江苏省常州市溧阳市2020-2021学年九年级上学期期末数学试题
江苏省常州市溧阳市2023-2024学年七年级上学期期末数学试题(含答案)

溧阳市2023~2024学年度第一学期期末质量调研测试七年级数学试题 2024.1一、选择题:(本大题共有8小题,每小题2分,共16分。
在每小题所给的四个选项中,只有一项是正确的)1.下列方程中,是一元一次方程的是A. B. C. D.2.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面都是三角形;乙同学:它有 6 条棱,则该模型对应的立体图形可能是A.三棱柱B.四棱柱C.三棱锥D.四棱锥3.下列方程中,解为的是A. B. C. D.4.下列说法中,其中正确的个数是①两点之间的所有连线中,线段最短; ②相等的角是对顶角;③棱柱的上、下底面的形状相同; ④两点之间的距离是两点间的线段。
A.4个 B.3个 C.2个 D.1个5.如图,是一个正方体截去一个角后得到的几何体,则该几何体的左视图是第5题图A. B. C. D.6.把方程去分母后,正确的是A. B. C. D.7.《九章算术》中记载了这样一个数学问题: 今有甲发长安,五日至齐;乙发齐,七日至长安。
今乙发已先二日,甲乃发长安。
问几何日相逢?译文:甲从长安出发,5 日到齐国,乙从齐国出发,7日到长安,现乙先出发2 日,甲才从长安出发,问甲出发后第几日与乙相逢?A.1日B.2日C.3日D.4日8.数轴上的A、B、C 三点所表示的数分别为a 、b 、c ,其中点B 是线段AC 的中点。
如果>>, 如图所示,那么该数轴的原点O 的位置应该在A.点A 的左边B.点A 与B 之间C.点B 与C 之间D.点 C 的右边 第8题图二、填空题:(本大题共有10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)9.已知∠A=50°,则ZA 的补角为_______________度。
10.若(x +2)2+∣y -3∣=0,则x 的值为__________________。
y x -=5x x =-1342=x 05=-x 2-=x 393=-x x x 26-=+3)1(25=--x 0631=-x 1312=--x x 1)123=--x x (6)123=--x x (6223=--x x 6223=-+x x a c b11.已知某几何体的三视图如图所示(单位: cm ),则该几何体的侧面积为_________________cm2。
江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类

江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 .九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 乙10 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 60九年级代表队 90 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.江苏省常州市三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一元二次方程的应用(共1小题)1.(2022秋•常州期末)常州大剧院举办文艺演出.经调研,如果票价定为每张50元,那么1200张门票可以全部售出;如果票价每增加1元,那么售出的门票将会减少20张.要使门票收入达到60500元,票价应定为多少元?【答案】55元.【解答】解:设票价应定为x元,由题意得:x[1200﹣20(x﹣50)]=60500,解得:x1=x2=55.答:票价应定为55元.二.三角形综合题(共1小题)2.(2022秋•常州期末)如果三角形一个内角的2倍与另一个内角的和等于90°,那么我们称这样的三角形为“类互余”三角形.(1)若△ABC是“类互余”三角形,∠C>90°,∠A=40°,则∠B= 25°或10° ;(2)如图1,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,△ABD是“类互余”三角形吗?请说明理由;(3)如图2,在△ABC中,,tan∠ABC=2,D是CB延长线上的一点.若△ABD 是“类互余”三角形,求BD的长.【答案】(1)25°或10°;(2)是,理由见解析;(3)或6.【解答】解:(1)∵∠C>90°,∴∠A+∠B<90°∵△ABC是“类互余”三角形,∠A=40°,∴∠A+2∠B=90°或2∠A+∠B=90°,∴∠B=25°或∠B=10°,故答案为:25°或10°.(2)△ABD是“类互余”三角形,理由如下,在△ABC中,∠C=90°,BC=2,D是AC上的一点,CD=1,AD=3,∴AC=AD+DC=4,∴,∴=,又∵∠C=∠C,∴△ACB∽△BCD,∴∠CBD=∠A,设∠CBD=∠A=α,则∠ADB=∠ABC﹣∠CBD=(90°﹣α)﹣α=90°﹣2α,∴2∠A+∠ABD=2α+90°﹣2α=90°,∴△ABD是“类互余”三角形;(3)设∠ADB=α,依题意,△ABD是“类互余”三角形,∠ABD>90°,当2∠ADB+∠BAD=90°时,如图所示,过点A作AE⊥BC于点E,则∠BAD=90°﹣α,∴∠EAB=α,∴∠EAB=∠ADB,∵tan∠ABC=2,,设AE=2a,则BE=a,∴,解得:a=2,∴AE=4,BE=2,∵∠EAB=∠ADB,∴,∴ED=8,∴BD=DE﹣BE=8﹣2=6;当∠ADB+2∠BAD=90°,如图所示,过点A作AE⊥BC于点E,过点B作BF⊥AD于点F,则∠BAD=α,∠ADB=90°﹣2α,∴∠EAB=∠BAD=α,∴BF=BE=2,设BD=x,则ED=2+x,∵,∴,即,解得:.即或6.三.正方形的性质(共1小题)3.(2021秋•常州期末)【问题】老师上完《7.3特殊角的三角函数》一课后,提出了一个问题,让同学们尝试去探究75°的正弦值.小明和小华经过思考与讨论,作了如下探索:【方案一】小明构造了图1,在△ABC中,AC=2,∠B=30°,∠C=45°.第一步:延长BA,过点C作CD⊥BA,垂足为D,求出DC的长;第二步:在Rt△ADC中,计算sin75°.【方案二】小华构造了图2,边长为a的正方形ABCD的顶点A在直线EF上,且∠DAF =30°.第一步:连接AC,过点C作CG⊥EF,垂足为G,用含a的代数式表示AC和CG的长;第二步:在Rt△AGC中,计算sin75°.请分别按照小明和小华的思路,完成解答过程.【答案】【方案一】.【方案二】.【解答】解:【方案一】如图1,过点A作AQ⊥BC于点Q,在△ABC中,AC=2,∠B=30°,∵∠C=45°.AC=2,∴AQ=CQ=AC=,∵∠B=30°,∴BQ=AQ=,∴BC=BQ+QC=+,∴CD=BC=,∵∠DAC=∠B+∠ACB=75°,∴sin75°==.【方案二】如图2,延长CB交FE于点H,∵正方形ABCD的边长为a,∴AC=a,∵∠DAF=30°.∴∠BAH=60°,∴∠H=30°,∴AH=2AB=2a,∴BH=AB=a,∴CH=BH+BC=a+a=(+1)a,∴CG=CH=,∵∠GAC=∠CAD+∠DAF=75°,∴sin75°===.四.直线与圆的位置关系(共1小题)4.(2021秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.(1)判断DE所在直线与⊙O的位置关系,并说明理由;(2)若AE=4,ED=2,求⊙O的半径.【答案】(1)直线DE与⊙O相切,理由见解析;(2).【解答】解:(1)直线DE与⊙O相切;理由:连接OD,∵∠CAB的平分线是AD,∴∠CAD=∠DAB.∵OA=OD,∴∠OAD=∠ODA.∴∠EAD=∠ADO,∴AE∥OD,∵∠AED=90°,∴∠ODE=90°.∵OD是⊙O的半径,∴直线DE与⊙O相切;(2)连接BD,∵ED=2,AE=4,∴AD==2,∵AB是⊙O的直径,∴∠ADB=90°,∵∠EAD=∠BAD,∴△ADE∽△ABD,∴=,∴AB=5,∴⊙O的半径为.五.圆的综合题(共2小题)5.(2020秋•常州期末)如图1,在矩形ABCD中,AB=6cm,BC=8cm,点P以3cm/s的速度从点A向点B运动,点Q以4cm/s的速度从点C向点B运动.点P、Q同时出发,运动时间为t秒(0<t<2),⊙M是△PQB的外接圆.(1)当t=1时,⊙M的半径是 cm,⊙M与直线CD的位置关系是 相离 ;(2)在点P从点A向点B运动过程中.①圆心M的运动路径长是 5 cm;②当⊙M与直线AD相切时,求t的值.(3)连接PD,交⊙M于点N,如图2,当∠APD=∠NBQ时,求t的值.【答案】见试题解答内容【解答】解:(1)如图1,过M作KN⊥AB于N,交CD于K,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,∴⊙M的直径是PQ,KN⊥CD,当t=1时,AP=3,CQ=4,∵AB=6,BC=8,∴PB=6﹣3=3,BQ=8﹣4=4,∴PQ==5,∴⊙M的半径为cm,∵MN∥BQ,M是PQ的中点,∴PN=BN,∴MN是△PQB的中位线,∴MN=BQ=×4=2,∴MK=8﹣2=6>,∴⊙M与直线CD的位置关系是相离;故答案为:,相离;(2)①如图2,由P、Q运动速度与AB,BC的比相等,∴圆心M在对角线BD上,由图可知:P和Q两点在t=2时在点B重合,当t=0时,直径为对角线AC,M是AC的中点,故M运动路径为OB=BD,由勾股定理得:BD==10,则圆心M的运动路径长是5cm;故答案为:5;②如图3,当⊙M与AD相切时,设切点为F,连接FM并延长交BC于E,则EF⊥AD,EF⊥BC,则BQ=8﹣4t,PB=6﹣3t,∴PQ=10﹣5t,∴PM==FM=5﹣t,△BPQ中,ME=PB=3﹣t,∵EF=FM+ME,∴5﹣t+3﹣t=6,解得:t=;(3)如图4,过D作DG⊥PQ,交PQ的延长线于点G,连接DQ,∵∠APD=∠NBQ,∠NBQ=∠NPQ,∴∠APD=∠NPQ,∵∠A=90°,DG⊥PG,∴AD=DG=8,∵PD=PD,∴Rt△APD≌Rt△GPD(HL),∴PG=AP=3t,∵PQ=10﹣5t,∴QG=3t﹣(10﹣5t)=8t﹣10,∵DC2+CQ2=DQ2=DG2+QG2,∴62+(4t)2=82+(8t﹣10)2,∴3t2﹣10t+8=0,(t﹣2)(3t﹣4)=0,解得:t1=2(舍),t2=.6.(2021秋•常州期末)如图1,边长为6cm的等边△ABC中,AD是高,点P以cm/s 的速度从点D向A运动,以点P为圆心,1cm为半径作⊙P,设点P的运动时间为ts.(1)当⊙P与边AC相切时,求t的值;(2)如图2,若在点P出发的同一时刻,点Q以1cm/s的速度从点B向点C运动,一个点停止运动时,另一个点也随之停止运动.过点Q作BA的平行线,交AC于点M.当QM 与⊙P相切时,求t的值;(3)在运动过程中,当⊙P与△ABC的边共有两个公共点时,直接写出t的取值范围.【答案】(1)t=3﹣;(2)(﹣)或(+);(3)t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.【解答】解:(1)设⊙P与边AC相切点E,连接PE,如图,则PE⊥AC.∵△ABC是边长为6的等边三角形,AD是高,∴BD==3cm,∠DAC=∠BAC=30°.∴AD==3,由题意得:PD=tcm,∴AP=AD﹣PD=(3﹣t)cm.在Rt△APE中,∵sin∠PAE=,∴AP=.∴3﹣t=.解得:t=3﹣.∴当⊙P与边AC相切时,t的值为3﹣.(2)设QM与⊙P相切于点E,①当点E在AD的左侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+FP+PD=AD,∴t+2+t=3.解得:t=﹣;②当点P在AD的右侧时,设QM与AD交于点F,如图,连接EP,过点M作MH⊥AD于点H,∵QM与⊙P相切于点E,∴EP⊥QM.∵△ABC是边长为6的等边三角形,AD是高,∴∠DAB=∠DAC=∠BAC=30°.