高一数学必修三模块测试题-(人教A版)

合集下载

人教A版高中数学必修三试卷高一:综合模块测试(18).docx

人教A版高中数学必修三试卷高一:综合模块测试(18).docx

必修3综合模块测试18(人教A 版必修3)第I 卷(选择题,共42分)一.选择题(共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是 ( )A . a=b ;b=aB . c=b ;b=a ;a=cC . b=a ;a=bD . a=c ;c=b ;b=a2. 给出以下四个问题,①输入一个数x ,输出它的相反数。

②求面积为6的正方形的周长。

③求三个数a,b,c 中的最大数。

④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值. 其中不需要用条件语句来描述其算法的有( )A. 1个B. 2个C. 3个D. 4个 3.下列命题是真命题的是( ) ①必然事件的概率等于1,不可能事件的概率等于0 ②某事件的概率等于1.1 ③互斥事件一定是对立事件 ④概率是频率的稳定值,频率是概率的近似值 ⑤在适宜的条件下种下一粒种子,观察它是否发芽,这个试验为古典概型 A.①③ B. ①④ C.①③⑤ D.①④⑤ 4.用秦九韶算法计算多项式654323567983512)(x x x x x x x f ++++-+=在4-=x 时的值时,3V 的值为 ( )A.-845B.220C.-57D.345.用系统抽样法从编号160:的60辆车中随机抽出6辆进行试验,则可能选取的车的编号是( ) A.5,10,15,20,25,30 B.3,13,23,33,43,53 C .1,2,3,4,5,6 D .2,4,8,16,32,486.某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛,那么互斥而不对立的两个事件是( )A .“至少有1名女生”与“都是女生”B .“至少有1名女生”与“至多1名女生”C .“至少有1名男生”与“都是女生”D .“恰有1名女生”与“恰有2名女生”7、我市对上下班交通情况作抽样调查,作出上下班时间各抽取12辆机动车行驶时速(单位:km/h )的茎叶图(如下):上班时间 下班时间 8 1 6 7 9 8 7 6 1 0 2 2 5 7 8 6 5 3 2 0 3 0 0 2 6 7 0 4则上下班时间行驶时速的中位数分别为( )A.28与28.5 B.29与28.5 C.28与27.5 D.29与27.5 8.甲,乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下甲68998乙 10 7 7 7 9则两人射击成绩的稳定程度是( )。

