第一章气体的pVT关系
第一章气体的PVT关系

§1.2 理想气体混合物
1. 混合物的组成
(1)摩尔分数x或y
xB(或yB) nB nA
A
本书中气体混合物的摩尔分数一般用 y 表示,液体混合物的摩 尔分数一般用 x 表示。
(2)质量分数 ω B
ωB mB
mA
A
(3) 体积分数 B
B
xBVm*B, (
xAVm*A, )
V
* m,
A
A
:一定压力、温度下纯物质A的摩尔体积。
临界温度下的饱和蒸汽压为临界压力,pc 是在临界温度下使气体液化做需要的
最低压力
临界摩尔体积Vm,c:在Tc, pc下物质的摩尔体积
Tc, pc , Vm,c:临界参数
§1.3 气体的液化及临界参数
液体的饱和蒸汽压 临界参数
真实气体的p-Vm图及气体的液化
3.真实气体的p-Vm图及气体的液化
等温线的三种类型: T>Tc(不可液化) T<Tc(加压可液化) T=Tc
V VB*
B
VnR /p T ( nB)R/T p
B
(nB p R)T BV B *
VB* nBRT/ p
理想气体混合物中物质B的分体积等于纯气体B在混合 物温度及总压条件下所占有的体积。
理想气体混合物的体积具有一定的加和性。在相同 的温度和压力下,混合后的总体积等于混合前各组 分的体积之和。
由pVT数据拟合得到Z~p关系.
3. 对应状态原理
对比参数反映了气体所处状态偏离临界点 的倍数。 各种不同气体,只要两个对比参数相同, 第三个参数必相同,这就是对应状态原理。 此时的气体处于相同的对应状态。
3. 普遍化压缩因子图
将对比状态参数的表达式引入到压缩因子 定义式中,得到:
第一章气体的p-v-T关系

第一章 气体的pVT 性质无论物质是哪一种聚集状态,都有许多宏观性质,如压力p 、体积V 、温度T 、密度ρ、内能U 、熵S 等.在重多的宏观性质中,p 、V 、T 三者是物理意义非常明确、又易于直接测定的基本性质.当物质的量n 一定后,其pVT 性质不可能同时独立取值,而存在如下关系:0),,(=T V p f该函数称为状态方程.若考虑到物质的量n,则可表示为: 0),,,(=T V p n f鉴于液、固体的可压缩性一般甚小,即等温压缩率(系数) T T pVV )(1∂∂-=κ和体膨胀系数p V TVV a )(1∂∂=均较小,故在通常的物理化学计算中,常将其体积随压力和温度的变化忽略.与凝聚态相比,气体具有较大的等温压缩系数T κ和体膨胀系数V a ,其体积随温度和压力的变化较大,故一般只研究气体的pVT 性质.1.1 理想气体状态方程1.理想气体状态方程波义尔定律: 常数=pV (n,T 恒定)盖.吕萨克定律 常数=T V / (n,p 恒定)阿伏加德罗定律 常数=n V / (p,T 恒定)这三个定律都客观地反映了低压下气体服从的pVT 简单关系.将其结合可整理得到状态方程: nRT pV =此即理想气体状态方程.式中,R 是摩尔气体常数.其值经精确测定,为:11314510.8--⋅⋅=K mol J R .因摩尔体积n V V m /=,故理想气体状态方程又可写成:RT pV m = 因M m n =,Vm =ρ,故理想气体状态方程又可写成:RT Mm pV =或RT pM ρ=例: 试由上列三定律导出理想气体状态方程.解: 因任意体系均满足:0),,,(=n T V p f ,可改写成:),,(n T p f V =该式取全微分得:dn nVdT T V dp p V dV T p n p n T ,,,)()()(∂∂+∂∂+∂∂= 由波义尔定律得: 0=+Vdp pdV (T,n 恒定)此即: pV p V n T -=∂∂,)( 同理,由盖.吕萨克定律和阿伏加得罗定律可得: T V T V n p =∂∂,)(和 nV n V T p =∂∂,)( 代入全微分式得:dn nVdT T V dp p V dV ++-=)(此式即: ndn T dT p dp V dV +=+ 或 )ln()ln(nT d pV d =亦即: 0)ln(=nT pV d ,积分可得: 常数=nTpV又据阿伏加德罗定律知,当气体的p,V 一定时,体系的(V/n )为与气体各类无关的常数,故上式中的常数对任何气体都应具有相同的值,如用R 表示,则上式变为: nRT pV =这就是理想气体状态方程.2.理想气体凡在任何温度、压力下均服从方程nRT pV =的气体称理想气体. 按照上述定义,理想气体必须具备下列两个微观特征: (1).气体分子本身不占有体积,是没有大小的质点.因在T 恒定时,常数=m pV ,当0→p 时,必有0→m V (2).分子间无相互作用力.分子可近似被看作是没有体积的质点。
7-32第一章 气体的pVT关系

