矩阵秩的不等式

合集下载

矩阵乘积秩的不等式

矩阵乘积秩的不等式

矩阵乘积秩的不等式矩阵乘积秩的不等式矩阵是现代数学理论中非常重要的一个分支领域。

矩阵运算是实际应用中极其常见的过程。

矩阵乘积秩的不等式是矩阵理论中一个基本的定理,本文将详细讲解这一定理。

一、矩阵的定义矩阵是一个矩形的数表,其中的数被称为矩阵元素。

矩阵可以表示为$m\times n$矩阵形式,其中$m$表示矩阵的行数,$n$表示矩阵的列数。

例如,下面的矩阵是一个$3\times2$矩阵:$$ A = \begin{bmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{bmatrix} $$二、矩阵的乘积两个矩阵的乘积是指对两个矩阵逐一对应的行和列进行数乘,并将结果求和得到的一个新的矩阵。

如果矩阵$A$是一个$m\times n$矩阵,矩阵$B$是一个$n\times p$矩阵,那么乘积矩阵$C$可以表示为:$$ C_{ij} = \sum_{k=1}^nA_{ik}B_{kj} $$其中,$i\in[1,m]$,$j\in[1,p]$。

例如,若有以下两个矩阵$A$和$B$:$$ A = \begin{bmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{bmatrix}, B =\begin{bmatrix} 7 & 8\\ 9 & 10 \end{bmatrix} $$那么它们的乘积矩阵$C$可以表示为:$$ C = AB = \begin{bmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{bmatrix}\begin{bmatrix} 7 & 8\\ 9 & 10 \end{bmatrix} = \begin{bmatrix} 25 & 28\\ 57 & 64\\ 89 & 100 \end{bmatrix} $$三、矩阵乘积秩的不等式矩阵乘积秩的不等式是指两个矩阵的乘积的秩不超过这两个矩阵秩的乘积。

分块矩阵初等行变换求秩的不等式

分块矩阵初等行变换求秩的不等式

在数学中,分块矩阵初等行变换求秩的不等式是一个重要的概念。

通过对分块矩阵进行初等行变换,我们可以得到一个新的矩阵,并通过对这个新矩阵进行求秩,得到一些重要的不等式关系。

接下来,我将会详细探讨这一主题,并按照从简到繁的方式进行解释。

一、分块矩阵的定义让我们回顾一下分块矩阵的定义。

一个分块矩阵是由若干个子矩阵组成的大矩阵。

通常情况下,这些子矩阵可以是任意大小的矩阵,它们之间通过分块符号进行分割。

一个分块矩阵可以表示为:\[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix} \]其中 \(A_{11}\)、\(A_{12}\)、\(A_{21}\)、\(A_{22}\) 分别是子矩阵。

这种表示方法在矩阵分析和线性代数中经常被使用,特别是在矩阵的运算和性质分析中。

二、分块矩阵初等行变换接下来,让我们来探讨分块矩阵的初等行变换。

我们知道,在矩阵的运算中,初等行变换是一种通过交换行、数乘行、行加减倍数行来改变矩阵的运算方法。

对于分块矩阵,我们可以运用相似的方法进行初等行变换。

对于一个分块矩阵:\[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix} \]我们可以对其中的子矩阵 \(A_{11}\)、\(A_{12}\)、\(A_{21}\)、\(A_{22}\) 分别进行初等行变换,如交换行、数乘行、行加减倍数行等操作。

通过这些初等行变换,我们可以得到一个经过变换的新矩阵。

三、求秩的不等式关系有了经过初等行变换的新矩阵,我们可以通过对其进行求秩来得到一些不等式关系。

根据矩阵求秩的性质,我们可以得到如下的不等式关系:\[ rank(A) + rank(B) - n \leq rank \begin{pmatrix} A & B\end{pmatrix} \leq rank(A) + rank(B) \]其中,\(rank(A)\) 和 \(rank(B)\) 分别表示矩阵 \(A\) 和 \(B\) 的秩,\(n\) 表示矩阵的列数。