人教版高中数学高一A版必修3模块综合测试

人教版高中数学高一A版必修3模块综合测试

模块综合测评(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某学校高一年级有35个班,每个班的56名同学都是从1到56编的号码.为了交流学习经验,要求每班号码为14的同学留下进行交流,这里运用的是( )A .分层抽样B .抽签抽样C .随机抽样D .系统抽样2.已知函数y =⎩⎪⎨⎪⎧lg x ,x >0,2x ,x ≤0,输入自变量x 的值,输出对应函数值的算法中所用到的基本逻辑结构是( )A .顺序结构B .顺序结构、条件结构C .条件结构D .顺序结构、条件结构、循环结构3.用秦九韶算法计算当x =0.4时,多项式f (x )=3x 6+4x 5+6x 3+7x 2+1的值时,需要做乘法运算的次数是( )A .6B .5C .4D .3 4.下列说法正确的是( )A .一个人打靶,打了10发子弹,有7发子弹中靶,因此这个人中靶的概率为710B .一个同学做掷硬币试验,掷了6次,一定有3次“正面朝上”C .某地发行福利彩票,其回报率为47%,有个人花了100元钱买彩票,一定会有47元的回报D .大量试验后,可以用频率近似估计概率5.如图所示,在一个边长为2的正方形中随机撒入200粒豆子,恰有120粒落在阴影区域内,则该阴影部分的面积约为( )A .35B .125C .65D .1856.如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,样本落在[15,20]内的频数为( )A .20B .30C .40D .507.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( )A .30B .25C .20D .158.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S 3的概率是( )A .23B .13C .34D .149.阅读下列程序: INPUT x IF x <0 THEN y =2 *x +3 ELSEIF x >0 THEN y =-2 * x +5 ELSE y =0 END IF END IF PRINT y END如果输入x =-2,则输出结果y 为( ) A .0 B .-1 C .-2 D .910.某程序框图如图所示,该程序运行后输出的S 的值是( )A .-3B .-12C .13D .211.如图是某年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个).去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则一定有( )A .a 1>a 2B .a 1<a 2C .a 1=a 2D .a 1,a 2的大小与m 的值有关12.某工厂对一批产品进行了抽样检测.下图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90 B.75C.60 D.45二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13.抛掷一枚均匀的正方体骰子,向上的点数是奇数为事件A,事件A的对立事件是__________.14.102,238的最大公约数是________.15.某服装商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y=b x+a中的b≈-2.气象部门预测下个月的平均气温均为6 ℃,据此估计,该商场下个月毛衣的销售量均为__________件.16.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取__________人.三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)有一段长为11米的木棍,现要折成两段,每段不小于3米的概率有多大?18.(本小题满分12分)某班50名同学参加数学测验,成绩的分组及各组的频数如下:[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100),8.(1)列出样本的频率分布表;(2)画出频率分布直方图.19.(本小题满分12分)对某400件元件进行寿命追踪调查,情况分布如下:寿命(h)频率[500,600)0.10[600,700)0.15[700,800)0.40[800,900)0.20[900,1 000]0.15合计 1(1)列出寿命与频数对应表;(2)计算元件寿命在[500,800) h以内的频率.20.(本小题满分12分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问,对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持”态度的人中抽取了45人,求n的值;(2)在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有1人20岁以下的概率;(3)在接受调查的人中,有8人给这项活动打出的分数如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8个人打出的分数看作一个总体,从中任取1个数,求该数与总体平均数之差的绝对值超过0.6的概率.21.(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm 的同学被抽中的概率.22.(本小题满分14分)(2012·陕西高考,文19)假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:甲品牌乙品牌(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.参考答案一、1.解析:由于分段间隔相等,是系统抽样. 答案:D 2.B 3.A 4.D5.解析:阴影部分的面积约为120200×22=125.答案:B6.解析:样本落在[15,20]内的频率是1-5(0.04+0.1)=0.3,则样本落在[15,20]内的频数为0.3×100=30.答案:B7.解析:抽样比是15030 000=1200,则样本中松树苗的数量为1200×4 000=20.答案:C 8.答案:A解析:如图,设点P 为AB 的靠近点B 的三等分点,要使△PBC 的面积不小于3S,则点P 只能在AP 上选取,由几何概型的概率公式,得所求的概率为2233AB AP AB AB ==.9.解析:输入x =-2,则x =-2<0成立,则y =2×(-2)+3=-1,则输出-1. 答案:B10.解析:该程序框图的运行过程是: S =2,i =1 i =1≤2 010成立S =1+21-2=-3 i =1+1=2 i =2≤2 010成立 S =1+(-3)1-(-3)=-12i =2+1=3 i =3≤2010成立 S =1+⎝⎛⎭⎫-121-⎝⎛⎭⎫-12=13i =3+1=4 i =4≤2 010成立 S =1+131-13=2i =4+1=5 ……对于判断框内i 的值,n ∈N ,当i =4n +1时,S =2;当i =4n +2时,S =-3;当i =4n +3时,S =-12;当i =4n +4时,S =13.由于2 011=4×502+3,则S =-12.该程序框图中含有当型循环结构,判断框内的条件不成立时循环终止,即i=2 011时开始不成立,输出S =-12.答案:B11.解析:去掉一个最高分和一个最低分后,甲选手得分是81,85,85,84,85,则平均数是a 1=15(81+85+85+84+85)=84;乙选手得分是84,84,86,84,87,则平均数是a 2=15(84+84+86+84+87)=85>84,所以a 1<a 2.答案:B12.解析:设样本容量是n ,产品净重小于100克的概率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,则36n =0.300,所以n =120.净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75.所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90. 答案:A二、13.向上的点数是偶数14.解析:利用辗转相除法或更相减损术可得最大公约数是34. 答案:3415.解析:x =10,y =38,回归直线必过点(x ,y ),则有38=-2×10+a ^,解得a ^=58,所以回归方程为y ^=-2x +58,当x =6时,y ^=-2×6+58=46.答案:1616.解析:用系统抽样,由分组可知,抽样的间隔为5,又因为第5组抽出的号码为22, 所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37. 若用分层抽样方法,40岁以下年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20人.答案:37 20三、17.分析:从每一个位置折断都是一个基本事件,基本事件有无限多个,但在每一处折断的可能性相等,故是几何概型.解:记“折得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有11-3-3=5(米),在中间的5米长的木棍上任何一个位置折都能满足条件,所以P (A )=11-3-311=511. 18.答案:解:(1)频率分布表如下:(2)频率分布直方图如图所示.19.分析:(1)频率×400=对应寿命组的频数;(2)转化为求互斥事件的频率. 解:(1)由于频率=频数样本容量,每组的频数=频率×400,计算得寿命与频数对应表:(2)设“元件寿命在[500,600) h 以内”为事件A ,“元件寿命在[600,700) h 以内”为事件B ,“元件寿命在[700,800) h 以内”为事件C ,“元件寿命在[500,800) h 以内”为事件D ,则事件A ,B ,C 两两互斥,且D =A +B +C ,由题意,得P (A )=0.10,P (B )=0.15,P (C )=0.40,则P (D )=P (A )+P (B )+P (C )=0.10+0.15+0.40=0.65,即元件寿命在[500,800) h 以内的频率为0.65.20.答案:解:(1)由题意得800+10045=800+450+200+100+150+300n , 所以n =100.(2)设所选取的人中,有m 人20岁以下, 则200200+300=m5,解得m =2.也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A 1,A 2;B 1,B 2,B 3, 则从中任取2人的所有基本事件为(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 1,A 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个.其中至少有1人20岁以下的基本事件有7个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 1,A 2),所以从中任意抽取2人,至少有1人20岁以下的概率为710. (3)总体的平均数为x =18(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9, 那么与总体平均数之差的绝对值超过0.6的数只有8.2,所以该数与总体平均数之差的绝对值超过0.6的概率为18. 21.分析:(1)茎叶图中的数据越集中在上部,则说明该班的平均身高较高;(2)先求出平均数,再代入方差公式即可;(3)写出所有基本事件,再统计基本事件的总数和所求事件包含的基本事件的个数,利用古典概型计算概率.解:(1)由题中茎叶图可知:甲班身高集中于160~179 cm 之间,而乙班身高集中于170~180 cm 之间,因此乙班平均身高高于甲班.(2)甲班的平均身高为 x =110(158+162+163+168+168+170+171+179+179+182)=170, 甲班的样本方差为s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(3)设“身高为176 cm 的同学被抽中”的事件为A ,用(x ,y )表示从乙班10名同学中抽中两名身高不低于173 cm 的同学的身高,则所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有(181,176),(179,176),(178,176),(176,173),共4个基本事件,故P (A )=410=25. 22.答案:解:(1)甲品牌产品寿命小于200小时的频率为5+20100=14,用频率估计概率,所以,甲品牌产品寿命小于200小时的概率为14.(2)根据抽样结果,寿命大于200小时的产品有75+70=145个,其中甲品牌产品是75个,所以在样本中,寿命大于200小时的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200小时的该产品是甲品牌的概率为1529.。

人教版高中数学高一A数学必修3测试卷(一)

人教版高中数学高一A数学必修3测试卷(一)

