色谱分析基础(中)
第十二章色谱分析基础

1. 气相色谱分离过程ቤተ መጻሕፍቲ ባይዱ
当试样由载气携带进入色谱
柱与固定相接触时,被固定相
溶解或吸附;
随着载气的不断通入,被溶
解或吸附的组分又从固定相中
挥发或脱附;
挥发或脱附下的组分随着载
气向前移动时又再次被固定相
溶解或吸附;
随着载气的流动,溶解、挥
发,或吸附、脱附的过程反复
地进行。
(2) 灵敏度高 可以检测出μ g.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。
(3) 分析速度快 一般在几分钟或几十分钟内可以完成一个试样的分析。
(4) 应用范围广 气相色谱:沸点低于400℃的各种有机或无机试样的分析。 液相色谱:高沸点、热不稳定、生物试样的分离分析。
不足之处: 被分离组分的定性较为困难。
2020/1/31
5. 分配比与保留时间的关系
滞留因子(retardation
factor):
RS
uS u
us:组分在分离柱内的线速度;u:流动相在分离柱内的线
速度;滞留因子RS也可以用质量分数ω表示:
RS
ms ms mM
1 1 ms
1 1 k
mM
若组分和流动相通过长度为L的分离柱,需要的时间分
2020/1/31
二、色谱分离过程
色谱分离过程是在色谱柱内完成的。 填充柱色谱: 气固(液固)色谱和气液(液液)色谱,两者的 分离机理不同。 气固(液固)色谱的固定相: 多孔性的固体吸附剂颗粒。 固体吸附剂对试样中各组分的吸附能力的不同。 气液(液液)色谱的固定相: 由 担体和固定液所组成。 固定液对试样中各组分的溶解能力的不同。 气固色谱的分离机理: 吸附与脱附的不断重复过程; 气液色谱的分离机理: 气液(液液)两相间的反复多次分配过程。
色谱分析复习题及参考答案

色谱分析综合体一.选择题1.在色谱分析中,用于定量的参数是( B )A 保留时间B 调整保留值C 峰面积D 半峰宽2.塔板理论不能用于( D )A 塔板数计算B 塔板高度计算C 解释色谱流出曲线的形状D 解释色谱流出曲线的宽度与哪些因素有关3.在气-固色谱分析中,色谱柱内装入的固定相为( D )A 普通固体物质B 载体C 载体+固定液D固体吸附剂4.当载气线速越小,范式方程中,份子扩散项B越大,所以应选下列气体中哪一种作载气最有利?( D )A H2B He C Ar D N25.试指出下述说法中,哪一种是错误的? ( C )A 根据色谱峰的保留时间可以进行定性分析B 根据色谱峰的面积可以进行定量分析C 色谱图上峰的个数一定等于试样中的组分数D 色谱峰的区域宽度体现了组分在柱中的运动情况6.为测定某组分的保留指数,气相色谱法普通采取的基准物是:( C )A 苯B 正庚烷C 正构烷烃D 正丁烷和丁二烯7.试指出下列说法中,哪一个不正确?气相色谱法常用的载气是( C )A N2B H2C O2D He8.试指出下列说法中,哪一个是错误的? ( A )A 固定液是气相色谱法固定相B N2、H2等是气相色谱流动相C 气相色谱法主要用来分离沸点低,热稳定性好的物质D 气相色谱法是一个分离效能高,分析速度快的分析方法9. 在气-液色谱法中, 首先流出色谱柱的组分是 ( A )A 溶解能力小B 吸附能力小C 溶解能力大D 吸附能力大10.根据范第姆特议程式,指出下面哪种说法是正确的? ( A )A 最佳流速时,塔板高度最小B 最佳流速时,塔板高度最大C 最佳塔板高度时,流速最小D 最佳塔板高度时,流速最大二.填空题1.按流动相的物态可将色谱法分为 气相色谱法 和 液相色谱法 。
前者的流动相的 气体 ,后者的流动相为 液体 。
2.气相色谱法多用 高 沸点的 有机 化合物涂渍在惰性载体上作为固定相,普通只要在 450 ℃以下,有 1.5 至 10 Kp a 的蒸气压且 稳定 性好的 有机和 无机 化合物都可用气相色谱法进行分离。
色谱基础知识

色谱的优点
★ 分离效率高 ★ 分析速度快 ★ 应用范围广 ★ 样品用量少 ★ 灵敏度高 ★ 分离和测定同步完成 ★ 易于自动化,可在工业流程中使用
高分子多孔微球:新型的有机合成固定相(苯乙烯/二乙烯苯共聚)。 适用于水、气体及低级醇的分析。
