放射生物学3电离辐射的细胞效应
电离辐射的细胞学效应

免疫荧光检测γH2AX聚焦点 (foci)
单细胞凝胶电泳 脉冲凝胶电泳
组蛋白变体 (Histone Variant)
组蛋白变体与常规 组蛋白具有高度序列 同源性,核心结构相 似性。
γH2AX聚焦点 (foci)
当外源性因素(电离辐射、类辐射药物)和内源性因素(如复制叉应激)造
范可尼贫血症(Fanconi anemia)是一种罕见的常染色体隐性遗传性
血液系统疾病,贫血的一般表现,出血倾向及易感染。多见皮肤性着色, 或片状棕色斑,体格、智力可发育落后。
范可尼贫血症(Fanconi anemia)病人造血干细胞池
(hematopoietic stem cell
pool,HSC
制叉通过复制起始位点,母链就会在开始DNA合成前的几妙之几分钟内被甲 基化;
此后,只要两条链DNA链上碱基配对出现错误,错配修复系统就会根据
“保存母链,修正子链”的原则,找出错误碱基所在的DNA链,并在对应于 母链甲基化腺苷酸上游鸟苷酸的5’位置切开子链,然后重新合成新的子链。
Dam甲基化酶与DNA错配修复
Pol II 结合,当RNA Pol II 停留在在损伤位点时, CSB与RNA Pol II结合 能力增强 ,并且Cockayne 综合征蛋白通过WD 重复区段介导CSA–CSB
复合物形成。
Cockayne 综合征患者
色性干皮病( xroderma pigmentosa XP)患者
(2)链间交联
动。这样,随着电场方向
的交替变化DNA分子即呈
“Z” 字形向前移动。
的电场。
具体步骤:
1、传代细胞于35 mm培养皿中,至第二天约80% 汇合,细胞 数约5 ×105个; 2、20 Gy照射细胞,0 h点细胞需在照射后立即放置冰上,其 余细胞继续培养; 3、加入等量的50℃的2%低熔点琼脂糖凝胶,混匀后加于以胶 布临时封闭一端的制胶孔中,避免产生气泡,凝胶略高于
电离辐射的生物学效应-医学辐射防护学教学课件-精品文档

染色体型畸变:处于G1期或G0期的细胞受到电离 辐射作用时,因为这时染色体尚未复制,其中单根染色 丝被击断,经S期复制后,在中期分裂细胞见到的是两 条单体在同一部位显示变化,因此导致的是染色体型畸 变。按畸变在体内的转归,可以分为非稳定型畸变和稳 定型畸变两类。前者包括双着丝粒、双着色环、和无着 丝粒断片;后者包括相互易位,倒位和缺失。
电离辐射的生物学效应
电离辐射生物效应分类
早期效应(early effect)
按生物效应出现的时间 迟发效应(late effect) 躯体效应(somatic effect) 按生物效应出现的个体 遗传效应(genetic effect) 随机性效应 (stochastic effects) 确定性效应 (deterministic effect)
计算单位剂量照射引起的危险称为危险系数 (Risk coefficient)。EAR系数为单位剂量增加的例 数,用10-6人· 年-1· Sv-1表示,即每106人· 年· Sv的增 加例数。ERR系数为单位剂量的增加百分比 (%/Sv)。 ICRP-60的辐射致癌危险系数是以原爆人群 癌症死亡的EAR年增加值和ERR值为基础,通过 预测模型,向5个国家进行人群转移后得到的两性 平均值。
经过始动与促进两个阶段,正常细胞出现转 化,逐步发展为癌细胞,此期是朝恶性方向越来 越快的发展,成了独立的和侵入性的发展阶段。 电离辐射致癌的评估方法 绝对危险和相对危险 照射组癌症发生率与对照组或参与人群癌 症发生率之差,称为绝对危险(Absolute risk, AR),也称为超额绝对危险(excess absolute risk, EAR)。 两组发生率之比,称为相对危险(Relative risk, RR),相对危险的增加数RR-1,称为超额相 对危险(ERR)。
放射生物学课件-第三节电离辐射的遗传效应

a假设部分被包含在孟德尔遗传病内,部分被包含在多因素遗传病内。
根据联合国原子辐射效应科学委员会UNSCEAR2001年的报告,目前对于连 续低LET、低剂量或慢性照射遗传风险的估算如表格所示,每Gy的贡献为 孟德尔遗传病为750到1500每百万人,多因素遗传病为2250到3200每百万 人,染色体变化被包含在两者以内,没有单独列出。 需要指出的是,与三种遗传病基线频率相比,电离辐射每剂量单位的贡献 是很低的,每Gy总的风险约为基线风险的0.41-0.64%,处于一个很低的水 平,如果再考虑有遗传意义的人群,也就是具有生育下一代机会的人群在 所有年龄人群的比例,总的危险系统要下降到0.1%。 我们知道电离辐射的随机性效应包括了遗传效应和致癌效应两类,但是目 前对于电离辐射的遗传效应的关注度是在逐步下降的,如今辐射致癌效应 被认为是最重要的随机性效应。 好,本次课我们就上到这里,谢谢!