高中同步测试卷(一)单元检测 算法与程序框图 (时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关于程序框图的说法正确的是( ) A .程序框图是描述算法的图形语言B .在程序框图中,一个判断框最多只能有两个退出点C .程序框图虽可以描述算法,但不如用自然语言描述算法直观D .程序框图和流程图不是一个概念 2.已知如图是算法程序框图的一部分其中含条件结构的是( )A .①②B .①③C .②③D .①②③3.在如图所示的程序框图中,若输入m =4,n =10,则输出a ,i 的值别是( ) A .12,4 B .16,5 C .20,5 D .24,6第3题图 第5题图4.下列问题中,可以只用顺序结构就能解决的是( ) A .求关于x 的方程ax 2+bx +c =0的根B .求函数f (x )=⎩⎪⎨⎪⎧x 2(x ≥0)x (x <0)的值C .求1+4+7+10+13的值D .求一个数x 的绝对值5.按照如图所示的程序框图运行,已知输入x 的值为1+log 23,则输出y 的值为( ) A.112 B.38 C.712 D.1124 6.如果执行如图所示的程序框图,那么输出的S 等于( ) A .2 550 B .-2 550 C .2 548 D .-2 552第6题图 第7题图7.如图所示,若f (x )=x 2,g (x )=log 2x ,输入x =0.25,则输出h (x )=( ) A .0.25 B .2 C .-2 D .-0.258.如图所示是计算12+14+16+…+120的值的一个程序框图,其中在判断框内应填入的条件是( )A .i ≤10B .i >10C .i <20D .i >20第8题图 第9题图 9.执行如图所示的程序框图,输出的S 值为( ) A .1 B .3 C .7 D .1510.阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )A .S =2i -2B .S =2i -1C .S =2iD .S =2i +411.若如图所示的框图所给的程序运行结果为S =35,那么判断框中应填入的关于k 的条件是( )A .k =7?B .k ≤6?C .k <6?D .k >6?第11题图第12题图12.若执行如图所示的程序框图,输出S的值为4,则判断框中应填入的条件是() A.k<14? B.k<15? C.k<16? D.k<17?题号123456789101112答案二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若某程序框图如图所示,则该程序运行后输出的k的值是________.14.如图所示的程序框图是变换两个变量的值并输出,则图中①处应为________.第13题图第14题图第15题图第16题图15.阅读如图所示的程序框图,若输出S=30,则在判断框内应填入________.16.如图所示,该程序框图运行后输出的结果为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)阅读如图所示的程序框图,若输出y的值为0,则输入的x值是多少?18.(本小题满分12分)设计求经过任意两点P1(x1,y1),P2(x2,y2)的直线的斜率的算法,并画出相对应的程序框图.19.(本小题满分12分)阅读右边的程序框图,运行相应的程序,试求输出i的值.20.(本小题满分12分)给出50个数1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推,要求计算这50个数的和,请画出程序框图.21.(本小题满分12分)画出求满足1×3×5×7×…×n>10 000的最小自然数n的程序框图.22.(本小题满分12分)某小区每月向居民收取卫生费,计费方法是:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.参考答案与解析1.[导学号10390001] 解析:选A.由于存在一种多分支判断,所以一个判断框可能有多个退出点,所以B 选项是错误的;相对于自然语言,用程序框图描述算法的优点主要就是直观、形象,容易理解,在步骤表达上简单了许多,所以C 选项是错误的;程序框图就是流程图,所以D 选项也是错误的.A 选项正确.2.解析:选C.①只含顺序结构,②③均有判断框,都含有条件结构.3.解析:选C.输入m =4,n =10,i =1;a =4×1=4,10不能整除4,i =1+1=2;a =4×2=8,10不能整除8,i =2+1=3;a =4×3=12,10不能整除12,i =3+1=4;a =4×4=16,10不能整除16,i =4+1=5;a =4×5=20,10能整除20;输出20,5,结束.故选C.4.解析:选C.A 、B 、D 项还需用到条件结构.5.[导学号10390002] 解析:选A.因为x =1+log 23<4, 所以x =x +1=2+log 23, 所以y =⎝⎛⎭⎫122+log 23=14×13=112. 6.解析:选C.这个程序是计算-2+0+2+4+…+100的算法,结果为2 548.故选C. 7.[导学号10390003] 解析:选C.h (x )取f (x )与g (x )中的较小值,即h (0.25)=min{f (0.25),g (0.25)},g (0.25)=log 20.25=-2,f (0.25)=(14)2=116,故选C.8.解析:选A.计算的值是10个数的和. 当i ≤10时成立继续循环, 当i =11时跳出循环体,此时输出的S 就是这10个数的和. 9.解析:选C.程序框图运行如下:k =0<3,S =0+20=1,k =1<3;S =1+21=3,k =2<3;S =3+22=7,k =3.输出S =7. 10.解析:选C.当i =2时,S =2×2+1=5<10;当i =3时,仍然循环,排除D ;当i =4时,S =2×4+1=9<10; 当i =5时,不满足S <10,即此时S ≥10,输出i =5.此时A 项中,S =2×5-2=8,B 项中,S =2×5-1=9,C 项中,S =2×5=10,故C 正确.11.[导学号10390004] 解析:选D.初始值:k =10,S =1,判断条件成立; S =1+10=11,k =10-1=9,判断条件成立; S =11+9=20,k =9-1=8,判断条件成立; S =20+8=28,k =8-1=7,判断条件成立;S =28+7=35,k =7-1=6,判断条件不成立,输出S =35,结束算法.由此可得判断框中应填k >6?,故选D.12.解析:选C.初始条件S =1,k =2;运行第一次,S =1·log 23=log 23,k =k +1=3;运行第二次,S =log 23·log 34,k =k +1=4;运行第三次,S =log 23·log 34·log 45,k =k +1=5;运行第四次,S =log 23·log 34·log 45·log 56,k =k +1=6;运行第五次,S =log 23·log 34·log 45·log 56·log 67,k =k +1=7;…;运行第十四次,S =log 23·log 34·log 45·log 56·log 67…log 1516=4,k =k +1=16.不满足条件,停止运行,输出的S =4,所以判断框中应填入的条件是k <16?,故选C.13.解析:初始值:k =2, 执行“k =k +1”得k =3,a =43=64,b =34=81,a >b 不成立; k =4,a =44=256,b =44=256,a >b 不成立;k =5,a =45=1 024,b =54=625,a >b 成立,此时输出k =5. 答案:514.解析:交换两个变量的值,需引入第三个量,将其中一个量的值赋给第三个量后,将第二个量的值赋给第一个量,再将第三个量的值赋给第二个量.答案:x =y15.[导学号10390005] 解析:由框图可知,算法结构为直到型循环结构,因为30=12+22+32+42,所以条件应为“i >4?”(或i ≥5?).答案:i >4?(或i ≥5?)16.解析:当a =4时,退出循环,b =23=8. 答案:817.解:由题意,⎩⎪⎨⎪⎧x >1x 2-4x +4=0或⎩⎪⎨⎪⎧x <1,x =0,解得x =2或0. 18.解:算法设计如下: 第一步,输入x 1,y 1,x 2,y 2.第二步,如果x 1=x 2,输出“斜率不存在”,结束算法;否则,执行第三步. 第三步,k =y 2-y 1x 2-x 1.第四步,输出k . 程序框图如下:19.[导学号10390006] 解:第一次循环:i =1,a =2, 第二次循环:i =2,a =5, 第三次循环:i =3,a =16,第四次循环:i =4,a =65>50,循环结束. 所以输出i 的值为4.20.解:程序框图如图所示:21.解:程序框图如图所示:22.[导学号10390007]解:程序框图如下:。