∵QM∥AB,∴∠QFD=∠BAD=30°.∵∠AFM=∠QFD,∴∠AFM=30°.∴∠FAM=∠AFM=30°.∴AM=FM.∵MH⊥AD,∴AH=FH=.由题意得:BQ=t,DP=t,∵∠B=∠BAC=60°,AB∥QM,∴四边形ABQM为等腰梯形,∴AM=BQ=t.∴AH=AM•cos∠DAC=t.∴AF=2AH=2t.∵EP⊥QM,∠EFP=30°,∴FP=2EP=2.∵AF+DP﹣FP=AD,∴t+t﹣2=3.解得:t=+.综上,当QM与⊙P相切时,t的值为(﹣)或(+).(3)①当0≤PD<1时,此时⊙P与BC相交,⊙P与BC边有两个公共点,符合题意,∴此时t的取值范围为0≤t<;②当1<PD<3﹣2时,此时⊙P与△ABC的三边均相离,没有公共点;③当PD=3﹣2时,此时⊙P与AB,AC边相切,此时⊙P与△ABC的边共有两个公共点;∴由(1)知:t=3﹣;④当3﹣2<PD<3﹣1时,此时⊙P与AB,AC边均相交,此时⊙P与△ABC的边共有四个公共点;⑤当3﹣1<PD≤3时,此时⊙P与AB,AC边均相交,但各只有一个交点,符合题意,∴此时t的取值范围为:3﹣<t≤3.综上,当⊙P与△ABC的边共有两个公共点时,t的取值范围为0≤t<或t=3﹣或3﹣<t≤3.六.相似三角形的性质(共2小题)7.(2020秋•常州期末)如图,已知△OAB,点A的坐标为(2,2),点B的坐标为(3,0).(1)求sin∠AOB的值;(2)若点P在y轴上,且△POA与△AOB相似,求点P的坐标.【答案】(1).(2)(0,3)或(0,).【解答】解:(1)如图,过点A作AH⊥OB于H.∵A(2,2),∴AH=OH=2,∴∠AOB=45°,∴sin∠AOB=.(2)由(1)可知,∠AOP=∠AOB=45°,OA=2,当△AOP∽△AOB时,=,可得OP′=OB=3,∴P′(0,3),当△AOP∽△BOA时,=,∴=,∴OP=,∴P(0,),综上所述,满足条件的点P的坐标为(0,3)或(0,).8.(2021秋•常州期末)如果经过一个三角形某个顶点的直线将这个三角形分成两部分,其中一部分与原三角形相似,那么称这条直线被原三角形截得的线段为这个三角形的“形似线段”.(1)在△ABC中,∠A=30°.①如图1,若∠B=100°,请过顶点C画出△ABC的“形似线段”CM,并标注必要度数;②如图2,若∠B=90°,BC=1,则△ABC的“形似线段”的长是 或 ;(2)如图3,在△DEF中,DE=4,EF=6,DF=8,若EG是DEF的“形似线段”,求EG的长.【答案】(1)①作图见解析部分;②或;(2)3.【解答】解:(1)①如图1中,线段CM即为所求;②如图2中,当BH⊥AC时,线段BH是“形似线段”,∵∠ABC=90°,BC=1,∠A=30°,∴AC=2BC=2,AB=BC=,∵•AB•BC=•AC•BH,∴BH==.当CM平分∠BCA时,线段CT是“形似线段”,在Rt△CBT中,CT==.综上所述,△ABC的“形似线段”的长是或;(2)如图3中,当△DEG∽△DFE时,=,∴=,∴EG=3,当△FEG∽△FDE时,=,∴=,∴EG=3,∴EG=3.七.相似三角形的判定(共1小题)9.(2022秋•常州期末)如图,AB是⊙O的直径,弦AD平分∠BAC.(1)过点D作⊙O的切线DE,交AC于点E(用直尺和圆规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接BD,△ADE与△ABD相似吗?为什么?【答案】(1)见解析;(2)△ADE∽△ABD,理由见解析.【解答】解:(1)如图所示,DE即为所求,理由如下,连接OD,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)△ADE∽△ABD,理由如下,连接BD,如图,∵弦AD平分∠BAC,∴∠CAD=∠BAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴AC⊥DE,∵AB是⊙O的直径,∴∠ADB=90°,∴∠AED=∠ADB,∴△ADE∽△ABD.八.作图-相似变换(共1小题)10.(2021秋•常州期末)如图,在平面直角坐标系中,△ABC的三个顶点A、B、C的坐标分别为(0,3)、(2,1)、(4,1).(1)以原点O为位似中心,在第一象限画出△ABC的位似图形△ABC,使△A1B1C1与△ABC的相似比为2:1;(2)借助网格,在图中画出△ABC的外接圆⊙P,并写出圆心P的坐标 (3,4) ;(3)将△ABC绕(2)中的点P(3)将△ABC绕点P顺时针旋转90°,则点A运动的路线长是 π .【答案】(1)作图见解析部分;(2)作图见解析部分,P(3,4).(3)π.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,点P即为所求,P(3,4),故答案为:(3,4);(3)∵PA==,∴的长==π.故答案为:π.九.方差(共2小题)11.(2020秋•常州期末)某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周第2周第3周第4周第5周第6周甲9101091210乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数中位数众数甲 10 10 10 乙10 10.5 7(1)填空:根据表Ⅰ的数据补全表Ⅱ;(2)老师计算了乙品牌冰箱销量的方差:S乙2=[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=(台2).请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?【答案】(1)10、10、10.5;(2)建议商家可多采购甲品牌冰箱,理由见解答.【解答】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12,所以甲品牌销售数量的平均数为=10(台),众数为10台,乙品牌销售数量从小到大排列为7、7、10、11、12、13,所以乙品牌销售数量的中位数为=10.5(台),补全表格如下:平均数中位数众数甲101010乙1010.57故答案为:10、10、10.5;(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差=×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S2=,乙∴<S乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.12.(2021秋•常州期末)“119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):八年级代表队:80,90,90,100,80,90,100,90,100,80;九年级代表队:90,80,90,90,100,70,100,90,90,100.(1)填表:代表队平均数中位数方差八年级代表队90 90 60九年级代表队 90 90 80 (2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?【答案】(1)90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由见解答;(3)九年级大约有180名学生可以获得奖状.【解答】解:(1)将八年级代表队成绩重新排列为80,80,80,90,90,90,90,100,100,100,所以其中位数为=90,九年级代表队成绩的平均数为=90,所以其方差为×[(70﹣90)2+(80﹣90)2+5×(90﹣90)2+3×(100﹣90)2]=80,故答案为:90、90、80;(2)八年级代表队的学生竞赛成绩更好,理由如下:∵八、九年级代表队的学生的竞赛成绩的平均数相等,而八年级代表队的学生的竞赛成绩的方差小于九年级,成绩更加稳定,∴八年级代表队的学生竞赛成绩更好;(3)600×=180(名),答:九年级大约有180名学生可以获得奖状.一十.列表法与树状图法(共3小题)13.(2020秋•常州期末)学校为了丰富学生课余生活,开设了社团课.现有以下社团:A.篮球、B.机器人、C.绘画,学校要求每人只能参加一个社团,甲和乙准备随机报名一个社团.(1)甲选择“机器人”社团的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个社团的概率.【答案】(1);(2).【解答】解:(1)甲选择“机器人”社团的概率是,故答案为:;(2)画树状图如图:共有9个等可能的结果,甲、乙两人选择同一个社团的结果有3个,∴甲、乙两人选择同一个社团的概率为=.14.(2021秋•常州期末)小丽的爸爸积极参加社区志愿服务,根据社区安排,志愿者将被随机分配到以下小组中的一个:A组(交通疏导)、B组(环境消杀)、C组(便民代购),开展服务工作.(1)小丽的爸爸被分配到C组的概率是 ;(2)若小丽的班主任刘老师也参加了该社区的志愿者队伍,那么刘老师和小丽的爸爸被分到同一组的概率是多少?请用画树状图或列表的方法写出分析过程.【答案】(1);(2).【解答】解:(1)小丽的爸爸被分配到C组的概率是,故答案为:;(2)画树状图如下:共有9种等可能的结果,刘老师和小丽的爸爸被分到同一组的结果有3种,∴刘老师和小丽的爸爸被分到同一组的概率为=.15.(2022秋•常州期末)学校为了践行“立德树人,实践育人”的目标,开展劳动课程,组织学生走进农业基地,欣赏田园风光,体验劳作的艰辛和乐趣.该劳动课程有以下小组:A.搭豇豆架、B.斩草除根、C.趣挖番薯、D.开垦播种.学校要求每人只能参加一个小组,甲和乙准备随机报名一个小组.(1)甲选择“搭虹豆架”小组的概率是 ;(2)请用树状图或列表法求甲、乙两人选择同一个小组的概率.【答案】(1);(2).【解答】解:(1)甲选择“搭虹豆架”小组的概率是,故答案为:;(2)画树状图如下:共有16种等可能的结果,其中甲、乙两人选择同一个小组的结果有4种,∴甲、乙两人选择同一个小组的概率为=.。
2020-2021学年江苏省常州市溧阳市七年级上学期期中数学试卷 (Word版 含解析)

2020-2021学年江苏省常州市溧阳市七年级(上)期中数学试卷一、选择题(共8小题).1.﹣3的相反数是()A.﹣3B.3C.D.2.某仓库有粮500吨,某天上午运出30吨,下年又运进20吨,则仓库现有粮()A.490吨B.510吨C.450吨D.550吨3.2019年底我国高速铁路已开通里程数达42000公里,居世界第一,将数据42000用科学记数法表示正确的是()A.4.2×103 B.4.2×104C.42×103 D.42×1044.已知两个有理数a、b,如果ab<0且a+b<0,那么()A.a>0,b>0B.a<0,b<0C.a、b同号D.a、b异号,且负数的绝对值较大5.下列运算正确的是()A.3a+2a=5B.3a+2a=5a C.3a÷2a=a D.3a+2a=6a6.数a、b在数轴上对应点的位置如图所示,则a、b、|a|、﹣b的大小关系正确的是()A.﹣b>a>|a|>b B.﹣b>b>a>|a|C.|a|>b>﹣b>a D.|a|>﹣b>a>b 7.当x<1时,化简|x﹣1|﹣|x﹣3|的结果是()A.﹣2B.4C.2x﹣2D.2x﹣48.定义:一种对于三位数abc(其中在abc中,a在百位,b在十位,c在个位,a、b、c 不完全相同)的“F运算”:重排abc的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零),例如abc=463时,则经过大量运算,我们发现任意一个三位数经过若干次“F运算”都会得到一个固定不变的值;类比联想到:任意一个四位数经过若干次这样的“F运算”也会得到一个定值,这个定值为()A.4159B.6419C.5179D.6174二、填空题(共10小题).9.a的绝对值为5,那么a=.10.比较两个数的大小:﹣|﹣2|﹣(﹣5).(“填>、<或=”)11.52+122=()2.12.请你写出一个﹣x2y3的同类项.13.