目前对连续低LET、低剂量或慢性照射遗传风险的估算
(来自UNSCEAR,2001;假定加倍剂量:1 Gy)
疾病种类
每百万人
孟德尔遗传病
24000
染色体变化
4000
多因素遗传病
71000
总计
738000
总危险(基线的百分率 )-
每Gy每百万人 750~1500
a 2250~3200 3000~4700 0.41~0.64
遗传病分类
➢ 孟德尔遗传病
常染色体或性染色体上的单基因突变引起的疾病。 多指、镰状细胞贫血、色盲、血友病。
➢ 染色体变化
染色体结构或数目异常引起的疾病。 唐氏综合征。
➢ 多因素遗传病
疾病具有遗传因素,但是传递方式不能以简单的孟德尔遗传病 进行描述。 唇裂、腭裂、糖尿病、原发性高血压、冠心病。
电离辐射的生物学效应(二)

电离辐射的生物学效应(二)引言概述:电离辐射是指具有足够能量的辐射粒子,例如X射线、γ射线和质子,能够从原子或分子中剥离电子的过程。
在人类暴露于电离辐射下,生物体受到直接和间接的生物学效应。
本文将重点讨论电离辐射的生物学效应,并从五个方面展开讨论。
正文:1. 细胞损伤a. 电离辐射能与DNA分子直接作用,导致DNA链断裂和碱基损伤。
b. DNA损伤可能导致细胞凋亡或突变,进而影响细胞功能。
c. 辐射还可导致蛋白质、脂质和其他细胞组分的分解或损伤。
2. 遗传效应a. DNA损伤可能传递给后代,导致基因突变或染色体畸变。
b. 高剂量电离辐射的暴露可导致不稳定细胞遗传物质,进而引发遗传疾病。
c. 遗传效应可能以不可逆或可逆的方式表现。
3. 放射病a. 高剂量电离辐射暴露可引发急性放射病,表现为恶心、呕吐、衰竭和骨髓功能抑制等。
b. 慢性低剂量电离辐射暴露可能导致放射性癌症和非癌疾病的发展。
c. 放射病的预防和治疗措施需要综合考虑剂量、时机和个体敏感性等因素。
4. 辐射影响身体组织和器官a. 骨髓是辐射最敏感的组织之一,辐射可引起骨髓功能抑制和造血系统损伤。
b. 神经系统受到辐射影响,可导致认知和行为方面的变化。
c. 非目标器官,如肺、肾脏和肝脏等,也可能受到电离辐射的损伤。
5. 防护和减轻电离辐射的生物学效应a. 遵守辐射安全操作规程,包括正确使用辐射防护设备和随身携带个人剂量计。
b. 发展和采用新的辐射防护技术和方法,如屏蔽器材和防护服。
c. 加强宣传和教育,提高公众和从业人员对电离辐射生物学效应的认识和防护意识。
总结:综上所述,电离辐射的生物学效应包括细胞损伤、遗传效应、放射病、对身体组织和器官的影响等。
减轻这些效应的关键在于做好辐射防护工作,加强宣传教育,并持续研究和发展新的防护技术和方法。
以此保护人类和生物多样性的健康。
放射生物学课件-第三节电离辐射与细胞周期

电离辐射使细胞通过S期的进程减慢,称为S期延迟,与 DNA合成速率下降有关。电离辐射对DNA合成的抑制呈 现双相的剂量-效应关系,较低剂量范围内,剂量效应曲 线斜率较大,即DNA合成速率下降较快;较高剂量范围 内则其斜率变小。 电离辐射诱导的S/M期解偶联是指照射后处于G2期的细 胞既不能进入M期,也不发生G2期阻滞,而是返回S期 ,继续进行DNA复制,使细胞形成内含数倍DNA而不进 行分裂的巨细胞,最终细胞死亡。这是辐射诱导细胞死
S期延迟