人教A版高中数学必修三试卷高一:综合模块测试(21).docx

人教A版高中数学必修三试卷高一:综合模块测试(21).docx

高中数学学习材料马鸣风萧萧*整理制作必修3综合模块测试21(人教A 版必修3)第I 卷(选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选择一个符合题目要求的选项.1.在下列各图中,每个图的两个变量具有相关关系的图是( )(1) (2) (3) (4)A .(1)(2)B .(1)(2)(3)C .(2)(4)D .(2)(3)2.求得459和357的最大公约数是( )A .51B .17C . 9D .33.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积的和的41,且样本容量为160,则中间一组的频数为( ) A .40B .0.2C .32D .0.254.从一批产品中取出三件,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( ) A .A 与C 互斥B .B 与C 互斥C .任两个均互斥D .任两个均不互斥5.用秦九韵算法计算多项式15823)(35=+-+=x x x x x f 在时的值时,3V 的值为( )A .3B .5C .-3D .26.一个容量为n 的样本,分成若干组,已知某个体的频数和频率分别为40,0.125,则n 的值为( ) A.640 B.320 C.240 D.1607.把一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,则点),(b a 在直线5=+y x 左下方的概率为( )A .61B .65C .121 D .1211 8.如下图,图中的程序输出的结果是( ).A .113B .179C .73D .2099.如下图中的算法输出的结果是( )A .127B .63C .61D .3110.甲、乙两人约定上午7:20至8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车的时刻分别是7:40、7:50和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7:20至8:00时的任何时刻到达车站都是等可能的)( )A .31B .21C .38D .85 第Ⅱ卷( 共70分)二、填空题:本大题共4小题,每小题5分,共20分.将正确答案填在相应位置上。