关于秩的不等式

关于秩的不等式

关于秩的不等式秩,作为一个数学概念,在代数、几何、图论等领域都有着重要的应用。

在不同的数学领域中,秩都有着不同的定义和性质。

在线性代数中,秩是矩阵的一个重要性质,它可以帮助我们理解矩阵的结构和性质。

在图论中,秩则是用来描述图中顶点之间的关系的一个重要指标。

在不等式中,秩也有着独特的作用。

本文将探讨关于秩的不等式,从不同的角度来解释和讨论。

在线性代数中,矩阵的秩是一个非常重要的概念。

对于一个矩阵而言,它的秩等于它的行秩和列秩中的较小值。

利用矩阵的秩,我们可以解决线性方程组的求解问题,判断矩阵的可逆性以及矩阵的基本性质。

在不等式中,我们也可以利用矩阵的秩来推导一些有趣的不等式。

例如,对于一个n阶方阵A,如果它的秩等于n,则A是可逆的;如果它的秩小于n,则A是奇异矩阵,不可逆。

这样的性质可以帮助我们在不等式中进行推导和求解。

在图论中,秩是描述图中顶点之间关系的一个重要指标。

对于一个图G=(V, E),如果G中任意两个顶点之间有边相连,则称G是完全图。

完全图中的秩通常比较大,因为任意两个顶点之间都有边相连。

而在一般的图中,秩则描述了图中顶点之间的连接情况。

在不等式中,我们可以利用图的秩来推导一些关于图的性质的不等式。

例如,对于一个图G=(V, E),如果G是连通图,则它的秩等于它的顶点数减去它的连通分量数加一。

这样的不等式可以帮助我们理解图的结构和性质。

在组合数学中,秩是排列和组合的一个重要概念。

对于一个集合A={a1, a2, ..., an},它的一个排列是对A中元素的一个重新排列,而一个组合是从A中选择出若干个元素的一个子集。

在不等式中,我们可以利用排列和组合的秩来推导一些关于排列和组合性质的不等式。

例如,对于一个集合A={a1, a2, a3},它的一个排列是{a1, a2, a3},而它的一个组合是{a1, a2},那么排列的秩大于等于组合的秩。

这样的不等式可以帮助我们更好地理解排列和组合的性质。

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归纳小结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII矩阵的秩的相关不等式的归纳小结林松(莆田学院数学系,福建,莆田)摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。

关键词:矩阵的秩,矩阵的初等变换引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。

利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。

本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。

一基本的定理1 设A是数域P上n m⨯矩阵,于是⨯矩阵,B是数域上m s秩(AB)≤min [秩(A),秩(B)],即乘积的秩不超过个因子的秩2设A与B是m n⨯矩阵,秩(A±B)≤秩(A)+秩(B)二常见的秩的不等式1 设A与B为n阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n证:设r(A) = r,r(B )= s,则由AB = 0,知,B的每一列向量都是以A为系数方阵的齐次线性方程组的解向量。