电离辐射对DNA合成的抑制呈现双相的剂量-效应关系,较 低剂量范围内,剂量效应曲线斜率较大,较高剂量范围内 则其斜率变小
S/M期解偶联
照射后处于G2期的细胞既不能进入M期,也不发生G2期阻 滞,而是返回S期,继续进行DNA复制,使细胞形成内含 数 倍DNA而不进行分裂的巨细胞,最终细胞死亡。
反过来,电离辐射对细胞周期进程也有明显的 影响。电离辐射通过诱导细胞周期G1期阻滞、 G2/M期阻滞、S期延迟及S/M期解偶联从而影响 细胞周期进程。电离辐射照射后使处于周期中 的细胞暂时停留在G1期即为辐射诱导的G1期阻 滞。其阻滞的程度和时间取决于细胞受照剂量 ,而且并非所有的细胞系在照射后都出现G1期 阻滞,只有表达野生型p53的细胞表现出辐射诱 导的G1期阻滞。
G2/M 细胞周期检查点
CDC2:即CDK1
电离辐射引起细胞阻滞在G2/M期,主要是G2/M
细胞周期检查点在起作用。该检查点可防止带有 DNA 损伤的细胞进入有丝分裂期。DNA损伤信号 激活ATM,ATM磷酸化激活Chk2,后者可磷酸化 并摧毁磷酸酶Cdc25,阻止CDK1激活,诱发 G2/M阻滞。
G1/S 细胞周期检查点
CDC2:即CDK1
电离辐射引起细胞阻滞在G1/S期,主要是G1/S 细胞周期检查点在起作用。DNA损伤信号激活 ATM,ATM一方面磷酸化p53和其负调控因子mdm2 ,促进p53与mdm2分子分离,从而阻止p53泛素 化降解;另一方面ATM磷酸化Chk2,后者介导的 p53磷酸化进一步增加p53自身的蛋白稳定性。 P53蛋白水平上升激活靶基因p21转录,p21蛋白 是CDK2激酶的抑制剂,由此阻滞G1/S期进程。
放射卫生学-第五章电离辐射的生物学效应

(二)分类-2Gy轻度、2-4Gy中度、46Gy重度、6-10Gy极重度) 胃肠型 10-50Gy:患者一般在2周内死亡 脑型 >50Gy :照后几小时或1-3天内死亡
骨髓型主要临床表现:造血障碍、出血、感 染、水电解质平衡紊乱
急性放射病分类
分类
剂量 (Gy)
呼吸、心血管、泌尿系统、眼、皮肤及其附属 器官以及骨等在电离辐射作用后变化不甚明显,但 大剂量急性照射时,主要器官仍有一定反应。
第四节 放射性损伤
1、按射线作用于机体的途径,可分为:①外照 射放射病;②内照射放射病;③内、外混合照 射所致的放射病。
2、按射线作用持续时间的长短和病情的缓急, 分为:①急性放射病;②慢性放射病。
4、照射部位与面积
机体受照的部位不同,其损伤的严重程度也 不同。在同一剂量和剂量率情况下,损伤严重程度 依次为:
腹部→盆腔→头颈→胸部→四肢
照射部位与面积 : 不同部位 不同的敏感度 面积 生物效应
几何条件 :不同的几何条件 不同的生物效应
5、照射方式
外照射:是指辐射源位于人体外对人体造成的辐射照射,包
射线首先引起机体的水分子的电离和激发,生成一 系列性质活泼的产物(如: H·、OH·、HO2·、 H2O2、 e-1aq等),此类产物具有很强的氧化能力,可导 致生物活性大分子的损伤。
间接作用
其主要过程为:
1、射线作用于水分子,将水分子中的电子击出,引起电离, 生成带正电荷的水分子H2O+和高能电子e—(又称热电子)。
胚胎不同发育阶段,2Gy X射线照射下死胎或畸形的发生率