第一章 气体的pVT 关系物质的聚集状态一般可分为三种,即气体、液体和固体。
气体与液体均可流动,统称为流体;液体和固体又统称为凝聚态。
三种状态中,固体虽然结构较复杂,但粒子排步的规律性较强,对它的研究已有了较大的进展;液体的结构最复杂,人们对其认识还很不充分;气体则最为简单,最容易用分子模型进行研究,故对它的研究最多,也最为透彻。
无论物质处于哪一种聚集状态,都有许多宏观性质,如压力p ,体积V ,温度T ,密度ρ,热力学能U 等等。
众多宏观性质中,p , V , T 三者是物理意义非常明确、又易于直接测量的基本性质。
对于一定量的纯物质,只要p , V , T 中任意两个量确定后,第三个量即随之确定,此时就说物质处于一定的状态。
处于一定状态的物质,各种宏观性质都有确定的值和确定的关系①。
联系p , V , T 之间关系的方程称为状态方程。
状态方程的建立常成为研究物质其它性质的基础。
液体和固体两种凝态,其体积随压力和温度的变化均较小,即等温压缩率T T p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ和体膨胀系数pV T V V ⎪⎭⎫ ⎝⎛∂∂=1α都较小,故在通常的物理化学计算中常忽略其体积随压力和温度的变化。
与凝聚态相比,气体具有较大的等温压缩率κT 和体膨胀系数αV ,在改变压力和温度时,体积变化较大。
因此一般的物理化学中只讨论气体的状态方程。
根据讨论的p , T 范围及使用精度的要求,通常把气体分为理想气体和真实气体分别讨论。
§1.1 理想气体状态方程1.理想气体状态方程从17世纪中期,人们开始研究低压下(p <1 MPa )气体的p VT 关系发现了三个对各种气体均适用的经验定律:(1)波义尔(Boyle R)定律 在物质的量和温度恒定的条件下,气体的体积与压力成反比,即p V =常数 (n ,T 一定)(2)盖-吕萨克(Gay J -Lussac J )定律 在物质的量与压力恒定的条件下,气体的体积与热力学温度成正比,即V/T =常数 (n , p 一定)(3)阿伏加德罗(Avogadro A )定律 在相同的温度、压力下,1mol 任何气体占有相同体积,即V / n =常数 (T ,p 一定)将上述三个经验定律相结合,整理可得到如下的状态方程:p V = n RT (1 .1 .1a )上式称为理想气体状态方程。
第一章 气体的pVT性质

30.31× 10−3 kg.mol −1 × 0.201 = 6.29 ≈ 6 1× 10−3 kg.mol −1 ∴ C2 H 6
3. 在生产中 用电石 CaC2 CaC2 分析碳酸氢氨产品中水分的含量 = C2H2 g +Ca OH
2
其反应式如下
s + 2H2O l
现称取 2.000g 碳酸氢氨样品与过量的电石完全作用 在 27 50.0cm3 解 试计算碳酸氢氨样品中水分的质量分数为多少
VB = yBV
VB =
nB RT p
压缩因子的定义
Z=
5 范德华方程
pV nRT
或
Z=
pVm RT
a p + 2 (Vm − b ) = RT Vm 二. 本章练习
(一) 选择题
n2a 或 p + 2 (V − nb ) = nRT V
1 对于实际气体,处于下列哪种情况时,其行为与理想气体相近
n=
2 pV p2V p2V = + RT1 RT1 RT2 2 p1T2 = 57900 Pa = 57.9kPa T2 + T1
p2 =
6. 298.15K 时 在一抽空的烧瓶中充入 2.00g 的 A 气体 此时瓶中压力为 1.00 105Pa 今若再充入 3.00g 的 B 气体 解 发现压力上升为 1.50 105Pa 试求两物质 A B 的摩尔量之比
充入气体质量为
0.3897g 时 解
试计算混合气体中乙烷和丁烷的摩尔分数与分压力
M = y1M 1 + y2 M 2 = =
mRT pV
0.3897 g × 8.314 J .K −1.mol −1 × 293.15 K = 46.87 g .mol −1 −4 3 101.325kPa × 2.00 ×10 m M 1 = 30 g / mol M 2 = 58 g / mol
第一章气体的pVT关系