②气液色谱:溶质在固定相和流动相中进行分配,通过分子间作用力
(色散力、静电力、诱导力、氢键)的差异实现分离。
固定相=载体+固定液
对载体的要求:√具有化学惰性
√具有热稳定性
√具有一定的机械强度 √具有适当的比表面
ECD1A, ECD1A, 前部信号(HP5-ECD\STD-50PPB.D)
归一化 325
相交的两点之间的距离,W=1.698644× W ECD1A,ECD1A,前部信号(HP5-ECD\STD-50PPB.D)
300
1/2
归一化
275
800 700
250
600
225
500
200
W1/2
h
400 300
色谱的发展历程
1931年,Kuhn和Lederer重复了Tswett的实验,用氧化铝和碳 酸钙做固定相分离出了3中胡萝卜素(α、β、γ),此后用这种方法 分离了60多种这类色素。
1940年,Martin和Synge提出液液分配色谱法。 1941年, Martin和Synge提出用气体代替液体做流动相的可能。 此后的11年内,James和Martin发表了从理论到实践比较完整的气 液色谱方法,因而获得了1952年的诺贝尔化学奖。 1956年,Van Deemter提出速率理论。1965年Giddings对其进 行了总结和发展。 1957年,Golay开创了毛细管柱气相色谱法。
3--第二章色谱分析理论基础

当待分离组分随着载气进入色谱柱,组分就开始在两相间进行 分配,平衡后,再随着载气进入下一个塔板进行分配,平衡后 再进入下一个塔板。以此类推,从而不断达到分配平衡。
1.塔板理论基本假设
(1)在色谱柱中的每一小段长度H内,组分迅速达到分 配平衡,这一小段色谱柱称为理论塔板,其长度称为理论 塔板高度,简称板高,记为H; (2)载气不是连续通过色谱柱,而是脉冲式,每次进气 量为一个板体积; (3)试样开始时都加在0号塔板上,且试样沿柱纵向扩 散忽略不计; (4)分配系数在各塔板上是常数; (5)塔板与塔板之间不连续。
结论: 分配系数K是色谱分离中的一个重要参数。 两组分分配系数K相差越大,两峰分离的就越好。 不同物质的分配系数K相同时,组分不能分离。因此是色 谱分离依据。
3.分配比k
又叫容量比、容量因子。
在一定温度、压力下,在两相间达到分配平衡时,组分在 两相之间的质量比值,以k表示。
组分在固定相中的质量
k=
分子扩散大。
3.传质阻力项C
组分在气相和液相两相间进行反复分配时,遇到阻力。传质阻 力C包括气相传质阻力Cg和液相传质阻力CL 。液相传质阻力 大于气相传质阻力。
C =(Cg + CL)
气相传质过程是指试样组分从气相移动到固定相表面的过程。
这一过程中试样组分将在两相间进 行质量交换,即进行浓度分配。有 的分子还来不及进入两相界面,就 被气相带走;有的则在进入两相界 面后又来不及返回气相。这样,使 得试样在两相界面上不能瞬间达到 分配平衡,引起滞后现象,从而使 色谱峰变宽。
(3)对于某确定的色谱分配体系,组分的分离最终决定于 组分在每相中的相对量,而不是决定于组分在每相中的相对 浓度,因此分配比是衡量色谱柱对组分保留能力的重要参数。 k越大,组分保留时间越长,k=0,组分的保留时间为死时间。
色谱分析法理论基础

(1)用时间表示的保留值(二)_
调整保留时间 t ‘的R:保指留扣时除间了,死如时图间中 的A'B。
即:t'R = tR- tM
注意:当固定相一 定,在确定的实验条 件下,任何物质都有 一定的保留时间,它 是色谱分析法的基本 参数。
(2)用体积表示的保留值
保留体积VR:指从进样 到柱后出现待测组分浓 度极大值时所通过的载 气体积。
区域宽度(三)
(3)峰基宽度Wb:即通 过流出曲线的拐点所作的 切线在基线的截距,如图 I J所示。 Wb与σ的关系:
Wb =4σ
7.2.2 色谱法中的主要参数和关系式
分配系数Kp和容量因子K '
(1)分配系数Kp:定温定压下物质在固定相和流动相中的 浓度比。 KP=[A]s / [A]m (s-固定相; m-流动相)
• R= 0.59R'
7.2.5 分离效率的表示方法-分离度(四)