当r = n时,由于该齐次方程组只要零解,故此时 B = 0,即此时r(A) = n,r(B) = 0,结论成立。

当r〈 n 时,该齐次线性方程组的基础解系中含n-r个向量,从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n2设A 为m n ⨯矩阵,B 为n s ⨯矩阵,证明不等式r(AB)≤r(A)+r(B)-n证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于000S EB A AB A E E E B ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭而 0S EB E ⎛⎫ ⎪-⎝⎭可逆,故r(A)+r(B) ≥ 秩 0A E B ⎛⎫⎪⎝⎭ =秩 0A AB E ⎛⎫ ⎪⎝⎭=秩 00AB E ⎛⎫⎪⎝⎭=r(AB)+r(E) =r(AB)+n 从而r(AB) ≥ r(A) + r(B) - n3设A ,B 都是n 阶方阵,E 是n 阶单位方阵,证明 秩(AB-E )≤秩(A-E )+秩(B-E )证:因为0A E B E B E --⎛⎫⎪-⎝⎭00B E ⎛⎫ ⎪⎝⎭00AB E B E -⎛⎫= ⎪-⎝⎭故秩(AB-E )≤秩00AB E B E -⎛⎫ ⎪-⎝⎭≤秩0A E B E B E --⎛⎫⎪-⎝⎭=秩(A-E )+秩(B-E ) 因此 秩(AB-E )≤秩(A-E )+秩(B-E )4 设A ,B ,C 依次为,,m n n s s t ⨯⨯⨯的矩阵,证明r(ABC) ≥ r(AB) + r(BC) - r(B)证:设 ,s t E E 分别为,s,t 阶单位矩阵,则由于0AB ABC B ⎛⎫⎪⎝⎭0st E C E ⎛⎫ ⎪-⎝⎭=0AB B BC ⎛⎫ ⎪⎝⎭且0s t E C E ⎛⎫⎪-⎝⎭是可逆矩阵,故 r(AB) + r(BC)≤秩0AB B BC ⎛⎫ ⎪⎝⎭=秩0ABABC B ⎛⎫⎪⎝⎭=秩00ABC B ⎛⎫⎪⎝⎭= r(ABC) + r(B) 从而r(ABC) ≥r(AB) + r(BC) - r(B)5 设A ,B 都是n 阶矩阵,证明;r( A B + A + B ) ≤ r( A ) + r ( B ) 证明:r( AB + A + B)=r( A (B+E) + B) 利用基本定理二≤r( A (B + E)) + r(B) 利用基本定理一 ≤r( A ) + r( B )6 设A ,C 均为m n ⨯矩阵,B ,D 均为n s ⨯矩阵,证明 r ( A B – C D )≤ r ( A-C ) + r ( B - D )证明:根据分块矩阵的乘法可知000mn E C A C E B D -⎛⎫⎛⎫⎪⎪-⎝⎭⎝⎭0n s E B E ⎛⎫ ⎪⎝⎭=0A C AB CD B D --⎛⎫⎪-⎝⎭由此易知r (A-C )+r (B-D )=r 0A CAB CD B D --⎛⎫⎪-⎝⎭≥r(AB-CD)从而得r (AB-CD ) ≤ r (A-C ) + r (B-D )三 不等式等号成立的探讨1 设A ,B 分别为m n ⨯和n m ⨯矩阵,则()()()r AB =r A +r B -n 的充分条件为:A 0A 0r =r EB 0B ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦证明:由E -A A 0E -B 0-AB E -B 0-AB ==0E E B 0E E B 0E E 0⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦得:A 00-AB r =r E B E0⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ ()()()0-AB A 0r =r AB +n r =r A +r B E 0E B ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦又, ∴()()()r AB =r A +r B -n2 设A ,B 分别为m n ⨯和n m ⨯矩阵,则()()()r AB =r A +r B -n 的充分必要条件为存在矩阵X 、Y ,使得nXA +BY =E证明:根据题三 1,只需要证明nXA +BY =E A 0A 0r =r X Y E B 0B ⎡⎤⎡⎤⇔⎢⎥⎢⎥⎣⎦⎣⎦存在、,使得m n n n nm m n E 0A 0E 0E 0A 0=-X E E B -Y E -Y E -AX B A 0E -XA -BY B ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⇐⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥⎣⎦由当 n XA +BY =E 时,A 0A 0r =r E B 0B ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦∴()()()r