长方形的长为3a+2b,宽为2a﹣3b,则这个长方形的周长为.(写出化简后的结果)14.数轴上与原点距离小于的整数点有个.15.若|a|=3,|b|=2,且a>b,则a+b的值可能是:.16.若m+n=1,mn=﹣2,则(6m+3)﹣3(mn﹣2n)的值.17.已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接一个环套地连成条锁链(无缝隙),那么这条锁链拉直后的长度为cm.18.现有一列数m1,m2,m3,…,m2020,其中m1=﹣3,m2=﹣1,且m n+m n+1+m n+2=1(n 为正整数),则m1+m2+m3+…+m2020=.三、解答题(共7小题,共64分)19.计算题:(1)(﹣2)+(+8)+(﹣8);(2)×(﹣)÷;(3)(﹣﹣+)×(﹣36);(4)﹣12×[2﹣(﹣6)]﹣30÷(﹣3).20.计算:(1)5a﹣3a+2a;(2)m2﹣(3m﹣m2)+2m;(3)3(3m2n﹣mn2)﹣2(﹣mn2+3m2n)﹣m2n.21.简便计算:(1)(﹣4)2020×(﹣0.25)2021.(2)19×(﹣8).22.先化简,再求值(1)3x2+2x﹣(3x2﹣4x﹣1),其中x=﹣;(2)3x2y﹣[2x2y﹣(xy2﹣x2y)﹣4xy2],其中x=﹣,y=2.23.如图,有长、宽分别为a、b的长方形一个和三边长分别为a、b、c的直角三角形两个.请你用这三个图形无缝拼成新的四边形,并直接写出形状不同的四边形的周长.(要求画出示意图形)24.如图,在一条不完整的数轴上从左到右有点A,B,C,D,其中点A与点B之间距离为3,点B与点C之间距离为2,点C与点D之间距离为1.设点A,B,C,D所对应数的和为w.(1)若点C为数轴的原点.请你写出点A、B、D所对应的数,并计算w的值;(2)若点C与数轴原点的距离为2020时,求w的值;(3)若点C与数轴原点的距离为a(a>0)时,求w的值.25.(1)尝试:比较下列各式的大小关系:(用“>”、“<”、“=”、“≥”或“≤”填空)①|﹣2|+|3||﹣2+3|.②|﹣6|+|4||﹣6+4|;③|﹣3|+|﹣4||﹣3﹣4|;④|0|+|﹣7||0﹣7|;(2)归纳:观察上面的数量关系,可以得到:|a|+|b||a+b|(用“>”、“<”、“=”、“≥”或“≤”填空).(3)应用:利用上面得到的结论解决下面问题:若|m|+|n|=16,|m+n|=2,则m=.(4)拓展:当a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.(请直接写出结果,不需过程)参考答案一、选择题(共8小题).1.﹣3的相反数是()A.﹣3B.3C.D.解:﹣3的相反数是3.故选:B.2.某仓库有粮500吨,某天上午运出30吨,下年又运进20吨,则仓库现有粮()A.490吨B.510吨C.450吨D.550吨解:500+(﹣30)+20=490(吨),故选:A.3.2019年底我国高速铁路已开通里程数达42000公里,居世界第一,将数据42000用科学记数法表示正确的是()A.4.2×103 B.4.2×104 C.42×103D.42×104解:42000=4.2×104.故选:B.4.已知两个有理数a、b,如果ab<0且a+b<0,那么()A.a>0,b>0B.a<0,b<0C.a、b同号D.a、b异号,且负数的绝对值较大解:∵ab<0,∴a、b异号,又∵a+b<0,∴负数的绝对值较大,故选:D.5.下列运算正确的是()A.3a+2a=5B.3a+2a=5a C.3a÷2a=a D.3a+2a=6a解:A、3a+2a=5a,故本选项不合题意;B、3a+2a=5a,故本选项符合题意;C、3a÷2a=,故本选项不合题意;D、3a+2a=5a,故本选项不合题意;故选:B.6.数a、b在数轴上对应点的位置如图所示,则a、b、|a|、﹣b的大小关系正确的是()A.﹣b>a>|a|>b B.﹣b>b>a>|a|C.|a|>b>﹣b>a D.|a|>﹣b>a>b 解:从数轴可知:a<0<1<b,|a|>|b|,所以|a|>b>﹣b>a,故选:C.7.当x<1时,化简|x﹣1|﹣|x﹣3|的结果是()A.﹣2B.4C.2x﹣2D.2x﹣4解:∵x<1时,∴|x﹣1|﹣|x﹣3|=﹣(x﹣1)+x﹣3=﹣x+1+x﹣3=﹣2.故选:A.8.定义:一种对于三位数abc(其中在abc中,a在百位,b在十位,c在个位,a、b、c 不完全相同)的“F运算”:重排abc的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零),例如abc=463时,则经过大量运算,我们发现任意一个三位数经过若干次“F运算”都会得到一个固定不变的值;类比联想到:任意一个四位数经过若干次这样的“F运算”也会得到一个定值,这个定值为()A.4159B.6419C.5179D.6174解:∵任意一个四位数经过若干次这样的“F运算”也会得到一个定值,且只要四个数字不完全相同就符合题意,∴设这个四位数字为1000,依次进行“F运算”得:①1000﹣0001=0999;②9990﹣0999=8991;③9981﹣1899=8082;④8820﹣0288=8532;⑤8532﹣2358=6174;⑥7641﹣1467=6174.…,∴这个定值为6174.故选:D.二、填空题:(共有10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)9.a的绝对值为5,那么a=5或﹣5.解:∵a的绝对值为5,∴a=5或﹣5.故答案为5或﹣5.10.比较两个数的大小:﹣|﹣2|<﹣(﹣5).(“填>、<或=”)解:∵﹣|﹣2|=﹣2,﹣(﹣5)=5,而﹣2<5,∴﹣|﹣2|<﹣(﹣5),故答案为:<.11.52+122=(±13)2.解:52+122=25+144=169=(±13)2.故答案为:±13.12.请你写出一个﹣x2y3的同类项x2y3(答案不唯一).解:x2y3与﹣x2y3是同类项,故答案为:x2y3(答案不唯一).13.长方形的长为3a+2b,宽为2a﹣3b,则这个长方形的周长为(10a﹣2b).(写出化简后的结果)解:这个长方形的周长为2(3a+2b+2a﹣3b)=2(5a﹣b)=10a﹣2b,故答案为:(10a﹣2b).14.数轴上与原点距离小于的整数点有7个.解:设这个数为x,由题意得,|x|<,∴﹣<x<,又∵x为整数,∴整数x可以为:﹣3,﹣2,﹣1,0,1,2,3,因此共有7个,故答案为:7.15.若|a|=3,|b|=2,且a>b,则a+b的值可能是:5或1.解:∵|a|=3,|b|=2,且a>b,∴a=3,b=±2,当a=3,b=2时,a+b=3+2=5;当a=3,b=﹣2时,a+b=3﹣2=1.故答案为5或1.16.若m+n=1,mn=﹣2,则(6m+3)﹣3(mn﹣2n)的值15.解:当m+n=1,mn=﹣2时,原式=6m+3﹣3mn+6n=6(m+n)﹣3mn+3=6×1﹣3×(﹣2)+3=6+6+3=15,故答案为:15.17.已知圆环内直径为acm,外直径为bcm,将100个这样的圆环一个接一个环套地连成条锁链(无缝隙),那么这条锁链拉直后的长度为(99a+b)cm.解:如图,圆环的宽度AB=,拉紧后可知,内圆圈是外切的,因此100个这样的圆环拉紧后的长度为+100a+=99a+b,故答案为:(99a+b).18.现有一列数m1,m2,m3,…,m2020,其中m1=﹣3,m2=﹣1,且m n+m n+1+m n+2=1(n 为正整数),则m1+m2+m3+…+m2020=670.解:∵m1=﹣3,m2=﹣1,且m n+m n+1+m n+2=1(n为正整数),∴﹣3+(﹣1)+m3=1,解得m3=5,∵2020÷3=673…1,∴m1+m2+m3+…+m2020=(m1+m2+m3)+…+(m2017+m2018+m2019)+m2020=1×673+(﹣3)=673+(﹣3)=670,故答案为:670.三、解答题:(共7小题,共64分请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.计算题:(1)(﹣2)+(+8)+(﹣8);(2)×(﹣)÷;(3)(﹣﹣+)×(﹣36);(4)﹣12×[2﹣(﹣6)]﹣30÷(﹣3).解:(1)原式=﹣2+8﹣8=﹣2+(8﹣8)=﹣2;(2)×(﹣)÷=×(﹣)×=﹣;(3)(﹣﹣+)×(﹣36)=(﹣)×(﹣36)﹣×(﹣36)+×(﹣36)=18+6﹣27=﹣3;(4)﹣12×[2﹣(﹣6)]﹣30÷(﹣3)=﹣1×8+10=﹣8+10=2.20.计算:(1)5a﹣3a+2a;(2)m2﹣(3m﹣m2)+2m;(3)3(3m2n﹣mn2)﹣2(﹣mn2+3m2n)﹣m2n.解:(1)原式=(5﹣3+2)=4a;(2)原式=m2﹣3m+m2+2m=2m2﹣m;(3)原式=9m2n﹣3mn2+2mn2﹣6m2n﹣m2n=2m2n﹣mn2.21.简便计算:(1)(﹣4)2020×(﹣0.25)2021.(2)19×(﹣8).解:(1)(﹣4)2020×(﹣0.25)2021=[(﹣4)×(﹣0.25)]2020×(﹣0.25)=12020×(﹣0.25)=1×(﹣0.25)=﹣0.25;(2)19×(﹣8)=(20﹣)×(﹣8)=20×(﹣8)﹣×(﹣8)=﹣160+=﹣.22.先化简,再求值(1)3x2+2x﹣(3x2﹣4x﹣1),其中x=﹣;(2)3x2y﹣[2x2y﹣(xy2﹣x2y)﹣4xy2],其中x=﹣,y=2.解:(1)原式=3x2+2x﹣3x2+4x+1=6x+1,当x=﹣时,原式=﹣2+1=﹣1;(2)原式=3x2y﹣2x2y+xy2﹣x2y+4xy2=5xy2,当x=﹣,y=2时,原式=5×(﹣)×22=﹣10.23.如图,有长、宽分别为a、b的长方形一个和三边长分别为a、b、c的直角三角形两个.请你用这三个图形无缝拼成新的四边形,并直接写出形状不同的四边形的周长.(要求画出示意图形)解:如图所示:一共是6个图形,①和③的周长为4b+2c,②和⑥的周长为4a+2c,④的周长为4a+2b,⑤的周长为2a+4b.24.如图,在一条不完整的数轴上从左到右有点A,B,C,D,其中点A与点B之间距离为3,点B与点C之间距离为2,点C与点D之间距离为1.设点A,B,C,D所对应数的和为w.(1)若点C为数轴的原点.请你写出点A、B、D所对应的数,并计算w的值;(2)若点C与数轴原点的距离为2020时,求w的值;(3)若点C与数轴原点的距离为a(a>0)时,求w的值.解:(1)若点C为数轴的原点,即C点表示的数为0,∵点C与点D之间距离为1,∴D点对应的数为1,∵点B与点C之间距离为2,∴B点对应的数为﹣2,∵点A与点B之间距离为3,∴A点表示的数为﹣5,∴w=﹣5+(﹣2)+1=﹣6;(2)点C与数轴原点的距离为2020时,即C点对应的数为2020或﹣2020,当C点对应的数为2020,∴D点表示的数为2020+1=2021,B点对应的数为2020﹣2=2018,A点表示的数为2018﹣3=2015,∴w=2021+2018+2020+2015=8074;当C点对应的数为﹣2020,∴D点表示的数为﹣2020+1=﹣2019,B点对应的数为﹣2020﹣2=﹣2022,A点表示的数为﹣2022﹣3=﹣2025,∴w=﹣2025﹣2022﹣2020﹣2025=﹣8086;即w的值为8074或﹣8086;(3)若点C与数轴原点的距离为a(a>0),即C点对应的数为a或﹣a,当C点对应的数为a,∴D点表示的数为a+1,B点对应的数为a﹣2,A点表示的数为a﹣2﹣3=a﹣5,∴w=a﹣5+a﹣2+a+a+1=4a﹣6;当C点对应的数为﹣a,∴D点表示的数为﹣a+1,B点对应的数为﹣a﹣2,A点表示的数为﹣a﹣2﹣3=﹣a﹣5,∴w=﹣a﹣5﹣a﹣2﹣a﹣a+1=﹣4a﹣6;即w的值为﹣4a﹣6或4a﹣6.25.(1)尝试:比较下列各式的大小关系:(用“>”、“<”、“=”、“≥”或“≤”填空)①|﹣2|+|3|>|﹣2+3|.②|﹣6|+|4|>|﹣6+4|;③|﹣3|+|﹣4|=|﹣3﹣4|;④|0|+|﹣7|=|0﹣7|;(2)归纳:观察上面的数量关系,可以得到:|a|+|b|≥|a+b|(用“>”、“<”、“=”、“≥”或“≤”填空).(3)应用:利用上面得到的结论解决下面问题:若|m|+|n|=16,|m+n|=2,则m=±9或±7.(4)拓展:当a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.(请直接写出结果,不需过程)解:(1)①|﹣2|+|3|=5,而|﹣2+3|=1,因此有|﹣2|+|3|>|﹣2+3|,②|﹣6|+|4|=10,而|﹣6+4|=2,因此有|﹣6|+|4|>|﹣6+4|,③|﹣3|+|﹣4|=7,而|﹣3﹣4|=7,因此有|﹣3|+|﹣4|=|﹣3﹣4|,④|0|+|﹣7|=7,而|0﹣7|=7,因此有|0|+|﹣7|=|0﹣7|,故答案为:>,>,=,=;(2)根据(1)中所反映的数量关系可得,|a|+|b|≥|a+b|,故答案为:≥;(3)∵|m|+|n|=16,|m+n|=2,∴m、n异号,①当m>0时,则n<0,有m﹣n=16,m+n=2或m+n=﹣2,解得,m=9或m=7,②当m<0时,则n>0,有﹣m+n=16,m+n=2或m+n=﹣2,解得,m=﹣7或m=﹣9,所以m的值为±9,±7,故答案为:±9和±7;(4)∵|a|+|b|+|c|>|a+b+c|,∴a、b、c中“一正两负”“两正一负”“一正一负和零”.。