关于R、n有效、r2.1、H有效、L柱长间关系如下:
R= r 2.1 1
r 2.1
n有效 16
n有效=16R2
r
r 2.1 2.1
1
2
L=16R2
r 2.1 2 r 2.1 1
H有效
H有效=L / n有效
对于一定的色谱柱和一定的难分离物质对,在一定
❖扩散的严重与否,关键是取决于流动相的线速 度。
7.2.4 影响色谱柱效能的因素 ——速率理论(五)
C - 固定相传质阻力项 D - 流动相传质阻力项 (非平衡状态作用)
此两项对色谱峰的影响均与流速成正比。在流速很 高的情况下,由于没有足够的时间建立平衡,偏离更为 严重。
对于一定的色谱体系,速率方程中A、B、C、D其 值为一定。速率方程描述了流动相的平均线速度对柱 效能的影响。
第二章 色谱分析基础

三聚氰胺
原料乳中添加三聚氰胺的色谱图(浓度 原料乳中添加三聚氰胺的色谱图(浓度4.00 mg/kg) )
仪器分析 生物与化学工程学院
第一节 色谱分析法概述 根据色谱峰的个数, 1. 根据色谱峰的个数,可判断样品所含的最少组 份数. 份数. 根据色谱峰的保留值,可以进行定性分析. 2. 根据色谱峰的保留值,可以进行定性分析. 根据色谱峰的面积或峰高, 可以进行定量分析. 3. 根据色谱峰的面积或峰高 可以进行定量分析.
2 t 理论塔板数与色谱 R = 16 t R n = 5.54 Y1 参数之间的关系为: 参数之间的关系为: W 2
2 t′ t′ R n = 5.54 = 16 R Y1 W 2 2
2
有效理论塔板数: 有效理论塔板数:
有效理论塔板高度: 有效理论塔板高度:
仪器分析
生物与化学区域宽度
A. 标准偏差 σ) 标准偏差( B. 半峰宽 1/2) Y1/2 =2.354 σ 半峰宽(Y C. 峰底宽 (Wb) Wb=4 σ
仪器分析 生物与化学工程学院
第一节 色谱分析法概述 ),色谱流出曲线给出的信息 (二),色谱流出曲线给出的信息
仪器分析 生物与化学工程学院
第一节 色谱分析法概述 ),分配比 容量因子) 分配比( (三),分配比(容量因子) k
ms k= mm
组分在固定相中的质量 组分在流动相中的质量
K与k都是与组分及固定相的热力学性质有关的常数. 与 都是与组分及固定相的热力学性质有关的常数. 都是与组分及固定相的热力学性质有关的常数 K与k都是衡量色谱柱对组分保留能力的参数,数值越 与 都是衡量色谱柱对组分保留能力的参数 都是衡量色谱柱对组分保留能力的参数, 该组分的保留时间越长. 大,该组分的保留时间越长. k可直接从色谱图上获得. 可直接从色谱图上获得. 可直接从色谱图上获得
色谱分析

(f
i 1
n
100
A is
Ai )
hi mi % 100 h1 h 2 h n
h f is hi
(f
i 1
n
100
h is
hi )
特点及要求:
归一化法简便、准确; 进样量的准确性和操作条件的变动对测定结果影响不大;
④ △K小,柱效低,分离效果更差。
2014-7-10
1.5 色谱定性和定量方法
1.5.1定性分析:通过与标准化合物相比较,判断该物质是否
存在。
1. 组分保留时间或保留体积; 2. 色谱技术与其它技术连用:
高效液相色谱 -- 二极管阵列检测器
-- 红外光谱检测器 -- 质谱检测器
250 200 150
(5)选择性好 通过选择合适的分离模式和检测方法,可以只分离或检测 感兴趣的物质。 (6)多组分同时分析 在很短时间内(20min左右),可以实现几十种成分的同 时分离与定量。 (7)易于自动化 现在的色谱仪器已经可以实现从进样到数据处理的全自动 化操作。 (8)应用范围广 气相色谱主要用于沸点低于400℃的各种有机或无机试样的 分析。液相色谱主要用于高沸点、热不稳定、生物试样的分离 分析。
温控系统
结构流程
2014-7-10
2.2.1载气系统
(1)结构
包括气源、净化干燥管和载气 流速控制;
常用的载气有:氢气、氮气、氦气; 净化干燥管:去除载气中的水、有机物等杂质(依次通过 分子筛、活性炭等); 载气流速控制:压力表、流量计、针形稳压阀,控制载气 流速恒定。
2014-7-10
(2)载气种类和流速的选择
