-9=0可化为(x-1)2=8 C.x2+8x-9可化为(x+4)2=16 D.x2-4x=0可化为(x-2)2=4 答案 D A.2y2-4y-4=0可化为(y-1)2=3,故错误; B.x2-2x-9=0可化为(x-1)2=10,故错误; C.x2+8x-9=0可化为(x+4)2=25,故错误; D.x2-4x=0可化为(x-2)2=4,故正确.故选D.
1.2.1 一元二次方程的解法-直接开平方法(解析版)

1.2.1 一元二次方程的解法-直接开平方法考点一、直接开方法解一元二次方程: (1)直接开方法解一元二次方程: 利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法. (2)直接开平方法的理论依据: 平方根的定义. (3)能用直接开平方法解一元二次方程的类型有两类: ①形如关于x 的一元二次方程,可直接开平方求解. 若,则;表示为,有两个不等实数根; 若,则x=O ;表示为,有两个相等的实数根; 若,则方程无实数根. ②形如关于x 的一元二次方程,可直接开平方求解,两根是 .要点:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.题型1:直接开平方法解一元二次方程1.一元二次方程2250x -=的解为( )A .125x x ==B .15=x ,25x =-C .125x x ==-D .1225x x ==【答案】B 【解析】【分析】先移项,再通过直接开平方法进行解方程即可.解:2250x -=,移项得:2=25x ,开平方得:15=x ,25x =﹣,故选B .本题主要考查用开平方法解一元二次方程,解题关键在于熟练掌握开平方方法.2.若()222a =-,则a 是( )A .-2B .2C .-2或2D .4【答案】C 【解析】【分析】先计算2(2)-,再用直接开平方法解一元二次方程即可.()2224a =-=Q 2a \=±故选C 【点睛】本题考查了有理数的乘方,直接开平方法解一元二次方程,熟练直接开平方法是解题的关键.3.方程x 2- =0的根为_______.【答案】x=± 【解析】【分析】,得出x 2=8,利用直接开平方法即可求解.解: x 2- =0,∴x 2=8,∴x =±故答案为:x =±.【点睛】本题考查直接开平方法解一元二次方程及算术平方根,解题关键是熟练掌握直接开平方法的解题步骤.4.有关方程290x +=的解说法正确的是( )A .有两不等实数根3和3-B .有两个相等的实数根3C .有两个相等的实数根3-D .无实数根【答案】D【分析】利用直接开平方法求解即可.∵290x +=,∴290x =-<,∴该方程无实数解.故选:D 【点睛】考查了直接开平方法解一元二次方程.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.5.若方程()20ax b ab =>的两个根分别是4m -与38m -,则ba=_____.【答案】1【解析】【分析】利用直接开平方法得到x =,得到方程的两个根互为相反数,所以4380m m -+-=,解得3m =,则方程的两个根分别是1与1-1=,然后两边平方得到b a 的值.解:∵()20ax b ab =>,∴2b x a=,∴x =,∴方程的两个根互为相反数,∵方程2ax b =的两个根分别是4m -与38m -,∴4380m m -+-=,解得3m =,∴4341m -=-=-,383381m -=´-=,∴一元二次方程ax 2=b 的两个根分别是1与1-,1=,∴1ba=.故答案为:1.【点睛】本题考查了解一元二次方程﹣直接开平方法:形如2x p =或()()20nx m p p +=³的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成2x p =的形式,那么可得x =()()20nx m p p +=³的形式,那么nx m +=6.解方程:(1)23270x -=; (2)2(5)360x --=;(3)21(2)62x -=; (4)()()4490+--=y y .【答案】(1)123,3x x ==-;(2)1211,1x x ==-;(3)122,2x x ==-;(4)125,5y y ==-.【解析】【分析】(1)先移项,再两边同除以3,然后利用直接开方法解方程即可得;(2)先移项,再利用直接开方法解方程即可得;(3)先两边同乘以2,再利用直接开方法解方程即可得;(4)先利用平方差公式去括号,再移项合并同类项,然后利用直接开方法解方程即可得.(1)23270x -=,2327x =,29x =,3x =±,即123,3x x ==-;(2)2(5)360x --=,2(5)36x -=,56x -=或56x -=-,11x =或1x =-,即1211,1x x ==-;(3)21(2)62x -=,2(2)12x -=,2x -=2x -=-,2x =或2x =-+,即122,2x x ==-;(4)()()4490+--=y y ,21690y --=,225y =,5y =±,即125,5y y ==-.【点睛】本题考查了利用直接开方法解一元二次方程,一元二次方程的主要解法包括:直接开方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法是解题关键.7.