世纪末,人们开始普遍地使用现行的理想气体状
态方程:
pV = nRT
2.理想气体模型(model)
(1)分子间力 -兰纳德-琼斯理论(Lennard-Jones theory)
E
Eattra
Erepul
A r6
B r12
E
0
r0 r
(2) 理想气体模型 ①分子之间无相互作用力,E = 0
pV=nRT
➢临界压力 pc ——临界温度下使气体液化所需要
的最低压力,即为临界压力
➢临界摩尔体积Vm,c ——临界温度和临界压力下气
体的摩尔体积,即为临界摩尔体积
➢临界参数——物质临界状态下的Tc、 pc 、Vm,c
统称为物质的临界参数,是物质的特性参数
➢临界点——物质具有Tc、 pc 、Vm,c临 界参数
的临界状态点,称为物质的临界点
p Vm
Tc
0
2 p Vm2
Tc
0
➢超临界流体SCF——
§1 .4 真实气体的状态方程
真
范德华方程 (Van der Waals equation)
实
气
维里方程 (Kammerlingh - Onnes
体
equation)
的 状
R-K 方程 (Redlich – Kwong equation)
p
a Vm2
0
2 p Vm2
Tc
0
p Vm
Tc
RTc (Vm b)2
2a Vm3
0
2 p Vm2
Tc
2RTc (Vm b)3
6a Vm4
0
V m,c 3b
8a Tc 27Rb
pc
第一章气体的pVT关系

mB wB mA
def A
1.2.2
其量纲为 1, wB = 1
(3)体积分数 B ,定义为混合前纯B的体积与各纯组分
体积总和之比
B
def
x V
A
* xBVm ,B * A m, A
1.2.3
(量纲为1) B = 1
2. 理想气体状态方程对理想气体混合物的应用
因理想气体分子间没有相互作用,分子本身又不占 体积,所以理想气体的 pVT 性质与气体的种类无关,因 而一种理想气体的部分分子被另一种理想气体分子置换, 形成的混合理想气体,其 pVT 性质并不改变,只是理想 气体状态方程中的 n 此时为总的物质的量。
以上三式结合 pV = nRT 单位:
理想气体状态方程
p Pa; V m3; T K; n mol ; R 摩尔气体常数 8.3145 10 J mol-1 K-1 理想气体状态方程也可表示为: pVm=RT pV = (m/M)RT 以此可相互计算 p, V, T, n, m, M, (= m/ V)。
第一章
低压气体定律:
气体的 pVT 关系
1. 理想气体状态方程
(1)波义尔定律:在物质的量和温度恒定的条件下, 气体的体积与压力成正比,即 pV = 常数 ( n ,T 一定) (2)盖.吕萨克定律:当物质的量和压力恒定时, 气体的体积与热力学温度成正比,即 V / T = 常数 (n , p 一定) (3)阿伏加德罗定律:在相同的温度,压力下,1mol 任何气体占有相同体积,即 V / n = 常数 (T, p 一定)
饱和蒸气压首先由物质的本性决定。对于同一种物质, 它是温度的函数,随温度升高而增大。
饱和蒸气压 = 外压时,液体沸腾,此时的的温度称为 沸点。饱和蒸气压 = 1个大气压时的沸点称为正常沸点。 在沸腾时,液体表面及内部分子同时汽化。
气体的pVT关系及其应用