AB =r A +r B -n12200,0000rSEE AQ P BQ ⎛⎫⎛⎫⇒== ⎪ ⎪⎝⎭⎝⎭1设 P 1122000000P Q A P Q B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则 11220000P A Q P B Q ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭112200P AQ P BQ ⎛⎫= ⎪⎝⎭000000000000r SE E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(1)112200000P Q A P Q E B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11222000P A Q P P B Q ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭ 1121220P AQ P Q P BQ ⎛⎫=⎪⎝⎭12340000000000r S E C C E C C ⎛⎫⎪⎪= ⎪⎪⎝⎭(2) 对式(2)右端的方阵作行初等变换,可消去1C ,2C ,3C ,由于式(1),式(2)右端方阵秩相等,故在消去1C ,2C ,3C 时也消去了4C ,对式(2)右端分块记为120FC F ⎛⎫ ⎪⎝⎭ 其中1F =00rE C ⎛⎫ ⎪⎝⎭, 2F =00SE C ⎛⎫ ⎪⎝⎭, C=1234C C C C ⎛⎫ ⎪⎝⎭ 于是上述消去1C 的行变换相当于 1000C -⎛⎫ ⎪⎝⎭000rE ⎛⎫⎪⎝⎭+1234C C C C ⎛⎫ ⎪⎝⎭=2340C C C ⎛⎫ ⎪⎝⎭消去其余234,,C C C 有类似的结果,这样初等变换就相当于存在矩阵S ,T ,使S 1F =T 2F +C =0,即1122210SP AQ P BQ T P Q ++= 从而有 令得 n XA BY E +=3 设 A ,B ,分别为 ,,m n n l l m ⨯⨯⨯矩阵,而B 的一个满秩分解是B=HL ,即H 是列满秩矩阵,L 是行满秩矩阵,则r(ABC)=r(AB)+r(BC)-r(B)的充要条件是存在矩阵X ,Y使得r XAH LCY E +=证明:设r (B )=r ,因为B=HL 是满秩分解 所以 有r(AB) = r(AHL) = r(AH) r(BC) = r(HLC) = r(LC) 则r(ABC) = r(AB) + r(BC) - r(B)⇔ r(AHLC) = r(AH) + r(LC) - r 又由上题 得r(AHLC) = r(AH) + r(LC) - r⇔矩阵X,Y 使得 r XAH LCY E += 所以 3得证4 设A 为n 阶矩阵,证明如果 2A = E ,那么r ( A + E ) + r ( A – E )= n证明: ( A + E )( A – E ) =2A + A – A – E = E – E = 0 ∴r ( A + E )+ r ( A – E )≤ nr( A + E ) + r( A – E ) ≥ r( A + E + A - E) = r(2A) = r(A)2A = E∴2A = E,即A≠0∴ r(A)= nr( A + E) + r( A - E) ≥n故 r( A + E )+ r( A - E) = n5 设A为n阶矩阵,且2A = A,证明 r(A)+ r(A-E)= n证明:由2A = A,可得 A( A – E )= 0由题一 1知,r( A ) + r( A - E)≤ n又因为 E-A和A-E 有相同的秩n = r( E ) = r( A + E – A ) ≤ r ( A ) + r ( E – A ) 从而 r( A ) + r( A – E ) = n6 设A是阶矩阵,则3A = A的充分必要条件是r(A)= r(A-2A)+ r(A+2A)证明:必要性一方面,由3A = A⇔(E-A)A(E+A)=0 由题二 4知0 ≥ r[(E-A)A] + r[ A (E+A)] - r(A)即r(A)≥ r(A-2A)+r(A+2A)另一方面,由r(A-2A)+r(A+2A)≥r[(A-2A)+(A+2A)] = r(2A)= r(A)所以 r(A)= r(A-2A)+ r(A+2A)充分性若r(A)= r(A-2A)+r(A+2A)设r(A) = r,A的满秩分解是A = HL,则存在 X,Y使(2X )H =r E ,L (2Y )= r E 成立则 X (E-A )H +L (E-A )Y=(XH + LY )-(XHLH - LHLY )=r E -0 = r E由题三3得 r[(E-A )A(E+A)]=r[(E-A) A] + r[A (E+A)]- r(A) = 0即得(E-A )A (E+A )=0 从而得 3A = A参考文献:[1] 张禾瑞 .高等代数(第二版)[M].高等教育出版社 [2] 杨子胥.高等代数习题解[M].山东科技出版社 [3] 李师正.高等代数解题方法与技巧[M].高等教育出版社。