(3)组织与细胞的放射敏感性
不同的组织与细胞的辐射的敏感性不同,一 般分裂旺盛的细胞,以及那些比别的细胞需要更 多营养的细胞,对射线更为敏感。
3第二章临床放射生物学

细胞死亡: 1.增殖性死亡:几个细胞周期以后才死 即失去无限增殖能力
亡,
2.间期性死亡(凋亡):几个小时内就死亡,细 胞对放射敏感性较高,比如淋巴细胞 细胞凋亡:是基因控制的细胞自主有序的死亡, 是主动争取的一种死亡过程。就像树叶或花自然 凋落一样。
辐射所致细胞死亡
几百戈瑞的大剂量照射之后,所有细胞机能都中止,最终发生细 胞溶解,这种情况被认为是细胞即刻死亡或间期死亡; 用较低的几个戈瑞照射正在分裂或还能进行分裂的细胞(如骨髓 细胞系、皮肤或小肠隐窝),此时部分细胞丧失其分裂或增殖能力。 另一方面,存活细胞或能够生存发育的细胞是指保持细胞增殖能力, 并能够因此而形成集落或克隆的细胞,这些细胞称为克隆源性细胞。 在体内,肿瘤和正常组织只有一小部分细胞属于克隆源性细胞,受照 后期数量迅速减少。 上述细胞死亡定义对放射治疗具有特殊意义,因为肿瘤细胞即使全都 依然存在,但失去了无限增殖能力,并因此而失去了局部浸润或远地 转移的能力,这样也就达到局部控制的目的。 同样,对于正常组织,大多数急性和慢性放射效应都发生在丧失生存 发育能力的情况下。
三.细胞存活曲线
受照射的细胞保留完整的增殖能力,能无限分裂 产生大量子代细胞形成一个集落或克隆的干细胞 称为细胞存活
细胞存活曲线:用来定量描述辐射吸收剂量与存 活细胞数量的相关性的一种方法。
指数性存活曲线:
细胞存活率与照射剂量成指数性反比关系,即在细 胞放射敏感性不变时,剂量越大,细胞死亡越多; 而敏感度越低,细胞存活率越高; 以同一剂量照射放射敏感与放射抗拒的细胞,其存 活率不同。根据指数性反比关系,即使照射剂量达 到极大时(临床一般不可能用这么高的剂量),也 会有少数细胞存活。p40图 用密集电离辐射如中子、a粒子为放射源,可有这 种放射效应。
电离辐射生物学效应

电离辐射⽣物学效应电离辐射⽣物学效应电离辐射的⽣物效应主要是DNA的损伤所致,DNA是关键靶。
直接作⽤:电离辐射的能量直接沉积到⽣物⼤分⼦上,引起⽣物⼤分⼦的电离和激发,从⽽引起⽣物效应。
⽣物效应和辐射能量沉积发⽣在同⼀分⼦上。
间接作⽤:电离辐射⾸先作⽤于⽔,使⽔分⼦产⽣⼀系列原初辐射分解产物(·OH,H·,e-⽔合,H2O2),然后通过⽔的原初辐射分解产物再作⽤于⽣物⼤分⼦,引起后者的物理和化学变化。
⽣物效应和辐射能量的沉积发⽣在不同分⼦。
表N 电离辐射⽣物学作⽤的时间效应时间/s发⽣过程物理阶段10-18快速粒⼦通过原⼦10-17~10-16电离作⽤H2O~→H2O++e-10-15电⼦激发H2O~→H2O*10-14离⼦-分⼦反应,如H2O++H2O~→·OH +H3O+10-14分⼦振动导致激发态解离:H2O*→H·+·OH10-12转动弛豫,离⼦⽔合作⽤e-→e-⽔合化学阶段<10-12e-在⽔合作⽤前与⾼浓度的活性溶质反应10-10·OH,H·和e-⽔合及其他⾃由基与活性溶质反应(浓度约1mmol/L)<10-7刺团1)(spur)内⾃由基相互作⽤10-7⾃由基扩散和均匀分布10-3·OH,H·和e-⽔合与低浓度活性溶质反应(约10-7mmol/L)1⾃由基反应⼤部分完成1~103⽣物化学过程⽣物学阶段数⼩时原核和真核细胞分裂受抑制数天中枢神经系统和胃肠道损伤显现约1个⽉造⾎障碍性死亡数⽉晚期肾损伤、肺纤维样变形若⼲年癌症和遗传变化1)刺团:指⾃由基发⽣反应的⼩体积电离作⽤:⽣物组织的分⼦被粒⼦或光⼦流撞击时,其轨道电⼦被击出,产⽣⾃由电⼦和带正电的离⼦,即形成离⼦对,这⼀过程称为电离作⽤。