江苏省常州市溧阳市2024-2025学年九年级上学期11月期中语文试题(含答案)

溧阳市2024~2025学年度第一学期期中质量调研测试九年级语文试题2024.11注意事项:1.全卷试题8页,答题卡4页,共12页,22题。
满分100分,考试时间120分钟。
2.用蓝色或黑色钢笔、圆珠笔将答案直接写在答题卡相应的位置上,写在试卷上无效。
3.答卷前将答题卡上密封线内的项目填写清楚。
4.考试结束后,请将答题卡交回。
一、积累运用(共20分)1.下列加点字的读音有错的一项是(2分) ( )A.谷穗(suì) 折腰(zhé) 篝火(ɡōu)成吉思汗(hán)B.娉婷(pǐnɡ) 冠冕(miǎn) 摇曳(yè) 强聒不舍 (ɡuō)C.承蜩(tiáo) 折本(shé)恣睢(suī)亵渎职业(xiè)D.阔绰(chuò) 嘟嚷(rɑnɡ) 煞白(shà) 五行缺土(hánɡ)1.学校开展“读写时光”主题活动,阳阳写了一段读书心得,请帮他完成下列任务。
(6分)中华民族经历了无数难以想象的惊涛害浪,锤炼出自强不息的民族品格。
尤其是近代以来,在民族危亡的严峻时刻,铁骨铮铮的中国人前仆(pú)后继,浴血奋战,书写了一部可歌可泣的英雄史诗;在国民党白色恐怖肆虐之际,中国共产党人以坚真不屈的气节,诠释了对共产主义的信仰;当美帝国主义在中朝边境武力挑衅之时,中国人民志愿军唱着振聋发聩的战歌,越过关山险隘(yì),打破了美国侵略者不可战胜的神话。
如今,①中华民族伟大复兴的进程不可阻挡,但道阻且长,②更应该依靠全体人民自强不息、团结一致的磅礴力量,③我们正处在一个愈进愈难而又非进不可的时候,④以“敢教日月换新天”的气魄披荆斩棘,走向胜利。
我们应该明白:_____________________________________________________________________ ____________。
江苏省常州市溧阳市2024-2025学年九年级上学期11月期中数学试题(含答案)

溧阳市2024~2025学年度第一学期期中质量调研测试九年级数学试题 2024.11一、选择题(本题共8小题,每小题2分,共16分每小题给出的四个选项中只有一个选项正确)1.以下方程中,一定是关于x 的一元二次方程的是A. x +1=0B.x 2-x =1C. x 3-x -1=0D. x 2-+1=02.方程x 2-6x =0的解是A. x 1=x 2=6B. x 1=x 2=60C. x 1=6,x 2 =0D.x 1=-6,x 2 =03.一元二次方程x 2+x -3=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.在△ABC 中,∠A=50°,若点O 为ABC 的外心,则∠BOC 等于A. 40°B.50°C.100°D.110°5.下列说法中,正确的是A.三点确定一个圆B.三角形有且只有一个外接圆C.四边形都有一个外接圆D.圆有且只有一个内接三角形6.如图,已知 PA 切⊙O 于点 A ,⊙O 的半径为3,OP=5,则切线长 PA 为A.B.8C. 4D.2 第6题图7.若关于x 的一元二次方程ax 2-bx =c (ac ≠0)的一个实数根为 2024,则关于x 的一元二次方程cx 2+bx =a (ac ≠0)一定有实数根A.-2024B.2024C.D.8.如图,正方形 ABCD 和CEFG 的边长分别是a 、b (b >2a ),将正方形ABCD 绕点C 旋转,在旋转过程中,△AEG 的面积S 的取值范围是A. B. C.D. 第8题图二、填空题(本大题共10小题。
每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.将一元二次方程2x 2=5x -化成一般形式为___________________________________。
21x13420241-2024122bS a ≤≤222121b S a ≤≤ab b S ab b +≤≤-222121ab b S ab b +≤≤-2210.若关于x 的一元二次方程x 2+nx -1=0的一个根为-1,则另一个根为___________________。
2020-2021学年江苏省常州市溧阳市八年级(上)期中数学试卷 解析版

2020-2021学年江苏省常州市溧阳市八年级(上)期中数学试卷一、选择题:(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.以下四个汽车车标中,不是轴对称图形的是()A.B.C.D.2.如图,已知AC=BD,添加下列一个条件后,仍无法判定△ABC≌△BAD的是()A.CB=DA B.∠BAC=∠DBA C.∠ABC=∠BAD D.∠C=∠D=90°3.下列四组线段中,能构成直角三角形的是()A.2cm、4cm、5cm B.15cm、20cm、25cmC.0.2cm、0.3cm、0.4cm D.1cm、2cm、2.5cm4.若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形5.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=66.下列命题中真命题的是()A.等腰三角形底边上的高是该等腰三角形的对称轴B.三角形各边的垂直平分线交于一点,这点到三角形的三个顶点的距离相等C.三角形的任何一个外角都不会小于90°D.等腰直角三角形的三条角平分线交于一点,这点刚好是这个三角形的直角顶点7.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2D.x2+62=(10﹣x)28.如图,已知△ABC中AB=AC,∠BAC=90°,且它的顶点D是BC的中点,DE⊥DF,DE交AB于点E、DF交AC于点F,连接EF.给出以下四个结论:①AE=CF;②S四边形AEDF=S△ABC;③△EDF是等腰直角三角形;④BE2+CF2=EF2,当∠EDF在△ABC内绕顶点D旋转时,点E不与A、B重合.上述结论中始终正确的有()A.1个B.2个C.3个D.4个二、填空题:(本大题共有10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)9.等腰三角形的底角度数为80°,则是它的顶角的度数为.10.若直角三角形两直角边长分别为12和16,则斜边长为.11.如图,△DEF是由△ABC沿直线BC向右平移得到,若BC=6,当点E刚好移动到BC 的中点时,则CF=.12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.13.如图,点E是正方形ABCD中的一点,连接EB、EC、EA、ED,若△EBC为等边三角形时,则∠EAD=.14.如图,AB=AC,BD=BC,若∠A的外角为140°,则∠DBC等于.15.甲、乙两人同时从同一个地点出发,甲往北偏东30°方向走了3.6公里,乙往北偏西60°方向走了4.8公里,这时甲、乙两人相距公里.16.如图,在△ABC中,AB=3,AC=5,AD是中线,点E在AD的延长线上,若AD=DE =2,则S△ABC=.17.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN 的长是.18.如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为.三、解答题:(本大题共8小题,共64分,请在答题卡指定区城内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(9分)如图,在4×4正方形网格中,阴影部分是由2个小正方形组成一个图形,请你分别在下图方格内添涂2个小正方形,使这4个小正方形组成的图形满足:图1有且只有一条对称轴;图2有且只有两条对称轴;图3有且只有四条对称轴.20.(8分)如图,每个小正方形的边长为1.(1)求图中格点三角形ABC的面积;(2)判断△ABC的形状,并证明你的结论.21.(8分)已知:如图,点A、B、C、D在一条直线上,AE∥DF,AE=DF,AB=CD.(1)求证:∠E=∠F;(2)若∠D=28°,∠ECA=100°,求∠F的度数.22.(8分)如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:(1)AC=BD;(2)CO=DO.23.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.(1)尺规作图:①作∠ACB的角平分线CP;②作AB的垂直平分线MN,分别交AC、AB.CP于点E,F、H;③连接AH、BH.(2)若∠AHB=90°,求EH的长.24.(8分)匀股定理被带为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.25.(6分)如图,△ABC是等边三角形,点C关于AB的对称的点为E,点P是直线EB上的一个动点,连接AP,作∠APQ=60°,交射线BC于点Q.(1)如图1,连接AQ,求证:△APQ为等边三角形;(2)如图2,当点P在线段EB延长线上时,请你补全图形,并写出线段BQ、AB、BP 之间的数量关系(无需证明).26.(9分)如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BG平分∠ABC,交AD于点E,交AC于点G(1)求证:AE=AG;(2)如图2,过点E作EF∥BC,交AC于点F,若∠C=30°,求证:AG=GF=FC.2020-2021学年江苏省常州市溧阳市八年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题共有8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一项是正确的)1.以下四个汽车车标中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.2.如图,已知AC=BD,添加下列一个条件后,仍无法判定△ABC≌△BAD的是()A.CB=DA B.∠BAC=∠DBA C.∠ABC=∠BAD D.∠C=∠D=90°【分析】根据全等三角形的判定方法即可一一判断.【解答】解:A、根据SSS即可判断三角形全等,故本选项不符合题意;B、根据SAS即可判断三角形全等,故本选项不符合题意;C、SSA无法判断三角形全等,故本选项符合题意;D、根据HL即可判断三角形全等,故本选项不符合题意;故选:C.3.