1.4 色谱分离有关术语
色谱分析ppt课件

➢ 利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分 离的方法,称为离子交换色谱法。
➢ 利用大小不同的分子在多孔固定相中的选择渗透而达到分离的方 法,称为凝胶色谱法或尺寸排阻色谱法。
最近,又有一种新分离技术,利用不同组分与固定相(固定化分子) 的高专属性亲和力进行分离的技术称为亲和色谱法,常用于蛋白 质的分离。
色谱过程
吸附→解吸→再吸附→再解吸
两种组分的理化性质原本存在着微小 的差异,经过反复多次地吸附→解吸→再 吸附→再解吸的过程使微小差异累积起来, 结果使吸附能力弱的组分先流出色谱柱, 吸附能力强的组分后流出色谱柱,从而使 各个组分得到了分离。
检
测
1
2
3
器
色 谱 柱 ( 固 定 相 )
样品组分 1+2+3
➢ 液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(LSC)和液液色谱(LLC)。 ➢ 超临界流体为流动相的色谱为超临界流体色谱(SFC)。
随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这 种化学键合固定相的色谱又称化学键合相色谱(CBPC)。
2.按分离机理分类
➢ 利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离 的方法,称为吸附色谱法。
在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或 液体)称为固定相 ; 自上而下运动的一相(一般是气体或液体)称为流动相 ; 装有固定相的管子(玻璃管或不锈钢管)称为色谱柱 。
• 色谱分离中的两相是指系统具有一个有大比表面积 的固定相(stationary phase)(可以是固体或以某种 方式固定了的液体)和一个能携带待分离混合物流 过固定相的所谓流动相(mobile phase)(可以是气 体或液体)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H 有效
23:51:44
L n有效
3.塔板理论的特点和不足
(1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越 小),被测组分在柱内被分配的次数越多,柱效能则越高,所 得色谱峰越窄。 (2)不同物质在同一色谱柱上的分配系数不同,用有效塔 板数和有效塔板高度作为衡量柱效能的指标时,应指明测定 物质。 (3) 柱效不能表示被分离组分的实际分离效果,当两组 分的分配系数K相同时,无论该色谱柱的塔板数多大,都无法 分离。 (4) 塔板理论无法解释同一色谱柱在不同的载气流速下 柱效不同的实验结果,也无法指出影响柱效的因素及提高柱 效的途径。
23:44
B· u —传质阻力项
C =(Cg + CL)
(动画)
传质阻力包括气相传质阻力Cg和液相传质阻力CL即:
0.01k Cg 2 (1 k ) Dg
2 k CL 2 3 (1 k ) DL
k为容量因子; Dg 、DL为扩散系数。 减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
色谱理论
色谱理论需要解决的问题:色谱分离过程的热力学和动 力学问题。影响分离及柱效的因素与提高柱效的途径,柱效 与分离度的评价指标及其关系。 组分保留时间为何不同?色谱峰为何变宽? 组分保留时间:色谱过程的热力学因素控制; (组分和固定液的结构和性质) 色谱峰变宽:色谱过程的动力学因素控制; (两相中的运动阻力,扩散) 两种色谱理论:塔板理论和速率理论;
(动画)
固定相颗粒越小 dp↓ ,填充的越均匀, A↓,H↓ ,柱效 n ↑ 。表现在涡流扩散所引起的色谱峰变宽现象减轻,色谱 峰较窄。
23:51:44
B/u —分子扩散项
B = 2 νDg ν :弯曲因子,填充柱色谱,ν <1。
(动画)