人教A版高中数学必修三试卷高一:综合模块测试(23).docx

人教A版高中数学必修三试卷高一:综合模块测试(23).docx

高中数学学习材料马鸣风萧萧*整理制作必修3综合模块测试23(人教A 版必修3)一、选择题(每小题3分,共36分)(选择题不用答题卡,答案写在后面的选择题答案表中) 1.简单随机抽样、系统抽样、分层抽样之间的共同点是( )A .都是从总体中逐个抽取B .将总体分成几部分,按事先预定的规则在各部分抽取C .抽样过程中每个个体被抽到的可能性相等D .抽样过程中,将总体分成几层,按比例分层抽取 2.下列各个说法正确的是( )A .终边相同的角都相等B .钝角是第二象限的角C .第一象限的角是锐角D .第四象限的角是负角 3.下列语句正确的是( )A.x+3=y-2B.d=d+2C.0=xD.x-y=5 4. 将十进制数111化为五进制数是( )A .421(5) B. 521(5) C.423(5) D. 332(5)5. 一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为 ( ) A. 3 B. 4 C. 5 D. 6 6. 某人一次掷出两枚骰子,点数和为5的概率是( )A.41 B. 91 C. 361 D. 1817.有一个数据为50的样本,其分组以及各组的频数如下:[12.5,15.5],3; [15.5,18.5],8; [18.5,21.5],9; [21.5,24.5],11; [24.4,27.5],10; [27.5,30.5],5; [30.5,33.5],4 由以上频数,估计不超过30.5的数据大约占( )A.10%B.92%C.5%D.30%8. 某产品分甲、乙、丙三级,其中乙、丙两级均属次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为( )A .0.99B .0.98C .0.97D .0.969.把容量为100的样本拆分为10组,若前七组频率之和为0.79,而剩下的三组的频数,,a b c 满足2b ac =且互不相等,则剩下的三组频数最大的一组的频率是 ( ) A.0.16 B.0.12 C.0.16或0.12 D.以上都不对10.某种零件的次品率是1%,每6件装成一盒,每盒中恰有一件次品的概率是( ) A.6% B.1%6÷ C.51(99%)- D.51996()100100⋅11.一个工人在上班时间[]0,5(单位:小时)内看管两台机器.每天机器出故障的时刻是任意的,一台机器出了故障,就需要一段时间检修,在检修期间另一台机器也出了故障,称为二机器"会面".如果每台机器的检修时间都是1小时,则此工人在上班时间内,二机器会面的概率是 ( ) A.1625 B.925C.15 D.4512. 一个游戏转盘上有四种颜色:红、黄、蓝、黑,并且它们所占面积的比为6:2:1:4,则指针停在红色或蓝色区域的概率为( )A. 613B.713 C .413 D.1013选择题答案:题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(每小题4分,共16分)13. 甲、乙两名高一男生参加投篮测试,各投篮5次,一分钟内投中次数分别如下:甲:7,8,6,8,6; 乙:7,8,7,7,6甲的方差是_______ ,乙的方差是________ ,说明 __________ 投篮更稳定.14. 一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当你到达路口时,看见绿灯的概率是__________ .15.终边落在阴影部分处(包括边界)的角的集合是________________________________.(用弧度制表示)4516.一个工人看管三台车床,在一个小时内车床不需要工人照管的概率分别为:第一台为0.9,第二台0.8,第三台0.7,则在一个小时内最多有一台车床需要照管的概率是 .三、解答题(第17题8分,18—21题每题10分,共48分)17.设计一个程序计算二次函数2(0)y ax bx c a =++≠的最值,并根据输入的数值说明是最大值还是最小值,并求出对应的x值.18. 对任意正整数n ,设计一个求S=111123n++++的程序框图,并编写出程序.19. 假设关于某种设备的使用年限x 和支出的维修费用y (万元),有以下的统计资料:使用年限x2 3 4 5 6 维修费用y2.23.85.56.57.0(1)画出散点图;(2)求支出的维修费用y 与使用年限x 的回归方程;(3)估计使用年限为10年时,维修费用是多少?20. 设甲,乙两名射手各打10发子弹,每发子弹击中环数如下: 甲:10,6,7,10,8,9,9,10,5,10; 乙:8,7,9,10,9,8,7,9,8,9. 试问哪一名射手的技术较好?参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBABBBDCDBB13. 0.8; 0.4; 乙; 14.81515. |,4k k k z παπαπ⎧⎫≤≤+∈⎨⎬⎩⎭16. 0.90217.解:INPUT "请输入数值,,a b c " /(2*)x b a =-(4**^2)/(4*)y a c b a =- 0IF a THEN >PRINT "当x =";x ;"时";"函数的最小值是";y ELSEPRINT "当x =";x ;"时";"函数的最大值是";y END IFEND18. IPUT “n ”;ni =1 Sum=0 WHILE i <=nSum=sum+1/i i =i +1WENDPRINT sum END19. 解:(1) 1.230.08y x ∧=+ a=0.08 b=1.23(2)维修费用=12.38开始输入n1i =sum 0=1i i =+1sum sum i=+?i n ≤是否 输出sum结束20.先计算两名射手的平均环数:11067108991051010x +++++++++甲=()=8.4 18791098798910x +++++++++乙=()=8.4再计算两名射手的标准差:s 甲=22222222221108.468.478.4108.488.498.498.4108.458.4108.410--------+-(-)+()+()+()+()+()+()+()+()()= 1.884s 乙=222222222218.488.478.49(8.410)(8.49)(8.48)(8.47)(8.49)(8.48)(8.49)10-+-+-+-+-+-+-+-(-)+()+(-)=0.854由此可见两名射手的平均值相等,但是乙的稳定性要好,所以乙的水平比甲好.。

人教版高中数学高一 必修3综合模块测试 1(人教A版必修3)

人教版高中数学高一 必修3综合模块测试 1(人教A版必修3)

7 9 8 4 4 4 6 7 9 3 开始 i =1 s =0i =i +1s =s+ii ≤5? 输出s 结束① ②a是否 必修3综合模块测试1(人教A 版必修3)一、选择题:1. 高二年级有14个班,每个班的同学从1到50排学号,为了交流学习经验,要求每班学号为14的同学留下来进行交流,这里运用的是( )A .分层抽样B .抽签抽样C .随机抽样D .系统抽样2. 五进制数(5)444转化为八进制数是( )A.(8)194B.(8)233C.(8)471D.(8)1743. 计算机执行下面的程序,输出的结果是( )a=1 b=3 a=a+bb=b a PRINT a ,b ENDA 、1,3B 、4,9C 、4,12D 、4,8 4. 甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是 ( )A.31B.41C.21 D.无法确定 5. 如下四个游戏盘,现在投镖,投中阴影部分概率最大的是 ( )6. 下图是2011年我校举办“激扬青春,勇担责任”演讲比赛大赛上, 七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的中位数和平均数分别为 ( )A.85;87B.84; 86C.84;85D.85;867. 如右图的程序框图(未完成).设当箭头a 指向①时,输出的结果 s =m,当箭头a 指向②时,输出的结果s =n,则m+n= ( )A.30B.20C.15D.5 8. 10个正数的平方和是370,方差是33,那么平均数为( )A .1B .2C .3D .49. 读程序 甲:INPUT i =1 乙:INPUT i =1000 S =0 S =0 WHILE i <=1000 DOS =S +i S =S +i i =i +l i =i 一1 WEND LOOP UNTIL i <1PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是( )A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同 10. 已知点P 是边长为4的正方形内任一点,则P 到四个顶点的距离均大于2的概率是( )A.44π- B. 14 C. 34π- D. 1811. 甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为 ( ) A.19B.29C.718 D.4912. 如右的程序框图可用来估计圆周率π的值.设(1,1)CONRND -是产生随机数的函数,它能随机产生区间(1,1)-内的任何一个数,如果输入1000,输出的结果为786,则运用此方法,计算π的近似值为 ( )A.3.144B.3.141C.3.142D.3.143二、填空题:13. 语句“PRINT 37 MOD 5 ”运行的结果是____. 14. 阅读右边的流程图,若0.30.322,2,log 0.8,a b c -===则输出的数是_____;15. 5280和2155的最大公约数是____. 16. 乙两艘轮船都要停靠同一个泊位,它们可以在一昼夜(零点至24点)的任意时刻到达,设甲、乙两艘轮船停靠泊位的时间分别是3小时和5小时,则有一艘轮船停靠泊位时必须等待一段时间的概率为____(用分数表示).0.030.01频率组距三.解答题:17. (本题满分12分)设数列{}{}111,n n n n a a a a n a +=-=满足,右图是求数列30前项和的算法流程图。