下列四组线段中,能构成直角三角形的是()A.2cm、4cm、5cm B.15cm、20cm、25cmC.0.2cm、0.3cm、0.4cm D.1cm、2cm、2.5cm【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、∵22+42≠52,∴此组数据不能作为直角三角形的三边长,故本选项不符合题意;B、∵152+202=252,∴此组数据能作为直角三角形的三边长,故本选项符合题意;C、∵0.22+0.32≠0.42,∴此组数据不能作为直角三角形的三边长,故本选项不符合题意;D、∵12+22≠2.52,∴此组数据不能作为直角三角形的三边长,故本选项不符合题意;故选:B.4.若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【分析】设三角形的三角的度数是x°,2x°,3x°,得出方程x+2x+3x=180,求出方程的解即可.【解答】解:设三角形的三角的度数是x°,2x°,3x°,则x+2x+3x=180,解得x=30,∴3x=90,即三角形是直角三角形,故选:A.5.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6【分析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.【解答】解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选:C.6.下列命题中真命题的是()A.等腰三角形底边上的高是该等腰三角形的对称轴B.三角形各边的垂直平分线交于一点,这点到三角形的三个顶点的距离相等C.三角形的任何一个外角都不会小于90°D.等腰直角三角形的三条角平分线交于一点,这点刚好是这个三角形的直角顶点【分析】根据各个小题中的说法可以判断是否真确,从而可以解答本题.【解答】解:A、等腰三角形底边上的高所在的直线是该等腰三角形的对称轴,原命题是假命题;B、三角形各边的垂直平分线交于一点,这点到三角形的三个顶点的距离相等,是真命题;C、钝角三角形的一个外角会小于90°,原命题是假命题;D、等腰直角三角形的三条角平分线交于一点,这点不是这个三角形的直角顶点,原命题是假命题;故选:B.7.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为()A.x2﹣6=(10﹣x)2B.x2﹣62=(10﹣x)2C.x2+6=(10﹣x)2D.x2+62=(10﹣x)2【分析】根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.【解答】解:如图,设折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10﹣x)2.故选:D.8.如图,已知△ABC中AB=AC,∠BAC=90°,且它的顶点D是BC的中点,DE⊥DF,DE交AB于点E、DF交AC于点F,连接EF.给出以下四个结论:①AE=CF;②S四边形AEDF=S△ABC;③△EDF是等腰直角三角形;④BE2+CF2=EF2,当∠EDF在△ABC内绕顶点D旋转时,点E不与A、B重合.上述结论中始终正确的有()A.1个B.2个C.3个D.4个【分析】根据图形旋转的性质,等腰直角三角形的性质及全等三角形的判定定理,得出△ADE≌△CDF,再结合全等三角形的性质对题中的结论逐一判断.【解答】解:如图,连接AD,∵AB=AC,∠BAC=90°,点D是BC的中点,∴AD=BD=CD,∠DAE=∠DCF=45°,AD⊥BC,∴∠EDF=∠ADC=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,DE=DF,S△AED=S△CFD,故①正确,∴S四边形AEDF=S△ADC=S△ABC,故②正确,∵DE=DF,∠EDF=90°,∴△EDF是等腰直角三角形,故③正确,∵EF2=AE2+AF2,∴EF2=CF2+AF2,故④正确,故选:D.二、填空题:(本大题共有10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应的位置上)9.等腰三角形的底角度数为80°,则是它的顶角的度数为200.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其顶角的度数.【解答】解:∵等腰三角形的一个底角为80°,∴顶角=180°﹣80°×2=20°.故答案为:20°.10.若直角三角形两直角边长分别为12和16,则斜边长为20.【分析】根据勾股定理即可求出答案.【解答】解:直角三角形的两直角边长分别为12、16,∴直角三角形的斜边长为=20,故答案为:20.11.如图,△DEF是由△ABC沿直线BC向右平移得到,若BC=6,当点E刚好移动到BC 的中点时,则CF=3.【分析】根据平移性质得出BC=EF,BE=CF,进而解答即可.【解答】解:由平移的性质可得:BC=EF,BE=CF,∵BC=6,点E刚好移动到BC的中点,∴BE=EC=CF=3,故答案为:3.12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=18.【分析】根据“全等三角形对应边相等”的性质可直接求得结果.【解答】解:如图,∵△ABC≌△DEF,∴BC=EF=18,即x=18,故答案为:18.13.如图,点E是正方形ABCD中的一点,连接EB、EC、EA、ED,若△EBC为等边三角形时,则∠EAD=15°.【分析】根据正方形的性质和等边三角形的性质证明∠DAE=∠DEA=∠CBE=∠CEB =75°即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=DC,∠ADC=∠BCD=∠DAB=∠ABC=90°,∵△EBC是等边三角形,∴AB=BE=DC=EC,∠EBC=∠ECB=60°,∴∠ABE=∠DCE=30°,∵AB=BE=CE=CD,∴∠BAE=∠BEA=∠CDE=∠CED=75°,∴∠EAD=90°﹣75°=15°.故答案为:15°.14.如图,AB=AC,BD=BC,若∠A的外角为140°,则∠DBC等于40°.【分析】根据AB=AC,则∠C=∠ABC,再由BD=BC,可得出∠C=∠CBD,由∠A 的外角为140°,可求出∠C,再求出∠DBC即可.【解答】解:∵AB=AC,∴∠C=∠ABC,∵BD=BC,∴∠C=∠CBD,∵∠A的外角为140°,∴∠A=40°,∴∠C=∠ABC=∠CBD=70°,∴∠CBD=40°,故答案为40°.15.甲、乙两人同时从同一个地点出发,甲往北偏东30°方向走了3.6公里,乙往北偏西60°方向走了4.8公里,这时甲、乙两人相距6公里.【分析】根据甲、乙两人所走的方向,可知甲、乙两人的路线可构成直角三角形,两人的间距为直角三角形的斜边,根据勾股定理可求解出.【解答】解:设甲往北偏东30°的方向的距离为AB,乙往往北偏西60°的方向的距离为AC.根据勾股定理可得:AB2+AC2=BC2,所以BC=(公里),故答案为:6.16.如图,在△ABC中,AB=3,AC=5,AD是中线,点E在AD的延长线上,若AD=DE =2,则S△ABC=6.【分析】先证得△ABD≌△ECD(SAS),得出AB=CE,再利用勾股定理逆定理证得△ACE是直角三角形,求得△ACE的面积,即可得出△ABC的面积.【解答】解:∵AD是边BC上的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴△ABD的面积=△ECD的面积,AB=CE=3,∴△ABC的面积=△ACE的面积,∵AE=AD+DE=4,AC=5,CE=3,∴AE2+CE2=AC2,∴△ACE是直角三角形,∴△ABC的面积=△ACE的面积=CE×AE=×3×4=6,故答案为:6.17.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN 的长是.【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN==.18.如图,在直线AP上方有一个正方形ABCD,∠P AD=30°,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连结ED,则∠ADE的度数为15°或45°.【分析】分点E与正方形ABCD的直线AP的同侧、点E与正方形ABCD的直线AP的两侧两种情况,根据正方形的性质、等腰三角形的性质解答.【解答】解:∵四边形ABCD是正方形,∴AD=AE,∠DAE=90°,∴∠BAM=180°﹣90°﹣30°=60°,AD=AB,当点E与正方形ABCD的直线AP的同侧时,由题意得,点E与点B重合,∴∠ADE=45°,当点E与正方形ABCD的直线AP的两侧时,由题意得,E′A=E′M,∴△AE′M为等边三角形,∴∠E′AM=60°,∴∠DAE′=360°﹣120°﹣90°=150°,∵AD=AE′,∴∠ADE′=15°,故答案为:15°或45°.三、解答题:(本大题共8小题,共64分,请在答题卡指定区城内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(9分)如图,在4×4正方形网格中,阴影部分是由2个小正方形组成一个图形,请你分别在下图方格内添涂2个小正方形,使这4个小正方形组成的图形满足:图1有且只有一条对称轴;图2有且只有两条对称轴;图3有且只有四条对称轴.【分析】根据轴对称的性质画出图形即可.【解答】解:如图所示:20.(8分)如图,每个小正方形的边长为1.(1)求图中格点三角形ABC的面积;(2)判断△ABC的形状,并证明你的结论.【分析】(1)利用矩形的面积减去三个顶点上三角形的面积即可;(2)先根据勾股定理求出AC2,BC2,AB2,再利用勾股定理的逆定理判断出△ABC的形状即可.【解答】解:(1)如图.S△ABC=S矩形ADEF﹣S△ABD﹣S△EBC﹣S△AFC=6×5﹣×5×5﹣×3×1﹣×6×2=30﹣12.5﹣1.5﹣6=10;(2)△ABC是直角三角形.理由如下:∵AC2=62+22=40,BC2=32+12=10,AB2=52+52=50,∴AC2+BC2=AB2,∴∠ACB=90°,即△ABC是直角三角形.21.(8分)已知:如图,点A、B、C、D在一条直线上,AE∥DF,AE=DF,AB=CD.(1)求证:∠E=∠F;(2)若∠D=28°,∠ECA=100°,求∠F的度数.【分析】(1)证明△EAC≌△FDB(SAS),即可得出结论;(2)由全等三角形的性质和三角形内角和定理即可得出答案.【解答】(1)证明:∵AE∥DF,∴∠A=∠D,∵AB=CD,∴AB+BC=CD+BC,∴AC=DB,在△EAC和△FDB中,,∴△EAC≌△FDB(SAS),∴∠E=∠F;(2)解:由(1)得:△EAC≌△FDB,∴∠ECA=∠FBD=100°,∴∠F=180°﹣∠D﹣∠FBD=180°﹣28°﹣100°=52°.22.(8分)如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:(1)AC=BD;(2)CO=DO.【分析】(1)由HL证明Rt△ACB≌Rt△BDA即可;(2)由全等三角形的性质得∠CBA=∠DAB,则OA=OB,进而得出结论.【解答】证明:(1)∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,在Rt△ACB和Rt△BDA中,,∴Rt△ACB≌Rt△BDA(HL),∴AC=BD;(2)由(1)得:Rt△ACB≌Rt△BDA,∴∠CBA=∠DAB,∴OA=OB,又∵AD=BC,∴CO=DO.23.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6.(1)尺规作图:①作∠ACB的角平分线CP;②作AB的垂直平分线MN,分别交AC、AB.CP于点E,F、H;③连接AH、BH.(2)若∠AHB=90°,求EH的长.【分析】(1)利用尺规作出∠ACB的角平分线CP,线段AB的垂直平分线MN即可.(2)解直角三角形分别求出EF,FH即可.【解答】解:(1)如图,射线CP,直线MN即为所求.