激发作⽤:当电离辐射与组织分⼦相互作⽤,其能量不⾜以将分⼦的轨道电⼦击出,可使电⼦跃迁到较⾼能级的轨道上,是分⼦处于激发态,这⼀过程称为激发作⽤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)肿瘤细胞的辐射敏感性
不同细胞周期时相的放射敏感性
不同类型细胞的辐射敏感性
体内的细胞群体依据其更新速率不同可分为三 大类。 第一类是不断分裂、更新的细胞群体,对电离 辐射的敏感性较高。 第二类是不分裂的细胞群体,对电离辐射有相 对的抗性(从形态损伤的角度衡量)。
不同类型细胞的辐射敏感性
Thank you!!!
细胞的放射敏感性
自然界的各种生物对象在受到电离辐射
作用后都表现出一定的损伤。 但在同一剂量下引起损伤的程度有很大 的不同,或者说,引起同一水平的效应 所需要的剂量高低存在很大差异,即为 辐射敏感性差异。
细胞的放射敏感性
哺乳动物细胞辐射敏感性的差异
(一)不同类型细胞的辐射敏感性
与敏感性有关的其它问题
(一)辐射能否引起细胞抗性增强?
实验表明:长时间照射可增加细胞的辐 射抗性。 (二)低剂量照射下的细胞辐射敏感性? 实验结果发现:在低剂量区域内具有高 敏感性,接着出现抗性。
电离辐射引起细胞死亡
电离辐射引起细胞死亡,是辐射整体效应发生 的重要基础。 在急性放射综合征的发生机制中,淋巴造血细 胞和小肠粘膜上皮细胞的死亡分别是造血型和 胃肠型急性放射病的重要细胞学基础。 电离辐射诱发的不育症取决于生殖细胞的杀伤。 电离辐射引起的脱发起源于毛囊上皮细胞的破 坏。
化和不增殖的细胞)、造血细胞、生殖 上皮细胞、胃肠粘膜上皮细胞等 敏感细胞:膀胱、食道等上皮。 中度敏感细胞:神经节细胞、肌肉细胞 不敏感细胞:软骨及骨
肿瘤细胞的辐射敏感性
各种肿瘤对辐射的敏感性有明显差异。 对射线高度敏感的肿瘤:恶性淋巴瘤、
精原细胞瘤、肾母细胞瘤等; 中度敏感:鳞状上皮癌、分化差的腺癌, 脑胶质瘤等; 辐射抗性肿瘤:恶性黑色素瘤、软骨肉 瘤等
辐射引起细胞死亡的类型
细胞受到电离辐射作用后诱发DNA
损伤、细胞周期调控紊乱及严重的细 胞学后果——细胞死亡。
细胞因其种类不同以及受照剂量的不同,
死亡类型也不相同。
辐射引起细胞死亡的类型
传统上,根据照射后细胞死亡发生的时
间和增殖与否将辐射所致细胞死亡分为 两种类型:增殖死亡和间期死亡。
细胞周期
增殖细胞在两次有丝分裂之间所发生的一系列 事件的总称,包括4个时相。 ① G1期:表示有丝分裂结束和S期开始之间 的时间。 ② S期(synthesis):是DNA复制的时间。 ③ G2期:表示S期结束到下一次有丝分裂之 间的时间。DNA含量是G1期细胞的2倍。 ④ M期(mitosis)(有丝分裂或细胞分裂)
而从其形态学上特征性改变及发生的分