Dg:试样组分分子在气相中的扩散系数(cm2· s-1) (1) 存在着浓度差,产生纵向扩散; (2) 扩散导致色谱峰变宽,H↑(n↓),分离变差; (3) 分子扩散项与流速有关,流速↓,滞留时间↑,扩散↑; (4) 扩散系数:Dg ∝(M载气)-1/2 ; M载气↑,B值↓。
23:51:44
一、塔板理论-柱分离效能指标
1.塔板理论(plate theory)
半经验理论; 将色谱分离过程比拟作蒸馏过程,将连续 的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程); 塔板理论的假设: (1) 在每一个平衡过程间隔内,平衡可以迅 速达到; (2) 将载气看作成脉动(间歇)过程; (3) 试样沿色谱柱方向的扩散可忽略; (4) 每次分配的分配系数相同。 (动画)
23:51:44
3. 速率理论的要点
(1)组分分子在柱内运行的多路径与涡流扩散、浓度梯度所 造成的分子扩散及传质阻力使气液两相间的分配平衡不能瞬 间达到等因素是造成色谱峰扩展柱效下降的主要原因。 (2)通过选择适当的固定相粒度、载气种类、液膜厚度及载 气流速可提高柱效。
(3)速率理论为色谱分离和操作条件选择提供了理论指导。 阐明了流速和柱温对柱效及分离的影响。
23:51:44
二、 速率理论-影响柱效的因素
1. 速率方程(也称范.弟姆特方程式)
H = A + B/u + C· u
H:理论塔板高度, u:载气的线速度(cm/s) 减小A、B、C三项可提高柱效;
存在着最佳流速;
A、B、C三项各与哪些因素有关?
23:51:44
A─涡流扩散项
A = 2λdp
dp:固定相的平均颗粒直径 λ:固定相的填充不均匀因子
难分离物质对的分离度大小受色谱过程中两种因素的综
合影响:保留值之差──色谱过程的热力学因素; 区域宽度──色谱过程的动力学因素。 色谱分离中的四种情况如图所示:
23:51:44
讨论:
色谱分离中的四种情况的讨论: ① 柱效较高,△K(分配系数)较大,完全分离; ② △K不是很大,柱效较高,峰较窄,基本上完全分离; ③柱效较低,,△K较大,但分离的不好;
(4) 各种因素相互制约,如载气流速增大,分子扩散项的影 响减小,使柱效提高,但同时传质阻力项的影响增大,又使 柱效下降;柱温升高,有利于传质,但又加剧了分子扩散的 影响,选择最佳条件,才能使柱效达到最高。
23:51:44
三、 分离度
塔板理论和速率理论都难以描述难分离物质对的实际分 离程度。即柱效为多大时,相邻两组份能够被完全分离。
④ △K小,柱效低,分离效果更差。
23:51:44
分离度的表达式:
R 2(t R ( 2 ) t R (1) ) Wb( 2 ) Wb(1) 2(t R ( 2 ) t R (1) ) 1.699(Y1/ 2( 2 ) Y1/ 2(1) )
R=0.8:两峰的分离程度可达89%; R=1:分离程度98%; R=1.5:达99.7%(相邻两峰完全分离的标准)。
23:51:44
d2 f
2 df
2.载气流速与柱效——最佳流速
载气流速高时: 传质阻力项是影响柱效的 主要因素,流速,柱效。 载气流速低时: 分子扩散项成为影响柱效 的主要因素,流速,柱效 。 H - u曲线与最佳流速: 由于流速对这两项完全相反的作用,流速对柱效的总影 响使得存在着一个最佳流速值,即速率方程式中塔板高度对 流速的一阶导数有一极小值。 以塔板高度H对应载气流速u作图,曲线最低点的流速即 为最佳流速。
• 单位柱长的塔板数越多,表明柱效越高。 • 用不同物质计算可得到不同的理论塔板数。 • 组分在tM时间内不参与柱内分配。需引入有效 塔板数和有效塔板高度:
tR 2 tR 2 n理 5.54( ) 16( ) Y1 / 2 Wb
' ' tR t n有效 5.54( ) 2 16( R ) 2 Y1 / 2 Wb
23:51:44
色谱柱长:L, 虚拟的塔板间距离:H,
色谱柱的理论塔板数:n,
则三者的关系为: n=L/H
理论塔板数与色谱参数之间的关系为:
tR 2 tR 2 n 5.54( ) 16( ) Y1/ 2 Wb
保留时间包含死时间,在死时间内不参与分配!
23:51:44
2.有效塔板数和有效塔板高度