计算:4(3x +1)2﹣1=0、3274y ﹣2=0的结果分别为( )A .x =±12,y =±23B .x =±12,y =23C .x =﹣16,y =23D .x =﹣16或﹣12,y =23【答案】D 【解析】【分析】直接开平方与开立方,再解一次方程即可.解:由4(3x +1)2﹣1=0得(3x +1)2=14,所以3x +1=±12,解得x =﹣16或x =﹣12,由3274y ﹣2=0得y 3=827,所以y =23,所以x =﹣16或﹣12,y =23.故选:D .【点睛】本题考查开平方法解一元二次方程与立方根法解三次方程,掌握平方根与立方根性质与区别是解题关键.82x = )A .120,x x ==B .120,x x ==C .12x x ==D .12x x ==【答案】A 【解析】【分析】利用直接开方法解一元二次方程即可得.2x =(23x =,利用直接开方法得:x解得120,x x ==故选:A .【点睛】本题考查了利用直接开方法解一元二次方程,熟练掌握直接开方法是解题关键.题型2:直接开平方法解一元二次方程的条件9.下列方程中,不能用直接开平方法求解的是( )A .230x =-B .2(14)0x =--C .220x =+D .22()12()x =--【答案】C 【解析】【分析】方程整理后,判断即可得到结果230x =-移项得23x =,可用直接开平方法求解;2(10)4x -=-移项得2(14)x =-,可用直接开平方法求解;22()(12)4x ==--,可用直接开平方法求解.故选C.【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键10.方程y 2=-a 有实数根的条件是( )A .a ≤0B .a ≥0C .a >0D .a 为任何实数【答案】A 【解析】【分析】根据平方的非负性可以得出﹣a ≥0,再进行整理即可.解:∵方程y 2=﹣a 有实数根,∴﹣a ≥0(平方具有非负性),∴a ≤0;故选:A .【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a ≥0.11.有下列方程:①x 2-2x=0;②9x 2-25=0;③(2x-1)2=1;④21(x 3)273+=.其中能用直接开平方法做的是( )A .①②③B .②③C .②③④D .①②③④【答案】C 【解析】【分析】利用因式分解法与直接开平方法判断即可得到结果.①x 2-2x=0,因式分解法;②9x 2-25=0,直接开平方法;③(2x-1)2=1,直接开平方法;④21(x 3)273+=,直接开平方法,则能用直接开平方法做的是②③④.故选:C.【点睛】考查直接开方法解一元二次方程,掌握一元二次方程的几种解法是解题的关键.12.方程 x 2=(x ﹣1)0 的解为( )A .x=-1B .x=1C .x=±1D .x=0【答案】A 【解析】【分析】根据(x-1)0有意义,可得x-1≠0,求出x≠1,通过解方程x 2=1,确定x 的值即可.∵(x-1)0有意义,∴x-1≠0,即x≠1,∵x 2=(x ﹣1)0∴x 2=1,即x=±1∴x=-1.故选A.【点睛】本题考查了解一元二次方程—直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a≥0)的形式,利用数的开方直接求解.同时还考查了零次幂.13.如果方程()257x m -=-可以用直接开平方求解,那么m 的取值范围是( ).A .0m >B .7m …C .7m >D .任意实数【答案】B 【解析】【分析】根据70-³m 时方程有实数解,可求出m 的取值范围.由题意可知70-³m 时方程有实数解,解不等式得7m …,故选B .【点睛】形如()2+m =a x 的一元二次方程当a≥0时方程有实数解.14.已知方程()200ax c a +=¹有实数根,则a 与c 的关系是( ).A .0c =B .0c =或a 、c 异号C .0c =或a 、c 同号D .c 是a 的整数倍【答案】B 【解析】【分析】将原方程化为2a=c-x 的形式,根据2x 0³可判断出正确答案.原方程可化为2a=c -x ,∵2x 0³,∴c0a -³时方程才有实数解.当c=0时,20=x 有实数根;当a 、c 异号时,c0a -³,方程有实数解.故选B .【点睛】形如2=a x 的一元二次方程当a≥0时方程有实数解.题型3:直接开平方法解一元二次方程的复合型15.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C 【解析】【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.16.方程224(21)25(1)0x x --+=的解为( )A .127x x ==-B .1217,3x x =-=-C .121,73x x ==D .1217,3x x =-=【答案】B 【解析】【分析】移项后利用直接开平方法解答即可.解:移项,得224(21)25(1)x x -=+,两边直接开平方,得2(21)5(1)x x -=±+,即2(21)5(1)x x -=+或2(21)5(1)x x -=-+,解得:17x =-,213x =-.故选:B .【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握直接开平方法是解题的关键.17.