矩阵和的秩不等式等号成立的充要条件

矩阵和的秩不等式等号成立的充要条件
c r n u l n o b o k d a o a ma i .F n l ,we g v t p l ai n rt o marc si i e ra g b a h o o sy it lc ig n t x l r ia y l ie i a p i t sf w t e n l a le r . s c o o i n
第 理 工 大 学 学 报
J OURNAL O F HAR N UN VER I Y 0 C E E BI I S T F S I NC AND T C E HNO OGY L
Vo. 6 N . 11 o 2 Ap .2 1 r 0 I
Ab t a t T e e a e i e u l i s a o tr n f t e s m f t o ma r e n a v n e g b a Ho v r e sr c : h r r n q a i e b u a k o h u o w t c s i d a c d a e r . t i l we e ,fw p o l t d h r b e fi e u i b u a k o a o o t c s a d t e c n i o sf re u l y s n i e p e su y t e p o l ms o q a t a o t n fs m fs me mar e n h o d t n o q ai i n n l y r i i t g
2 1 年 4月 01
矩 阵和 的秩 不 等 式 等 号 成 立 的充 要 条 件
冯 秀 红 , 孙 苏 亚
( 南京 信息工程大学 数理学院 , 江苏 南 京 2 04 ) 10 4

要: 高等代数 中常见两个矩阵之和的秩不等式 , 但对于若干个矩阵的和之秩的不等式问题

关于矩阵秩_不_等式的分块矩阵构造证明

关于矩阵秩_不_等式的分块矩阵构造证明

r( AB C) Ε r( AB ) + r( B C) - r( B)
(1)
证明 显然 (1) 等价于 r( B) + r( AB C) Ε r( AB ) + r( B C) ,故令 M = B 0 . 对 M 进行 0 AB C
广义初等变换 :
B 0 →B
0 → B - BC → BC B
0 AB C
i =1
0
At
定理 2 设 A i ∈ Fmi ×ni , i = 1 , 2 , …, t , t Ε 2. 则
A1
3
t
∑r( A i ) Φ r
i =1
A2
ω
t
∑ Φ min r( A i ) + m j i = 1 ,2 , …, t j =1 j ≠i
0
At
证明 对 t 用数学归纳法证明左侧不等式.
矩阵的广义初等变换证明矩阵秩的 (不) 等式.
在本文中 ,设 F 为一般的数域 , In 表示 n 阶单位矩阵 , r( M) 表示矩阵 M 的秩. 首先 , 关于分块
矩阵的秩 ,下列结论是基本的.
定理 1 分块矩阵的下列结论成立 :
(1) 设 A i ∈ Fmi ×ni , i = 1 , 2 , …, t. 则
r( B A + C) = n - r( A )
(4)
证明 由 A ( BA + C) = 0 及矩阵秩的基本性质得 r( A) + r( BA + C) Φ n. 又由 r( C) = n 及
BA + C 0 → BA + C BA → C BA
0
A
0
A
-A A

高等代数矩阵秩的等式与不等式

高等代数矩阵秩的等式与不等式

. .. . . ..
矩阵秩的等式与不等式
初等变换不改变矩阵的秩,故

( 秩A
) B
=

Er
Es

= r + s = 秩(A) + 秩(B). 0


()
M= A 0 ,
CB
其中 A, B 都是方阵,那么秩(M)≥秩(A)+秩(B).
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
矩阵秩的等式与不等式
( 证 设秩 (A) = r,秩 (B) = s,则 A 的等价标准形为 Er
0 () B 的等价标准形为 Es 0 ,从而
00
) 0, 0
. . . .... .... .... . . . . .... .... .... . .
. .. . . ..
0 ( −r−1−+−v−(A−)−r→2 E − A
0
)
(
)
0
−−−−−−−→ EA u(A)(E − A)
E + A + A2 c2+c1u(A) 0 E + A + A2
)
(
)
E
−r−2−−−(E−+−A−+−−A−2)−r→1
0
E
E + A + A2
c1 −c2 (E−A)
A3 − E 0
所以这个矩阵的秩是 n 当且仅当 A3 − E = 0,这就得到了证明.
的秩 ≥ r + s = 秩 (A)+ 秩 (B),即秩(M)≥秩(A)+秩(B).