子机理上看,则又可区分为细胞凋亡和 坏死。
增殖死亡(proliferative death)
是指增殖细胞受照丧失了持续增殖
的能力,在经过一个或几个有丝分 裂周期后丧失代谢活动和细胞功能 而死亡。又称代谢死亡或延缓死亡、
有丝分裂死亡。
增殖死亡(proliferative death)
不同细胞周期的放射敏感性差异
细胞种类不同,其周期时间(TC)可有很大差别,由 十数小时到数百小时不等,而差别的发生主要是G1 时相持续时间的不同。 有丝分裂相持续时间(TM)一般很短,多数细胞在1h 内即完成其分裂。 细胞合成DNA以后的G2相持续时间(TG2)亦很短, 多在2h以内。 由此可以看出,在多数细胞的周期中,对辐射最敏 感的时相(M和G2相)所占比例是较短暂的。
电离辐射的细胞效应
细胞是复杂机体的功能单元,研究电离辐射对 细胞的作用持点,是了解辐射整体效应的重要 基础。 但机体由各种性质与功能不同的细胞组成,它 们对辐射的反应存在很大差别。 因此,既要了解电离辐射引起细胞效应的共性, 也要阐明各类细胞对电离辐射反应的特点。Fra bibliotek主要内容
细胞的放射敏感性 电离辐射引起的细胞死亡 细胞存活的剂量-效应关系 细胞的放射损伤
不同细胞周期时相的放射敏感性
细胞处于周期不同时相的辐射敏感性
对于大多数细胞来说在G1期有一定的 抵抗,G1/S 边界上敏感性较高。进入 S 期后抗性又逐渐升高,到G2期与M期 细胞又较敏感,甚至达到高峰。
不同细胞周期的放射敏感性差异
⒈ 细胞在接近和处于有丝分裂期时最敏感; ⒉ 常是在S后期放射最抗拒; ⒊ G2期常是敏感的。可能和M期一样敏感; ⒋ 如G1期有一定长度,则可见在G1期的早 期是放射抗拒的,然而G1期的末尾又有一个 敏感时期。
第三类细胞在一般状态下基本不分裂或分裂的 速率很低、因而对辐射相对地不敏感,但在受 到刺激后可以迅速分裂,其放射敏感性随之增 高。(典型的例子是再生肝,当肝脏部分切除 或受化学损伤而使残留肝细胞分裂活跃时,其 放射敏感性高于正常状态下的肝细胞。)
不同类型细胞的辐射敏感性
高度敏感细胞:淋巴细胞(属于高度分
大多数分裂较快的哺乳类细胞受中等剂
量(10Gy以内)照射后发生增殖死亡。 照射后发生有丝分裂的次数与辐射剂量 有关,如接受1Gy照射细胞可分裂5次, 接受10Gy者平均分裂1次或不到1次。
增殖死亡(proliferative death)
在此期间细胞的显微结构和功能可能完
全正常,接着在1次异常分裂当中或以 后发生变性。 有许多细胞并不立即变性,也不进一步 分裂,而是逐渐增大形成巨细胞。
细胞增殖死亡的机制可能与染色体损伤有关。 辐射诱导的染色体畸变可使分裂后的子细胞 不能获得一套完整的染色体,因而不能进入 以后的分裂而死亡。
间 期 死 亡(interphase death)
增殖死亡(proliferative death)
这种巨细胞的DNA、RNA和蛋白质含量与细 胞大小相称,其密度与正常细胞相似,可以 继续合成DNA、核酸和蛋白质。 如用50Gy照射后形成的巨细胞可以存活2个 月突然变性,在此期间细胞仍有积极代谢活 动,直径可增大到25-50倍。
增殖死亡(proliferative death)