人教A版高中数学必修三试卷高一:综合模块测试.docx

人教A版高中数学必修三试卷高一:综合模块测试.docx

s=0 i=2 Do s=s+i i= i+2 Loop untilPrint sEnd 第5题高中数学学习材料马鸣风萧萧*整理制作必修3综合模块测试10(人教A 版必修3)一、选择:(共12小题,每题5分,共60分)1. 算法的三种基本结构是 ( ) A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构 C. 顺序结构、条件结构、循环结构 D. 模块结构、条件结构、循环结构2下列说法正确的是 ( ) A. 任何事件的概率总是在(0,1)之间 B. 频率是客观存在的,与试验次数无关 C. 随着试验次数的增加,频率一般会越来越接近概率 D. 概率是随机的,在试验前不能确定3.用二分法求方程022=-x 的近似根的算法中要用哪种算法结构 ( ) A .顺序结构 B .条件结构 C .循环结构 D .以上都用4.若)(B A P =1)()(=+B P A P ,则事件A 与B 的关系是 ( ) A 互斥不对立 B 对立不互斥 C 互斥且对立 D 以上都不对 5.有下面的程序,运行该程序,要使输出的结果是30, 在处 应添加的条件是 ( ) A. i>12 B. i>10 C. i=14 D. i=106.用“辗转相除法”求得459和357的最大公约数是: ( ) A .3 B .9 C .17 D .517.线性回归方程bx a y+=ˆ所表示的直线必经过点 ( ) A .(0,0) B .(0,x ) C .(y ,0) D .(y x ,)8.下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是( )游戏1游戏2游戏33个黑球和一个白球 一个黑球和一个白球2个黑球和2个白球 取1个球,再取1个球 取1个球取1个球,再取1个球 取出的两个球同色→甲胜 取出的球是黑球→甲胜 取出的两个球同色→甲胜 取出的两个球不同色→乙胜取出的球是白球→乙胜取出的两个球不同色→乙胜A . 游戏1和游戏3B .游戏1C .游戏2D .游戏39.在下列各图中,每个图的两个变量具有相关关系的图是 ( )(1) (2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3)10.现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是 ( ) A.101 B. 53 C. 103 D. 10911.在用样本频率估计总体分布的过程中,下列说法正确的是 ( )A.总体容量越大,估计越精确 B.总体容量越小,估计越精确 C.样本容量越大,估计越精确 D.样本容量越小,估计越精确12、某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2, ……,270;使用系统抽样时,将学生统一随机编号1,2, ……,270,并将整个编号依次分为10段 如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是 ( )A 、 ②、③都不能为系统抽样B 、 ②、④都不能为分层抽样C 、 ①、④都可能为系统抽样D 、 ①、③都可能为分层抽样二 填空:(共4小题,每题5分,共20分) 13.右图给出的是计算201614121++++ 的值的一个 流程图,其中判断框内应填入的条件是____________ 14、数据 128,,,x x x 平均数为6,标准差为2,则数 据 12826,26,,26x x x --- 的平均数为 ,方差为 。

最新人教版高中数学必修3第三章模块测试卷a(附答案)

最新人教版高中数学必修3第三章模块测试卷a(附答案)