(2)由作图可知,AF=BF,MN⊥AB,∴HA=HB,∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵∠AHB=90°AF,FB,∴FH=AB=5,连接EB,∵EF垂直平分线段AB,∴AE=EB,设AE=EB=x,在Rt△ECB中,则有x2=(8﹣x)2+62,∴x=,∴AE=,∴EF===,∴EH=EF+FH=+5=.24.(8分)匀股定理被带为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.【分析】连接AC,根据四边形ABCD面积的两种不同表示形式,结合全等三角形的性质即可求解.【解答】解:连接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四边形ABCD=S△ABD+S△BDC=BD•AE+BD•CD=AE•AE+AE•BE=BE2+BD•BE,又∵S四边形ABCD=S△ABC+S△ADC=AB•BC+CD•DE=AB•AB+BE•DE=AB2+BE•DE,∴BE2+AE•BE=AB2+BE•DE,∴AB2=BE2+BD•BE﹣BE•DE,∴AB2=BE2+(BD﹣DE)•BE,即AB2=BE2+AE2.25.(6分)如图,△ABC是等边三角形,点C关于AB的对称的点为E,点P是直线EB上的一个动点,连接AP,作∠APQ=60°,交射线BC于点Q.(1)如图1,连接AQ,求证:△APQ为等边三角形;(2)如图2,当点P在线段EB延长线上时,请你补全图形,并写出线段BQ、AB、BP 之间的数量关系(无需证明).【分析】(1)如图1中,作∠BPF=60°交AB于点F,连接AQ.证明△PBQ≌△PF A (ASA),可得结论.(2)结论:BQ=BP+AB.如图2中,在BD上取一点F,使得BF=PB,连接AQ.证明△BP A≌△FPQ(SAS),推出AB=QF,可得结论.【解答】(1)证明:如图1中,作∠BPF=60°交AB于点F,连接AQ.∵△ABC是等边三角形,∴∠ABC=60°,∵点E与点C关于AB对称,∴∠EBA=∠CBA=60°=∠BPF,∴∠PFB=60°.∴△PBF是等边三角形,∴PB=PF,AFP=120°=∠PBQ.∵∠BPQ+∠QPF=60°,∠APF+∠QPF=60°,∴∠BPQ=∠APF,在△PBQ和△PF A中,,∴△PBQ≌△PF A(ASA),∴PQ=P A,∵∠APQ=60°,∴△APQ是等边三角形.(2)解:补全图形,如图2所示:②解:结论:BQ=BP+AB.理由:如图3中,在BD上取一点F,使得BF=PB,连接AQ.∵∠FBP=60°,BF=BP,∴△FBP是等边三角形,∴∠BPF=∠APQ=60°,∴∠APB=∠FPQ,∵PB=PF,P A=PQ,∴△BP A≌△FPQ(SAS),∴AB=QF,∴BQ=BF+FQ=BP+AB.26.(9分)如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,BG平分∠ABC,交AD于点E,交AC于点G(1)求证:AE=AG;(2)如图2,过点E作EF∥BC,交AC于点F,若∠C=30°,求证:AG=GF=FC.【分析】(1)先由直角三角形的性质得∠AGB+∠ABG=90°,∠BED+∠DBE=90°,再由角平分线定义得∠ABG=∠DBE,然后证出∠AGB=∠AEG,即可得出结论;(2)先证BG=CG,AE=BE,再证△AEG是等边三角形,得AG=GE=AE=BE,然后由平行线的性质得∠GEF=∠CBG=30°,∠GFE=∠C=30°,则∠GEF=∠GFE,得GE=GF,进而得出结论.【解答】证明:(1)∵∠BAC=90°,∴∠AGB+∠ABG=90°,∵AD⊥BC,∴∠BED+∠DBE=90°,又∵BG平分∠ABC,∴∠ABG=∠DBE,∴∠AGB=∠BED,∵∠BED=∠AEG,∴∠AGB=∠AEG,∴AE=AG;(2)∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵AD⊥BC,∴∠BAD=30°,∵BG平分∠ABC,∴∠ABG=∠CBG=30°,∴∠CBG=∠C,∠BAD=∠ABG,∠AGB=90°﹣30°=60°,∴BG=CG,AE=BE,由(1)得:AE=AG,∴△AEG是等边三角形,∴AG=GE=AE=BE,又∵EF∥BC,∴∠GEF=∠CBG=30°,∠GFE=∠C=30°,∴∠GEF=∠GFE,∴GE=GF,∴GE=BE=FC=GF,∴AG=GF=FC.。
2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)

2020-2021学年北师大新版九年级上册数学期末复习试卷一.选择题(共10小题,满分20分,每小题2分)1.方程x2﹣6x+5=0较小的根为p,方程5x2﹣4x﹣1=0较大的根为q,则p+q等于()A.3B.2C.1D.22.如图所示几何体的左视图正确的是()A.B.C.D.3.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃4.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2 6.若,则的值为()A.1B.C.D.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB =1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.88.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD =2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是()A.①③④B.②③④C.①②③D.①②④9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1610.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.小明想知道学校旗杆的高,他在某一时刻测得直立的标杆高1米时影长0.9米,此时他测旗杆影长时,因为旗杆靠近建筑物,影子不全落在地面上,有一部分影子在墙上,他测得落在地面上的影长BC为2.7米,又测得墙上影高CD为1.2米,旗杆AB的高度为米.12.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是.13.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.14.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.15.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为.16.如图,在△ABC中,AB=AC=9,过点B、C分别作AB、BC的垂线相交于点D,延长AC、BD相交于点E,若tan∠BDC=2,则DE=.三.解答题(共3小题,满分22分)17.计算:2cos45°tan30°cos30°+sin260°.18.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是.(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.19.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE ∥BD,BE与CE交于点E.(1)求证:四边形OBEC是矩形;(2)当∠ABD=60°,AD=2时,求BE的长.四.解答题(共1小题,满分8分,每小题8分)20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五.解答题(共1小题,满分10分,每小题10分)21.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?六.解答题(共3小题,满分34分)22.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式及点B的坐标;(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.23.【方法提炼】解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.【问题情境】如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.小明在分析解题思路时想到了两种平移法:方法1:平移线段FG使点F与点B重合,构造全等三角形;方法2:平移线段BC使点B与点F重合,构造全等三角形;【尝试应用】(1)请按照小明的思路,选择其中一种方法进行证明;(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连结DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连结AC交DE于点H,求的值.24.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:方程x2﹣6x+5=0较小的根为p=1,方程5x2﹣4x﹣1=0较大的根为q=1,则p+q=2,故选:B.2.解:从几何体的左面看所得到的图形是:故选:A.3.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是==0.5,符合这一结果,故此选项正确;C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;故选:B.4.解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.解:∵,∴=2=2﹣=;故选:B.7.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.解:∵中线AD,BE相交于点F,∴BD=CD,AE=CE,BF=2EF,AF=2FD,②正确;∵EG∥BC,∴△BDF∽△EGF,∴==2,∴BD=2GE,①正确;∵AF=2FD,∴△ABF的面积=2△BDF的面积=△ABD的面积=△ABC的面积,△BDF的面积=△ABC的面积,∵EG∥BC,AE=CE,∴△AGE∽△ADC,=,∴=()2=,∴△AGE的面积=△ADC的面积△ABC的面积,∴△AGE与△BDF面积不相等,③不正确;∵BD=CD,AE=CE,∴△ABD的面积=△ADC的面积=△ABC的面积=△ABE的面积=△BCE的面积,∴△ABD的面积=△BCE的面积,∴△ABD的面积﹣△BDF的面积=△BCE的面积﹣△BDF的面积,即△ABF与四边形DCEF面积相等,④正确;故选:D.9.解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.10.解:∵BF∥AD∴△BNF∽△DNA∴,而BF=BC=1,AF=,∴AN=,又∵AE=BF,∠EAD=∠FBA,AD=AB,∴△DAE≌△ABF(SAS),∴∠AED=∠BFA∴△AME∽△ABF∴,即:,∴AM=,∴MN=AN﹣AM=.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:过点D作DE⊥AB于点E,则BE=CD=1.2m,∵他在某一时刻测得直立的标杆高1米时影长0.9米,∴=,即=,解得:AE=3m,∴AB=AE+BE=3+1.2=4.2(m).故答案为:4.2.12.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).13.解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.14.解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.15.