数学本科毕业论文《矩阵不等式的证明及其应用》

数学本科毕业论文《矩阵不等式的证明及其应用》

矩阵不等式的证明及其应用一矩阵的秩在矩阵理论中起着非常重要的作用, 矩阵的秩是矩阵的一个重要不变量, 初等变换不改变矩阵的秩, 矩阵的秩有一定的规律, 我们有下面一些基本的不等式:Frobenius 不等式: R(ABC) ≥R(AB)+R(BC)-R(B) (1) R(A)-R(B) ≤ R(A±B) ≤ R(A)+R(B) (2) Sylvester 不等式:R(A)+R(B) - n≤R(AB)≤min( R(A),R(B) )(3)对于(1) , (2), (3) 三个不等式有不同的证明和理解,在这里我们利用分块矩阵的知识,来论证上面的结论.在论证之前,我们先来探讨分块矩阵秩的一些性质.矩阵的秩满足一定的规律,同样在分块矩阵中,它们的秩也有一定的规律可寻.利用矩阵的一些基本的不等式,我们对分块矩阵的秩进行探讨.(1)我们首先从特殊的分块矩阵分析,形如A OB C⎛⎫⎪⎝⎭或A BC⎛⎫⎪⎝⎭或0AB C⎛⎫⎪⎝⎭定理1 设A是n阶矩阵,B和C分别是m⨯n矩阵和m⨯1矩阵, 则R(A)+R(C) ≤R(AB C⎛⎫⎪⎝⎭) ≤ min{}m+R(A), n+R(C)证明:AB C⎛⎫⎪⎝⎭=mAB I⎛⎫⎪⎝⎭nCI⎛⎫⎪⎝⎭因为RAB C⎛⎫⎪⎝⎭= R(mAB I⎛⎫⎪⎝⎭nCI⎛⎫⎪⎝⎭)≥ R(mAB I⎛⎫⎪⎝⎭) + R(nCI⎛⎫⎪⎝⎭) - (n+m)= R(A)+R(mI)+ R(n I) +R(C)- (n+m)= R(A) + R(C) (1)又由于 R(0A B C ⎛⎫⎪⎝⎭) = R(0m A B I ⎛⎫ ⎪⎝⎭00n C I ⎛⎫⎪⎝⎭) ≤ min{ R(0m AB I ⎛⎫⎪⎝⎭),R(00n C I ⎛⎫ ⎪⎝⎭) }= min {}m+R(A), n+R(C) (2)综合(1) (2)两式, 故 R(A)+R(C) ≤ R(0A B C ⎛⎫⎪⎝⎭) ≤min {}m+R(A), n+R(C)定理2 设A 为n 阶距阵,B 为n ⨯1矩阵,C 为m ⨯1矩阵, 则R(A)+R(C) ≤ R(A B O C ⎛⎫⎪⎝⎭) ≤ min{ n+R(C), 1+R(A) }证明: 0A B C ⎛⎫⎪⎝⎭ = 0n B C I ⎛⎫⎪⎝⎭100A I ⎛⎫⎪⎝⎭ 因为 R(0A B C ⎛⎫⎪⎝⎭) = R(0n B C I ⎛⎫ ⎪⎝⎭100A I ⎛⎫ ⎪⎝⎭≥ R(0n B C I ⎛⎫⎪⎝⎭) + R(100A I ⎛⎫⎪⎝⎭) - (n+1) = R (n I ) + R (C ) + R(A) + R (1I ) - (n+1) = R(C) + R(A) (1)又由于R(0A B C ⎛⎫⎪⎝⎭) = R(0n B C I ⎛⎫⎪⎝⎭100A I ⎛⎫⎪⎝⎭≤ min{ R(0n B C I ⎛⎫⎪⎝⎭),R(100A I ⎛⎫ ⎪⎝⎭} = min{ n+R(C), 1+R(A) } (2)综合(1),(2) 两式,故R(A)+R(C) ≤R(A BO C⎛⎫⎪⎝⎭)≤ min{ n+R(C), 1+R(A) }定理3 设A是n阶矩阵,B和C分别是m⨯1矩阵和m⨯n矩阵,则 R(A) + R(B) ≤ R(0AB C⎛⎫⎪⎝⎭) ≤ min{}m+R(A), n+R(B)证明:0AB C⎛⎫⎪⎝⎭=mAI C⎛⎫⎪⎝⎭nBI⎛⎫⎪⎝⎭因为R(0AB