数学人教新课标A 版高中必修3模块测试卷A (附答案)一、选择题(每小题5分,共60分) 1.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②科技报告厅有32排座位,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈;③胡集中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( ).A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样 2.以下程序运行后输出的结果是( ).A .12,5B .12,21C .12,3D .21,123.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形相对应的是( ).A .a —①,b —②,c —③B .a —②,b —③,c —①C .a —②,b —①,c —③D .a —①,b —③,c —②4.在一次猜数字游戏中,某人猜出的数字为9.4,9.5,9.5,9.5,9.7,9.4,则下列说法正确的是( ).A .平均数大于众数B .平均数大于中位数C .中位数等于平均数D .众数大于中位数5.一只蚂蚁在如图所示的地板砖(除颜色不同外,其余全部相同)上爬来爬去,它最后随意停留在黑色地板上的概率是( ).A .13 B .23 C .14 D .186.有一农场种植一种水稻,在同一块稻田中连续8年的平均产量如下:(单位:kg) 450 430 460 440 450 440 470 460 则其方差为( ).A .120B .80C .15D .1507.(2011福建福州模拟)为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分,据此,可估计阴影部分的面积是( ).A .12B .9C .8D .68.在样本频率分布直方图中,一共有n 个小矩形,若中间一个小矩形的面积等于其余n -1个小矩形面积和的14,且样本容量为160,则中间一组的频数是( ). A .32 B .20 C .40 D .259.一个单位有职工160人,其中有业务人员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽出样本,则在20人的样本中,应抽取管理人员( ).A .3人B .4人C .12人D .7人10.某家庭电话在家中有人时,打进的电话响第1声时被接的概率是110,响第2声时被接的概率为310,响第3声时被接的概率是25,响第4声时被接的概率是110,那么电话在响前4声内被接的概率为( ).A .12 B .910 C .310 D .4511.三位七进制的数表示的最大的十进制的数是( ). A .322 B .332 C .342 D .35212.分别以集合A ={2,4,6,8,11,12,13,19}中任意两个元素为分子、分母构成分数,则这种分数是可约分数的概率为( ).A .514 B .314 C .12 D .114二、填空题(每小题4分,共16分)13.阅读图示的程序框图,若输入m =4,n =6,则输出a =__________,i =__________.14.用秦九韶算法求P(x)=x8-3x6+5x5-2x-1当x=2时的值为__________.15.如图所示,在半径为1的半圆内,放置一个边长为12的正方形ABCD,向半圆内任投一点,该点落在正方形内的概率为__________.16.从所有三位二进制数中随机抽取一个数,则这个数化为十进制数后比5大的概率是__________.三、解答题(共74分)17.(12分)分别用辗转相除法和更相减损术求282与470的最大公约数.18.(12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株;[113,115)16株;[115,117)26株;[117,119)20株;[119,121)7株;[121,123)4株;[123,125]2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?19.(12分)高三·一班有50名学生,其中走读的男生有5名.若从50名学生中任抽1名,抽到住宿男生的概率为12.求:(1)从50名学生中任抽1人,抽到走读男生的概率;(2)从50名学生中任抽1人,抽到男生的概率;(3)从50名学生中任抽1人,抽到女生的概率;(4)这个班女生有多少人?20.(12分)为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,(1)求x,y;(2)若从高校B ,C 抽取的人中选2人作专题发言,求这二人都来自高校C 的概率. 21.(12分)(2011湖南高考)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加 5.已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.22.(14分)(2011广东高考)在某次测验中,有6位同学的平均成绩为75分,用x n 表示编号为n (n =1,2(1)求第6位同学的成绩x 6,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.参考答案1. 答案:A解析:①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差距较大,宜用分层抽样.2. 答案:B解析:A =3+32=12,B =32+12=21. 3. 答案:D解析:该题考查变量相关性的定义以及图形表示,要注意点的排列规律与正、负相关的联系.4. 答案:C解析:易求得中位数、平均数、众数都是9.5. 5. 答案:A解析:由几何概型的概率公式可得,41123P ==. 6. 答案:D解析:450x =,则s 2=18(400+100+100+100+400+100)=150. 7. 答案:B解析:正方形面积为36,阴影部分面积为200369800=.故选B 项. 8. 答案:A解析:设其余n -1个小矩形面积和为x , 则114x x +=,∴45x =.∴中间一个小矩形的面积为15. ∴中间一组的频率为15.∴频数为1160325⨯=. 9. 答案:B 解析:20324160⨯=(人). 10. 答案:B 解析:13219101051010P =+++=. 11. 答案:C解析:三位七进制数最大的是666(7),666(7)=6×72+6×7+6=342. 12. 答案:A解析:以集合A 中任意两个元素为分子、分母构成分数共有56个基本事件,是可约分数的有24,26,28,212,42,46,48,412,62,64,68,612,82,84,86,812,122,124,126,128共20个,所以所求概率为514. 13. 答案:12 3解析:要结束程序的运算,就必须通过n 整除a 的条件运算,而同时m 也整除a ,那么a 的最小值应为m 和n 的最小公倍数12,即此时有i =3.14. 答案:219解析:先将多项式P (x )进行改写,P (x )=x 8-3x 6+5x 5-2x -1=(((((((x +0)x -3)x +5)x +0)x +0)x +0)x -2)x -1,将x =2代入由内向外逐次计算,可得P (2)=219.15. 答案:12π解析:21124S ⎛⎫⎪⎝⎭三==,21ππ122S ⨯半=圆,由几何概型的计算公式得114π2π2S P S 正半===圆. 16. 答案:12解析:三位二进制数共有4个,分别是111(2),110(2),101(2),100(2),其中111(2)与110(2)化为十进制数后比5大,故所求概率为2142P ==.17. 解:辗转相除法: 470=1×282+188 282=1×188+94 188=2×94∴282与470的最大公约数为94. 更相减损术:470与282分别除以2得235和141. ∴235-141=94 141-94=4794-47=47∴470与282的最大公约数为47×2=94. 18. 解:(1)(2)频率分布直方图如下:频率分布直方图(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.19. 解:设A 为“抽到走读男生”,B 为“抽到住宿男生”,C 为“抽到男生”,D 为“抽到女生”.(1) 51()5010P A ==; (2)∵C =A ∪B ,且A 与B 是互斥事件,∴由概率的加法公式得P (C )=P (A )+P (B )=1131025+=; (3)∵C 与D 是对立事件, ∴P (D )=1-P (C )=32155-=.(4)这个班女生人数为250205 =(人). 20. 解:(1)由题意可得,2183654x y==,所以x =1,y =3.(2)记从高校B 抽取的2人为b 1,b 2,从高校C 抽取的3人为c 1,c 2,c 3,则从高校B ,C 抽取的5人中选2人作专题发言的基本事件有10种:(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3),设选中的2人都来自高校C 的事件为X ,则X 包含的基本事件有(c 1,c 2),(c 1,c 3),(c 2,c3)共3种,因此3()10P X=,故选中的2人都来自高校C的概率为310.21.解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为(2)P(“发电量低于490万千瓦时或超过530万千瓦时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=1323 20202010++=.故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.22.解:(1)x6=6×75-(70+76+72+70+72)=90,7s.(2)设这五位同学分别为A,B,C,D,E,其中只有B是不在(68,75)这个范围内的,从这五位同学中随机选2位同学,有以下情况:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10种情况,而恰有一位同学成绩在区间(68,75)中的情况有(A,B),(B,C),(B,D),(B,E)共4种情况,所以恰有1位同学成绩在区间(68,75)中的概率是2 5 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

省莱州一中高一数学必修三模块测试题(人教A 版)限时:120分钟1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,第I 卷一、选择题(每小题5分,共50分) 1.下列给出的赋值语句中正确的是:A 、3=AB 、M=—MC 、B=A=2D 、x+y=02.把89化成五进制数的末位数字为 ( ) A 1 B 2 C 3 D 4 3.如右图,是某算法流程图的一部分,其算法的逻辑结构为 ( )A. 顺序结构B. 判断结构C. 条件结构D. 循环结构4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