解:∵E、F分别是AB、AD的中点,∴EF=BD,∵EF=5,∴BD=10,∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=10,∴菱形ABCD的周长=4×10=40,故答案为:40.16.解:作CF⊥BD于F,作AG⊥BC于G,如图所示:∵AB=AC=9,AG⊥BC,∴BG=CG,∵BE⊥AB,CD⊥BC,∴∠ABG+∠CBD=90°,∠CBD+∠BDC=90°,∴∠ABG=∠BDC,∴tan∠ABG==tan∠BDC==2,∴AG=2BG,BC=2CD,设BG=x,则AG=2x,在Rt△ABG中,由勾股定理得:x2+(2x)2=92,解得:x=,∴BC=2BG=,CD=BC=,∴BD===9,∵CF⊥BD,∴△BCD的面积=BD×CF=BC×CD,∴CF==,∴DF===,∵AB⊥BD,CF⊥BD,∴CF∥AB,∴△CFE∽△ABE,∴=,即=,解得:DE=3;故答案为:3.三.解答题(共3小题,满分22分)17.解:原式=2×﹣××+()2=﹣+=.18.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,∴小亮猜的结果是“正数”,那么小亮获胜的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中两次的结果都是“正数”的有4种,∴小亮获胜的概率是.19.(1)证明:∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC是矩形;(2)解:∵四边形ABCD为菱形,∴AD=AB,OB=OD,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AD=AB=2,∴OD=OB=,在Rt△AOD中,AO===3∴OC=OA=3,∵四边形OBEC是矩形,∴BE=OC=3.四.解答题(共1小题,满分8分,每小题8分)20.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40,∵AB=57,∴BE=17∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17,∴BC=EF=30﹣17=13.答:教学楼BC高约13米.五.解答题(共1小题,满分10分,每小题10分)21.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.六.解答题(共3小题,满分34分)22.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=,解得,,,∴B(2,1);(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),∵A(1,2),∴AC==2,过A作AD⊥x轴于D,∴OD=1,CD=AD=2,当AP=AC时,PD=CD=2,∴P(﹣1,0),当AC=CP=2时,△ACP是等腰三角形,∴OP=3﹣2或OP=3+2∴P(3﹣2,0)或(3+2,0),当AP=CP时,△ACP是等腰三角形,此时点P与D重合,∴P(1,0),综上所述,所有点P的坐标为(﹣1,0)或(3﹣2,0)或(3+2,0)或(1,0).23.解:(1)①平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△CBH中,,∴△ABE≌△CBH(ASA),∴AE=BH,∴AE=FG;②平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,根据勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴∠DAC=∠PAC=∠DMC=45°,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.24.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).。
(含答案)江苏省常州市武进区2020-2021学年九年级上学期期中考试数学试题

江苏省常州市武进区2020~2021学年度九年级上学期期中考试数学试题一、选择题(每小题2分,共16分)1.下列各图形中,是轴对称图形的是 --------------------------------------------------------- 【 】A .B .C .D .2.下列将一元二次方程5)3()2(=-+x x 化成一般形式正确的是 ---------------------- 【 】 A .2110x x +-= B .2110x x --=C .260x x --=D .260x x +-=3.下列一元二次方程有两个异号的实数根的是 --------------------------------------------- 【 】 A .2310x x --= B .212202x x -+=C .2440x x -+=D .2102x x -+-= 4.已知⊙O 的半径为6cm ,OP =7cm ,则点P 与⊙O 的位置关系是 ---------------- 【 】A .点P 在圆内B .点P 在圆上C .点P 在圆外D .无法确定5.正九边形的每个内角的度数为 ---------------------------------------------------------------- 【 】A .40B .80C .120D .1406.某电动自行车厂四月份的产量为1000辆,由于市场需求量不断增大,六月份的产量提高到1210辆,则该厂五、六月份的月平均增长率为 ----------------------------------------- 【 】A .10%B .11%C .12.1%D .21%7.已知关于x 的方程290x kx -+=可以配方成2()0x m -=的形式,则k 的值为 - 【 】 A .3B .6C .6-D .6±8. 如图,60MPN ∠=︒,点O 是∠MPN 的角平分线上的一点,半径为4的⊙O 经过点P ,将⊙O 向左平移,当⊙O 与射线PM 相切时,⊙O 平移的距离是 ------------------------------------------------------ 【 】A .2B .334C .323D .32 2020.11OPNM二、填空题(每小题2分,共20分) 9.一元二次方程22=x 的根是 .10.已知1-=x 是方程032=-+mx x 的一个根,则m 的值为 . 11.圆锥的高为3cm ,底面半径为2cm ,则圆锥的侧面积是 2cm . 12.当x= 时,代数式(1)(5)x x +-与31)(1)x x -+(的值相等. 13.四边形ABCD 是⊙O 的内接四边形,∠A ∶∠C =4∶1,则∠A = °. 14.在Rt △ABC 中,∠C =90°,AC =5,BC =3,则其外接圆的直径为 .15.一个两位数等于它的两个数字的积的3倍,十位上的数字比个位上的数字小2,设个位上的数字为x ,根据题意,可以列出方程 .16.如图,AB 是⊙O 的直径,点C 、D 是AB 两侧⊙O 上的点,若∠CAB =34°,则∠ADC = °.16题图 17题图 18题图17.如图,△ABC 中,AB =AC ,点M 是AB 上一点,AM =3,以AM 为半径的⊙A 与BC 相切于点D ,交AC 于点N ,劣弧MN 长为2π,则BC 的长为 .18.如图,⊙O ,以⊙O 的内接正八边形的一边向⊙O 内作正方形ABCD ,则正方形ABCD 的面积为 . 三、解下列方程(每题4分,共16分) 19.⑴ 05)2(2=--x ⑵ 0652=+-x x⑶ x x x -=-+3)3()1( ⑷ 09)1(422=--x xB四、尺规作图题(共6分)20.如图,点A 是⊙O 上一点.请利用直尺和圆规完成下列作图.(不写作法,保留作图痕迹)⑴ 画出⊙O 的内接正△ABC .⑵ 在⊙O 上画出M 、N 两点,使得∠MAN =30°.(画一种即可)五、解答题(共42分,其中第21、22、23题各6分,第24、25、26题8分) 21.(6分)已知关于x 的一元二次方程2210(0)nx x n -+=≠有实数根.⑴ 求n 的取值范围;⑵ 当n 取最大值时,求方程)0(0122≠=+-n x nx 的根.22.(6分)如图,⊙O 的半径为2,△ABC 是⊙O 的内接三角形,22=AB .⑴ 求∠C 的度数;⑵ 求图中阴影部分的面积.23.(6分)如图,矩形ABCD 中,AB =2cm ,BC =3cm ,点E 从点B 沿边BC 以2cm /s 的速度向点C 移动,同时点F 从点C 沿边CD 以1cm /s 的速度向点D 移动,当E 、F 两点中有一点到达终点时,则另一点也停止运动.当△AEF 是以AF 为底的等腰三角形时,求点E 运动的时间.24.(8分)某商店进了一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,使库存减少最快,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,当每件衬衫降价多少元时,商场平均每天盈利达到1200元?A BCDEF25.(8分)国庆假期,小明做数学题时遇到了如下问题:如图1,四边形ABCD 是⊙O 的内接四边形,BC 是⊙O 的直径,直线l 经过点A ,∠ABD =∠DAE =30°.试说明直线l 与⊙O 相切.小明添加了适当的辅助线后,得到了图2的图形,并利用它解决了问题.⑴ 请你根据小明的思考,写出解决这一问题的过程; ⑵ 图2中,若AD =7,AB =4,求DC 的长.ElElF26. (8分)如图,在平面直角坐标系xOy 中,点A (-3,0),B (1,1),C (0,3).过点B 作BD⊥x 轴,垂足为点D .连接CD .⑴ 若点M 是y 轴上一点,当AM ⊥CD 时,点M 的坐标为 ; ⑵ 若点P 是△ABC 的外心,求点P 的坐标;⑶ 在x 轴上是否存在点Q ,使得∠BQD =∠ACB ,若存在,直接写出....点Q 的坐标;若不存在,说明理由.yxABC DOy xA BCDO备用图九年级数学参考答案及评分意见一、选择题(每小题2分,共16分)二、填空题(每小题2分,共20分)9.2±=x10.-211.π13212.-1或-2 13.144° 14.34 15.x x x x +-=-)2(10)2(3 16.5617.3618.224-三、解下列方程(每题4分,共16分) 19.⑴ 05)2(2=--x52±=-x---------------------------- 2分 52±=x------------------------------ 4分 ⑵ 0652=+-x x 0)3()2(=--x x --------------------------- 2分3,221==x x --------------------------------- 4分⑶ x x x -=-+3)3)(1(0)2)(3(=+-x x ---------------------- 2分2321-==x x , ----------------------- 4分⑷ 09)1(422=--x x 0]3)1(2][3)1(2[=--+-x x x x ---------- 2分2,5221-==x x ----------------------------- 4分四、尺规作图题(共6分)20.⑴ 如图,△ABC 为求作的图形 ----------------------------------------------------------------------- 4分⑵ 作等边△MON ,则∠MAN =30°(作法不唯一,画对即可) -------------------------- 2分五、解答题(共42分,其中第21、22、23题各6分,第24、25、26题8分)21.