解方程:(1)21(2)602y +-=;(2)22(4)(52)x x -=-.【答案】(1)122,2y y =-=--;(2)121,3x x ==.【解析】【分析】(1)原方程先整理,再利用直接开平方法解答即可;(2)利用直接开平方法求解即可.解:(1)21(2)602y +-=,整理,得2(2)12y +=.∴2y +=±即122,2y y ==-;(2)22(4)(52)x x -=-Q ,4(52)x x \-=±-,∴452x x -=-或()452x x -=--,解得:121,3x x ==.【点睛】本题考查了一元二次方程的解法,属于基础题型,熟练掌握直接开平方法是解题的关键.题型3:一元二次方程的根的概念深入理解18.一元二次方程2251440t -=的根与249(1)25x -=的根( )A .都相等B .都不相等C .有一个根相等D .无法确定【答案】C【解析】【分析】运用直接开平方法分别求出两个方程的解,然后再进行判断即可得解.2251440t -=,214425t =,∴125t =±;249(1)25x -=,715x -=±,∴1125x =,225x =-;∴两个方程有一个相等的根125.故选C.【点睛】此题主要考查了用直接开平方法解一元二次方程和确定方程的解,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).题型4:直接开平方法解一元二次方程的根的通用形式19.关于x 的方程(x+a)2 =b(b>0)的根是( )A .-aB .C .当b≥0时,D .当a≥0时,【答案】A【解析】【分析】由b>0,可两边直接开平方,再移项即可得.∵b>0,∴两边直接开平方,得:∴-a ,故选A【点睛】此题考查解一元二次方程-直接开平方法,解题关键在于掌握运算法则20.形如2()(0)ax b p a +=¹的方程,下列说法错误的是( )A .0p >时,原方程有两个不相等的实数根B .0p =时,原方程有两个相等的实数根C .0p <时,原方程无实数根D .原方程的根为x =【答案】D【解析】【分析】根据应用直接开平方法求解的条件逐项判断即得答案.解:A 、当0p >时,原方程有两个不相等的实数根,故本选项说法正确,不符合题意;B 、当0p =时,原方程有两个相等的实数根,故本选项说法正确,不符合题意;C 、当0p <时,原方程无实数根,故本选项说法正确,不符合题意;D 、当0p ³时,原方程的根为x =故选:D .【点睛】本题考查了一元二次方程的解法,属于基本题目,熟练掌握应用直接开平方法求解的条件是关键.题型5:直接开平方法解一元二次方程-降次21.方程4160x -=的根的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】移项得416x ==24,然后两边同时开四次方得x-=±2,由此即可解决问题.解:∵4160x -=∴416x ==24,∴x=±2,∴方程4160x -=的根是x=±2.故选B.【点睛】本题考查高次方程的解法,解题的关键是降次,这里通过开四次方把四次降为了一次.题型6:直接开平方法解一元二次方程-换元法22.若()222225a b +-=,则22a b +的值为( )A .7B .-3C .7或-3D .21【答案】A【解析】【分析】把()222225a b +-=两边开方得到a 2+b 2-2=±5,然后根据非负数的性质确定22a b +的值.解:∵()222225a b +-=,∴a 2+b 2-2=±5,∴a 2+b 2=7或a 2+b 2=-3(舍去),即a 2+b 2的值为7.故选A .【点睛】本题考查解一元二次方程-直接开平方法:形如x 2=p 或(nx+m )2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.题型7:直接开平方法解一元二次方程-创新题,数系的扩充23.我们知道,一元二次方程21x =-没有实数根,即不存在一个实数的平方等于1-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ),并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有()21232422,1,(1),(1)1i i i i i i i i i i ==-=×=-=-==-=,从而对于任意正整数n ,我们可以得到()41444n n n i i i i i +=×=×=,同理可得424341,,1n n n i i i i ++=-=-=.那么234202*********i i i i i i ++++++L 的值为________.【答案】1-【解析】【分析】根据()41444nn n i i i i i +=×=×=,424341,,1n n n i i i i ++=-=-=,化简各式即可求解.解:依题意有()()()22123242,1,1,11i i i i i i i i i i ==-=×=-=-==-=,∵2022÷4=505…2,∴2022i =21i =-∴234202*********i i i i i i ++++++L =−1−i +1+i +…+1+i −1=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.