则完成(1)、(2)这两项调查宜采用的抽样方法依次是 ( ) A 、 分层抽样法,系统抽样法 B 、分层抽样法,简单随机抽样法 C 、系统抽样法,分层抽样法 D 、简单随机抽样法,分层抽样法 5.下列对一组数据的分析,不正确的说法是 ( ) A 、数据极差越小,样本数据分布越集中、稳定 B 、数据平均数越小,样本数据分布越集中、稳定 C 、数据标准差越小,样本数据分布越集中、稳定 D 、数据方差越小,样本数据分布越集中、稳定6.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩; ③某人每日吸烟量和其身体健康情况; ④正方形的边长和面积; ⑤汽车的重量和百公里耗油量; 其中两个变量成正相关的是 ( )A .①③B .②④C .②⑤D .④⑤7.计算机中常用16进制,采用数字0~9和字母A ~F 共16个计数符号与10进制得对应关系如下表: 例如用16进制表示D+E =1B ,则A ×B=( ) A 6E B 7C C 5F D B08.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品至少有一件是次品”,则下列结论正确的是( ) A . A 与C 互斥 B . 任何两个均互斥 C . B 与C 互斥D . 任何两个均不互斥9.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知 P (A )= 0.65 ,P(B)=0.2 ,P(C)=0.1。

则事件“抽到的不是一等品”的概率为( )A. 0.7B. 0.65C. 0.35D. 0.3 10.先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是 ( )A.81B. 83C. 85D. 87二、填空题(每小题5分,共20分)11.计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句: , , , , 。

12.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:则表中的,。

13.如右图,在正方形有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。

在这个图形上随机撒一粒黄豆,它落在扇形外正方形的概率为 。

(用分数表示)14.下列说法中正确的有________①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响; ②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确。

④向一个圆面随机地投一个点,如果该点落在圆任意一点都是等可能的,则该随机试验的数学模型是古典概型。

省莱州一中高一数学必修三模块测试题(人教A 版)限时:120分钟第II 卷一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)11. , , , , 。

12.=m , =a 。

13. ; 14. 。

三、解答题: 15.(12分)为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:请判断:谁参加这项重大比赛更合适,并阐述理由。

16.(13分)下面是计算应纳税所得额的算法过程,其算法如下:第一步 输入工资x(注x<=5000);第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);否则 y=25+0.1(x-1300) 第三步 输出税款y, 结束。

请写出该算法的程序框图和程序。

(注意:程序框图与程序必须对应)17.(13分)为了调查甲、乙两个受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如下所示的统计图,根据统计图:(1)甲、乙两个点击量的极差分别是多少? (4分)(2)甲点击量在[10,40]间的频率是多少? (5分) (3)甲、乙两个哪个更受欢迎?并说明理由。

(4分)18.(本小题满分14分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。

(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少? (3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?茎叶图 119.(14分)假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间(1)你离家前不能看到报纸(称事件A)的概率是多少?(8分,须有过程)(2)请你设计一种随机模拟的方法近似计算事件A的概率(包括手工的方法或用计算器、计算机的方法)(6分)20.(本小题满分14分)给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推. 要求计算这50个数的和. 先将下面给出的程序框图补充完整,再根据程序框图写出程序.1. 把程序框图补充完整:Array(1)________________________ (3分)(2)________________________ (4分)2. 程序:(7分)省莱州一中高一数学必修三模块测试题(人教A 版)参考答案限时:120分钟第II 卷一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)11.输入语句 ,输出语句 , 赋值语句 , 条件语句 , 循环语句 。

12.=m 6 , =a 0.45 。

13.44π- 14. ③ 。

三、解答题: 15.(12分)为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:请判断:谁参加这项重大比赛更合适,并阐述理由。

解:336313537303827=+++++=甲X336362834382933=+++++=乙X ( 4分)S 甲=958.3694≈, S 乙=559.3338≈ (8分) 乙甲X X =,S 甲>S 乙 (10分)乙参加更合适 (12分)16.(13分)下面是计算应纳税所得额的算法过程,其算法如下:第一步 输入工资x(注x<=5000);第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);茎叶图否则 y=25+0.1(x-1300) 第三步 输出税款y, 结束。

请写出该算法的程序框图和程序。

(注意:程序框图与程序必须对应) 解:框图7分,程序6分(不对应扣3-4分)17.(13分)为了调查甲、乙两个受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如下所示的统计图,根据统计图: (1)甲、乙两个点击量的极差分别是多少? (4分) (2)甲点击量在[10,40]间的频率是多少? (5分) (3)甲、乙两个哪个更受欢迎?并说明理由。

(4分) 解:(1)甲的极差为:73-8=65; (2分)乙的极差为:61-5=56 (4分)(2)甲点击量在[10,40]间的频率为4/14=2/7=0.28571 (9分)(3)甲的点击量集中在茎叶图的下方,而乙的点击量集中在茎叶图的上方。

从数据的分布情况来看,甲更受欢迎。

(13分)18.(本小题满分14分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。

(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?解:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3。

从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)=1/20=0.05(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P (F)=9/20=0.45(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次。

则一天可赚-⨯⨯,每月可赚1200元。

90=54010119.(14分)假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间(1)你离家前不能看到报纸(称事件A)的概率是多少?(8分,须有过程)(2)请你设计一种随机模拟的方法近似计算事件A的概率(包括手工的方法或用计算器、计算机的方法)(6分)Array解:如图,设送报人到达的时间为X,小王离家去工作的时间为Y。

(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为}9YXX,ΩY(,){≤8=6/≤≤≤7一个正方形区域,面积为SΩ=4,事件A表示小王离家前不能看到报纸,所构成的区域为A={(X,Y)/ }≤≤≤,,即图中的阴影部≤X>7Y986YX分,面积为S A=0.5。

相关文档
最新文档