⑴ n n ac b 44142422-=⋅⋅-=- -------------------------------------------------------------------- 1分由“关于x 的方程有实数根”得:b 2-4ac ≥0,即:4-4n ≥0 ------------------------- 2分解得:1≤n --------------------------------------------------------------------------------------------- 3分∴ n 的取值范围是01≠≤n n 且 -------------------------------------------------------------------- 4分⑵ 由01≠≤n n 且得:n 的最大值为1 ------------------------------------------------------------- 5分把n =1代入原方程得:化简得:0122=+-x x 解得:121==x x ------------------ 6分22.⑴ 连接OA ,OB .△OAB 中,OA =OB =2,AB =22∴ 8222222=+=+OB OA ,8)22(22==AB∴ 222AB OB OA =+----------------------------------------------------- 2分 ∴ ∠AOB =90°---------------------------------------------------------- 3分∴ ︒=∠=∠4521AOB C -------------------------------------------------4分 ⑵ ππ=⨯⨯=436090OAB S 扇形,22221=⨯⨯=∆OAB S ------------------ 5分∴ 2-=π阴影S----------------------------------------------------------- 6分 23.解:设点E 运动的时间是x 秒.根据题意可得:2222)23()2(2x x x +-=+----------------------------------------------------3分解这个方程得:31631621+=-=x x , --------------------------------------------------- 4分)(5.123s =÷, )(212s =÷ ∴ 两点运动了1.5s 后停止运动. 由6315<<得:2313160<<-<,2311316>>+ ---------------------------------5分答:当△AEF 是以AF 为底的等腰三角形时,点E 运动的时间是)316(-秒 ---- 6分24.解:当每件衬衫应降价x 元时,商场平均每天盈利达到1200元.根据题意得:(40-x )(20+2x )=1200 -------------------------------------------------- 3分解得:x 1=10,x 2=20 ---------------------------------------------------------------------------- 5分当10=x 时,平均每天售出: 20+2×10=40 ---------------------------------------------- 6分当20=x 时,平均每天售出: 20+2×20=60 ---------------------------------------------- 6分要使库存减少最快,则x =20 ------------------------------------------------------------------ 7分答:当每件衬衫应降价20元时,商场平均每天盈利达到1200元. ----------------- 8分25.⑴ ∵ AE 是⊙O 的直径∴ ∠ADE =90°∴ ∠AED +∠EAD =90° --------------------------------------------- 1分 ∵ ∠ABD =∠AED ,∠ABD =∠DAE ---------------------------- 2分 ∴ ∠DEA =∠AED∴ ∠EAD +∠DAE =90° 即:OA ⊥AE --------------------------- 3分 ∵ 点A 是半径OA 的外端∴ 直线l 与⊙O 相切 ---------------------------------------------------- 4分 ⑵ 过点A 点AF ⊥BD ,垂足为点F ,∴ ∠AFB =∠AFD =90° ∵ ∠ABD =30° ∴ ∠AED =30°lA E∴ 直径AE =2AD =72=BC ---------------------------------------- 5分 ∵ ∠ABD =30°,AB =4 ∴ AF =AB 21=2 ----------------- 6分 ∴ 32242222=-=-=BF AB BF32)7(2222=-=-=AF AD DF∴ BD =BF+DF =33 --------------------------------------------------- 7分 ∵ BC 是直径 ∴ ∠BDC =90°∴ 1)33()72(2222=-=-=BD BC CD -------------------- 8分26.⑴ M (0,1) ---------------------------------------------------------------------------------------------- 1分⑵ 过点O 作直线MN ⊥AC ,垂足为点E . ∵ 点C (0,3),点A (-3,0) ∴ OA =OC =3∴ MN 垂直平分AC ,∠COE =∠AOE =45° ∴ △ABC 的外心P 在直线MN 上直线MN 的表达式为:y =-x --------------------------------------------------------------------- 2分设P (a ,-a )由PA =PB 可得:2222)1()1()3()(-+--=--+-a a a a解得:67-=a ------------------------------------------------------------------------------------------3分∴ 点P 的坐标为(67-,67) -------------------------------------------------------------------4分⑶ 1Q (32,0),2Q (34,0)分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省常州市溧阳市2020-2021学年九年级上学期期末数学试题
一、单选题
1. 方程,则锐角=()
A.30°B.45°C.60°D.无法确定
2. 数据3,1,2,4,2,2的众数是()
A.1 B.2 C.3 D.4
3. 如果两个相似三角形的相似比为4:3,那么这两个相似三角形的面积比为()
A.2:B.4:3 C.16:9 D.256:81
4. 在四张完全相同的卡片上,分別画有等腰三角形、平行四边形、矩形、圆,现从中随机抽取一张,卡片上的图形既是轴对称图形又是中心对称图形的概率是()
D.1
A.B.C.
5. 如图,⊙O半径为5,PC切⊙O于点C,PO交⊙O于点A,PA=4,则PC的长为()
A.6 B.C.D.
6. 小明身高为1.6米,他在距路灯5米处的位置发现自己的影长为1米,他继续向前走,当他距离路灯为7米时,他的影长将()
A.增长0.4米B.减少0.4米C.增长1.4米D.减少1.4米
7. 已知△ABC是半径为2的圆内接三角形,若BC=,则∠A的度数
()
A.30°B.60°C.120°D.60°或120°
8. 如图,二次函数的图像开口向上,它的顶点的横坐标是1,图像经过点(3,0),下列结论中,①<0,②=0,③<0,④<0,正确的有()
A.1个B.2个C.3个D.4个
二、填空题
9. = ______.
10. 如果3a﹣4b=0(其中a≠0且b≠0),则a:b=_____.
11. 二次函数的顶点坐标为_____________________.
12. 半径为2,圆心角为120°的扇形弧长为____________________.
13. 如果关于x的方程(m为常数)有两个相等实数根,那么m =______.
14. 某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.
15. 如图,在2×4的方格中,两条线段的夹角(锐角)为∠1,则
sin∠1=______________.
16. 设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=x2-x-2上的三点,则y
、y2、y3的大小关系为______________.
1
17. 如图,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD、BC于M、N两点,与DC切于点P,则图中阴影部分的面积是______.
18. 如图,点P在正方形ABCD的BC边上,连接AP,作AP的垂直平分线,交AD延长线于点E,连接PE,交CD于点F.若点F是CD的中点,则
tan∠BAP=________________.
三、解答题
19. 解下列方程:
(1);(2)
20. 计算:
(1);(2)
21. 一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中随机摸出一个球是白球的概率是______________;
(2)从箱子中随机摸出一个球,记录下颜色后将它放回箱子,搅匀后再摸出一个球,请你用列表或画出树状图的方法,求出两次摸出的球都是白球的概率.
22. 如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形,建立如图所示的平面直角坐标系,点C的坐标为(0,﹣1).
(1)在如图的方格纸中把△ABC以点O为位似中心扩大,使放大前后的位似比
为1:2,画出△A
1B
1
C
1
(△ABC与△A
1
B
1
C
1
在位似中心O点的两侧,A,B,C的对
应点分别是A
1,B
1
,C
1
).
(2)利用方格纸标出△A
1B
1
C
1
外接圆的圆心P,P点坐标是,⊙P的
半径= .(保留根号)
23. 传统节日“春节”到来之际,某商店老板以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.
(1)请写出每月销售该商品的利润y(元)与单价x(元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?
24. 如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=5,
AC=3,CD平行于AB,与弧AB相交于点M、N.
(1)求线段OD的长;
(2)若tan∠C=,求弦MN的长.
25. 如图,在某市景区主干道路旁矗立着一块景区指示牌,小明驾驶汽车由东向西行驶,到达点C处,测得景区指示牌的上沿M处仰角为30°;前进8米后到达B处,测得景区指示牌的下沿N处仰角为45°,再前进4米后到达景区指
示牌底部A处,求指示牌的高MN长(结果精确到0.1米,=1.414,
=1.732)
26. 如图,在平面直角坐标系中,抛物线,y与轴交于A、B 两点,与轴交于点C.
(1)求点A、B、C的坐标;
(2)如图1,连接BC,点D是抛物线上一点,若∠DCB=∠ABC,求点D的坐标;
(3)如图2,若点P在以点O为圆心,OA长为半径作的圆上,连接BP、CP,
请你直接写出CP+BP的最小值.。