C⎛⎫⎪⎝⎭) = R(mAI C⎛⎫⎪⎝⎭nBI⎛⎫⎪⎝⎭)≥ R(mAI C⎛⎫⎪⎝⎭) + R(nBI⎛⎫⎪⎝⎭) - (n+m)= R(A)+R(mI)+ R(n I)+R(B)- (n+m) = R(A) + R(B) (1)又由于R(0AB C⎛⎫⎪⎝⎭) = R(mAI C⎛⎫⎪⎝⎭nBI⎛⎫⎪⎝⎭)≤ min{ R(mAI C⎛⎫⎪⎝⎭),R(nBI⎛⎫⎪⎝⎭) }= min{}m+R(A), n+R(B)(2)综合(1) (2)两式, 故R(A)+R(B) ≤R(0AB C⎛⎫⎪⎝⎭) ≤ min{}m+R(A), n+R(B)(2) 我们分析了特殊情况后,接着探讨一下一般情形,形如A BC D ⎛⎫ ⎪⎝⎭.定理4 设A为n阶矩阵,其中B是n⨯1矩阵,C是m⨯n矩阵,D是m⨯1矩阵, 则R(A B C D ⎛⎫ ⎪⎝⎭) ≤ min{ m+R(A)+R(B), n+R(D)+R(B) }证明: 因为 A B C D ⎛⎫ ⎪⎝⎭ = 0A C D ⎛⎫ ⎪⎝⎭ + 000B ⎛⎫⎪⎝⎭所以 R(A B C D ⎛⎫ ⎪⎝⎭) = R(0A C D ⎛⎫ ⎪⎝⎭ + 000B ⎛⎫⎪⎝⎭)≤ R(0A C D ⎛⎫ ⎪⎝⎭) + R(000B ⎛⎫⎪⎝⎭)≤ min{ m + R(A), n + R(D)} + R(B)= min { m+R(A)+R(B), n+R(D)+R(B) } 证毕二 分块矩阵是讨论矩阵的重要手段,利用分块矩秩的不等式,可以系统地推证关于矩阵秩的一些结论,在这里我们利用上面得出的一些定理来证明矩阵秩的某些性质.在证明性质之前,为了便于证明,首先介绍一个引理:引理1 R(AB) ≤ min{R(A),R(B)}, 特别当A ≠0时, R(AB) = R(B)(1) A, B 都是m ⨯n 矩阵, 则R(A+B) ≤ R(A)+R(B)证明: 由于A + B = (m I m I )00A B ⎛⎫ ⎪⎝⎭nn I I⎛⎫⎪⎝⎭由引理1得: R(A+B) = R ((m I m I )00A B ⎛⎫ ⎪⎝⎭nn I I ⎛⎫⎪⎝⎭) ≤R (00A B ⎛⎫ ⎪⎝⎭nn I I⎛⎫ ⎪⎝⎭) ≤ R (00A B ⎛⎫⎪⎝⎭)= R(A) + R(B)故 R(A+B) ≤ R(A)+R(B)(2) 设A 为m ⨯n 矩阵,B 为n ⨯s 矩阵,且A B=0, 则R(A) + R(B) ≤n证明: n n n n A O AAB A O I B I O I B I B O O ⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由引理1得: R(n A O I B ⎛⎫ ⎪⎝⎭) ≤ R(n A O I O ⎛⎫⎪⎝⎭)由定理1得: R(n A O I B ⎛⎫⎪⎝⎭) ≥ R(A) + R(B)又mn n n I A A O O O O I I O I O -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭且 0mnI A OI -≠由引理1得: R(n O O I O ⎛⎫ ⎪⎝⎭ = R(n A O I O ⎛⎫⎪⎝⎭) = n由定理1得: R(A)+R(B) ≤ R(n A O I B ⎛⎫ ⎪⎝⎭ ≤ R(n A O I O ⎛⎫ ⎪⎝⎭) = R(000nI ⎛⎫⎪⎝⎭) = n 从而有 