一、单选题1.方程()2690x +-=的两个根是( )A .13x =,29x =B .13x =-,29x =C .13x =,29x =-D .13x =-,29x =-【答案】D【分析】根据直接开平方法求解即可.【解析】解:()2690x +-=,()269x +=,63x \+=±,123,9x x \=-=-,故选:D .A .0k ³B .0h ³C .0hk >D .0k <【答案】A 【分析】根据平方的非负性即可求解.【解析】解:()20x h +³Q ,0k \³.故选:A .【点睛】本题考查了直接开平方法解一元二次方程,理解直接开平方法的条件是解题的关键.5.已知()22230aa x x ---+=是关于x 的一元二次方程,那么a 的值为( )A .2±B .2C .2-D .以上选项都不对【答案】C【分析】只含有一个未知数,且未知数的最高次数是2的整式方程是一元二次方程,根据定义解答即可.【解析】解:∵()22230aa x x ---+=是关于x 的一元二次方程,∴222,20a a -=-¹,解得2a =-,故选:C .【点睛】此题考查了一元二次方程的定义,解一元二次方程,熟记定义是解题的关键.6.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-【答案】C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【解析】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:【解析】∵根据题意可得:420420a b c a b c ++=ìí-+=î①②,①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200ax bx c a ++=¹可得,∵240ax bx a +-=,240ax a -=24ax a=∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.二、填空题11.方程240x -=的根是______.【答案】12x =-,22x =【分析】根据直接开平方法求解即可.【解析】解:240x -=,24x =,∴2x =±,即12x =-,22x =.【点睛】本题考查了解一元二次方程,掌握用直接开平方法解一元二次方程是解题的关键.12.方程()219x +=的根是_____.【答案】1224x x ==-,【分析】两边开方,然后解关于x 的一元一次方程.【解析】解:由原方程,得13x +=±.=−1.故答案为:-1.【点睛】此题考查了一元二次方程的解,实数的运算,根据题意得出数字之间的变化规律是解本题的关键.两边开平方,得63x +=第二步所以3x =- 第三步“小华的解答从第_________步开始出错,请写出正确的解答过程.【答案】(1)-1;(2)二 ;正确的解答过程,见解析【分析】(1)利用平方差公式展开,合并同类项即可;(2)根据直接开平方法求解即可.【解析】(1)解:2(1)(1)+--m m m 221m m =--=-1;(2)解:第二步开始出现错误;正确解答过程:移项,得(x +6)2=9,两边开平方,得x +6=3或x +6=-3,解得x 1=-3,x 2=-9,故答案为:二.【点睛】本题主要考查了整式的混合运算、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.27.嘉嘉和琪琪用图中的A 、B 、C 、D 四张带有运算的卡片,做一个“我说你算”的数学游戏,规则如下:嘉嘉说一个数,并对这个数按这四张带有运算的卡片排列出一个运算顺序,然后琪琪根据这个运算顺序列式计算,并说出计算结果.例如,嘉嘉说2,对2按A B C D ®®®的顺序运算,则琪琪列式计算得:222[(23)(3)2](152)(17)289+´--=--=-=.(1)嘉嘉说-2,对-2按C A D B ®®®的顺序运算,请列式并计算结果;。
21.2 一元二次方程的解法——直接开平方法课件 2024-2025学年人教版数学九年级上册

2
(2) x -18=0.
2
解: x -18=0
2
x =18
x2=36
∴x1=6,x2=-6
10.解方程:
(1)(2-x)2=8;
解:(2-x)2=8
2-x=±2
∴x1=2-2 ,x2=2+2
(2)3(x-1)2-6=0.
解:3(x-1)2-6=0
3(x-1)2=6
(x-1)2=2
小结:通过移项、系数化为1,化为x2=p(p≥0)的形式求
解.
6.解方程:
(1)(x-2)2=4;
(2)(x+6)2-9=0.
解:(x-2)2=4
解:(x+6)2-9=0
x-2=±2
(x+6)2=9
∴x1=4,x2=0
x+6=±3
∴x1=-3,x2=-9.
小结:将方程化为(x+n)2=p(p≥0)的形式,直接开平方.
7.解方程:
(1)(2x-3)2-9=0;
(2)(2x-1)2=(x-3)2.
解:(2x-3)2-9=0
解:(2x-1)2=(x-3)2
2x-1=±(x-3)
∴x1=-2,x2= .
(2x-3)2=9
2x-3=±3
∴x1=3,x2=0.
小结:(1)中化为(mx+n) 2=p(p≥0)的形式;(2)中
(3)(x-1)2-25=0.
解: (x-1)2-25=0
(x-1)2=25
x-1=±5
∴x1=-4, x2 =6
(2)(x-2)2=3;
解:(x-2)2=3
x-2=±
∴x1=2+ ,x2=2-
【说课稿】直接开平方法——教案、学案、说课稿资料文档

1.1 教学目标(1) 知识与技能:理解直接开方法的概念,掌握其解题步骤,能够运用直接开方法解决实际问题。
(2) 过程与方法:通过小组合作、讨论交流,培养学生的合作意识与团队精神,提高学生解决问题的能力。
(3) 情感态度与价值观:培养学生对数学的兴趣,激发学生探索数学问题的热情,培养学生的自信心。
1.2 教学内容本节课主要讲解直接开方法的概念、解题步骤及应用。
1.3 教学重点与难点(1) 重点:直接开方法的概念和解题步骤。
(2) 难点:如何运用直接开方法解决实际问题。
1.4 教学策略采用问题驱动的教学方法,通过引入实例,引导学生探索、讨论,从而掌握直接开方法。
1.5 教学过程(1) 导入:引入实例,让学生尝试解决,感受直接开方法的魅力。
(2) 新课讲解:讲解直接开方法的概念、解题步骤。
(3) 案例分析:分析具体案例,让学生理解直接开方法在实际问题中的应用。
(4) 小组讨论:让学生分组讨论,探索直接开方法的其他应用。
(5) 总结提高:总结本节课所学内容,引导学生思考如何运用直接开方法解决实二、学案2.1 学习目标(1) 知识与技能:理解直接开方法的概念,掌握其解题步骤,能够运用直接开方法解决实际问题。
(2) 过程与方法:通过小组合作、讨论交流,培养学生的合作意识与团队精神,提高学生解决问题的能力。
(3) 情感态度与价值观:培养学生对数学的兴趣,激发学生探索数学问题的热情,培养学生的自信心。
2.2 学习内容本节课主要学习直接开方法的概念、解题步骤及应用。
2.3 自主学习(1) 预习直接开方法的相关知识。
(2) 分析实例,理解直接开方法的应用。
2.4 合作学习(1) 分组讨论,探索直接开方法的其他应用。
(2) 分享学习心得,互相交流。
2.5 练习与巩固完成课后练习,巩固所学知识。
三、说课稿3.1 说课内容3.2 说课重点与难点(1) 重点:直接开方法的概念和解题步骤。
(2) 难点:如何运用直接开方法解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时
§ 公式法
教学目标
1、 初步掌握直接开平方法解一元二次方程
2、 会用直接开平方法解形如)0()(2
≥=-b b a x 的方程
教学重点和难点
重点:用直接开平方法解形如)0()(2≥=-b b a x 的方程
难点:方程为何有两个解
教学过程设计 一、 从学生原有的认知结构提出问题
上一节课,我们研究了一元二次方程。
接下来,我们将学习一元二次方程的解法。
它是本章的重点内容,课本介绍了四种解法,这节课我们学习一元二次方程的第一种解法:直接开平方法。
二、 师生共同研究形成概念
1、 复习旧知识
1、 4的平方根是 。
2、 072
=-y ,则y 为 。
2、 直接开平方法
解方程:042
=-x 解:移项得:42
=x 因为x 是4的平方根, 所以 2±=x 即 21=x 、
22-=x 这种解某些一元二次方程的方法叫做直接开平方法。
3、 例题讲解
例1 用直接开平方法解下列方程:
1)2142=-x ; 2)01822=-x ; 3)2182
12-=-x ; 4)0332=-y 分析:此题是对“直接开平方法”解一元二次方程。
通过第一个例子的讲解,其它方程的解答就可以由学生单独完成。
例2 用直接开平方法解下列方程:
1)4)3(2=+x ; 2)2)3(2=+x ; 3)09)1(42=--x
分析:此题的难度在于学生能否把括号里面的式子看成是一个整体,若能的话,这题就是用上面的方法求方程的解。
例3 用直接开平方法解下列方程:
1)5)32(2=-x ; 2)25)16(2=-x ; 3)012)1(2=-+x ; 4)036)5(2
=--x
5)24)3(62=+x ; 6)32)12(42=-x ; 7)0100)43(42=--x
分析:这部分题的难度较大,不能直接求得结果,需要通过变形,才能得出结果。
三、 随堂练习
1、 用直接开平方法解下列方程:
1)0452=-t ; 2)14)1(72=+m ; 3)04)22
1
(2=-+x ; 4)14)1(72=+p ; 5)05)12(2
=--y ;
四、 小结
这节课我们学习一元二次方程的第一种解法:直接开平方法。
它是最基本的一种方法。
要记住,一元二次方程是有两个解的,这两个解可以是相同的,可以是不相同的。
五、 作业
书本 P 7 1、2 双数部分
六、 教学后记。