R(A) + R(B) ≤ n(3) 设A 是m ⨯ n 矩阵,B 是n ⨯s 矩阵,则 R(AB) ≥ R(A) +R(B) - n证明: 000sn n n AB I AB O I B I B I ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 且0s nI o BI ≠, 由引理1得:R(AB)+ R(n I ) = R(0n AB B I ⎛⎫⎪⎝⎭)即 R(AB) + n = R(0n AB B I ⎛⎫⎪⎝⎭) (1)又00mn n n IA AB O A I B I B I -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭且00m nI A I -≠, 由引理1,定理3得:R(0n AB B I ⎛⎫⎪⎝⎭) = R(n O A B I ⎛⎫⎪⎝⎭) ≥R(A)+R(B) (2)由(1), (2) 得: R(AB) ≥ R(A)+R(B) – n(4) 设A,B,C 分别是m ⨯n,n ⨯s,s ⨯t 矩阵,则 R(ABC)≥ R(AB) + R(BC) - R(B)证明: 因为 0000mn I A ABC ABC AB I B B ⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 且 0;:0m nI A I ≠由引理1得R(ABC) + R(B) = R 0ABCAB B ⎛⎫⎪⎝⎭(1) 又因为 0ABCAB B ⎛⎫⎪⎝⎭000ts I AB CI BC B -⎛⎫⎛⎫=≠ ⎪ ⎪⎝⎭⎝⎭t s - I 0且C I由引理1定理3得: R 0ABCAB B ⎛⎫⎪⎝⎭ = R 0()()AB R AB R BC BC B ⎛⎫≥+ ⎪⎝⎭(2) 由(1) (2)得: R(ABC) ≥ R(AB) + R(BC) - R(B) (5)如果 秩(A-I ) = r, 秩( B-I ) = s, 则 秩(AB-I ) ≤ r + s .证明: 令X = 00A IB I -⎛⎫⎪-⎝⎭则: 秩X = r + s由00A IB I -⎛⎫ ⎪-⎝⎭0I B I ⎛⎫ ⎪⎝⎭ = 0A I AB B B I --⎛⎫⎪-⎝⎭且 0I B I≠0 , 由引理1得:R (00A IB I -⎛⎫⎪-⎝⎭) = R(0A IAB B B I --⎛⎫⎪-⎝⎭) = r + s (1) 又因为 0I I I ⎛⎫ ⎪⎝⎭0A IAB B B I --⎛⎫⎪-⎝⎭ = 0A IAB I B I --⎛⎫⎪-⎝⎭得 R(0A IAB I B I --⎛⎫⎪-⎝⎭) ≥ R(AB-I ) (2) 且00I II≠ , 由引理1得:R(0A I AB B B I --⎛⎫ ⎪-⎝⎭) = R(0A IAB I B I --⎛⎫⎪-⎝⎭) (3) 综合 (1) (2) (3) 式可: R(AB-I ) ≤ r + s参考文献[1]樊恽主编. 代数学词典. 武汉: 华中师范大学出版社, 1994.[2] 高等数学研究. 2003.01.[3]北京大学数学系编. 高等代数. 高等教育出版社.[4]张禾瑞.郝炳新主编.高等代数.高等教育出版社.[5]华东师范大学学报.2002.04.[6]西北师范大学学报.1989.01.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档