水蒸气的分压 pD 2.670kPa 。
nA / nB 0.89 / 0.02
nA /(nA nB ) 0.89 /(0.89 0.02) 0.89 / 0.91
pA pB p pD (101.325 2.670)kPa 98.655kPa
对于混合混合压力之比等于物质的量之比,故
Vm p
TB
在T
TB
下,当压力趋于零时,上式中的
Vm p
TB
0 ,故必然存在
由上式可得
RTB Vm b
RTBVm (Vm b)2
a Vm2
0
a RTBVm RTB Vm2 (Vm b)2 Vm b
1.15 试由波意耳温度 TB 的定义式,证明范德华气体的 TB 可表示为 TB a / bR
式中 a,b 为范德华常数。
证:当T TB 时任一真实气体有
范德华方程可表示为
lim{
p0
(
pVm
)
/
p}TB
0
pVm RTVm (Vm b) a /Vm
上式在 T TB 下对 p 微分可得
解: CO2 (g) 的范德华常数 a 0.3640Pa m6 mol2 ;
b 0.4267 104 m3 mol1
( p a /Vm2 )(Vm b) RT
p RT /(Vm b) aVm2 {8.3145 313.15 /(0.381103 0.4267 104 ) 0.3640 /(0.381103)2}Pa 5187.7kPa
先将范德华方程整理成
p (RT /Vm ){1/(1 b /Vm )} a /Vm2
第1章气体的pVt关系

1.4.1 Van der Waals 方程 2 n ( p a 2 )(V nb) nRT V
b为1mol气体分子自身体积的影响。 分子间吸引力正比于(n/V)2 内压力 p′=a(n/V)2 pideal=preal+a(n/V)2 Van der Waals方 1 ( p a )( V b ) RT m 2 种的另一种形式 V
p1 p2 189 186 100% 1.61% p2 186 ’ 3 V 2.00dm3 p1 1.89103 kPa p’ 1 . 59 10 kPa 2
’ ’ 3 p1 p2 (1.89 1.59) 10 100% 18.9% ’ 3 p2 1.59 10
a (p )(Vm b) RT 2 TVm
22
1.5压缩因子与普遍化压缩因子图
1.5.1真实气体的pVm-p图及波义尔温度
pVm/[pVm] C B A pVm/[pVm]
TB
p/[p]
图1.5.1不同气体在同一温度
下的pVm-p等温线
p/[p]
图1.5.2同一种气体在不同温度 下的pVm-p等温线
第1章 气体的p-T-V关系
1.1理想气体状态方程
低压下气体的三个经验定律: 1)Boyle定律:
pV=常数 V/T=常数 V/n=常数
(n、T一定) (n、p一定) (T、p一定) pV= nRT
R—通用气体常数
2)Gay-Lussac定律: 3)Avogadro定律:
精确值:R=(8.314510±0.000070)J· mol-1· K-1
mB wB def mA
A
nB xB (或yB ) def nA
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 气体的pVT 关系
主要内容
1.理想气体和理想气体状态方程
(1)理想气体
凡在任何温度、压力下均服从B V 的气体称为理想气体。
理想气体具有两个特征:
(Ⅰ)分子本身不占有体积。
(Ⅱ)分子间无相互作用力。
(2)理想气体状态方程
nRT pV = RT pV =m
理想气体状态方程适用于理想气体和低压条件下的实际气体。
2.道尔顿分压定律和阿马格分体积定律
(1)分压力
分压力定义为:在总压力为p 的混合气体中,任一组分B 的分压力B p 等于它的物质的量分数B y 与混合气体中压力p 之积。
即 p y p B B = p p =∑B B
此二式适用于理想气体混合物和非理想气体混合物。
对于理想气体有
V RT n p B B =
(2)道尔顿定律 道尔顿定律:混合气体的总压力等于各组分单独存在于混合气体的,T V 条件下所产生压力的总和。
即 V
RT n p /)(B B ∑=
此定律适用于混合理想气体和低压混合气体。
(3)分体积
分体积B V 是所含n B 的B 单独存在于混合气体的,T P 条件下占有的体积。
)/(B B p RT n V = V y V B B =
两式适用于理想气体和低压条件下的混合气体。
(4)阿马格定律
阿马格定律:混合气体各组分的分体积之和与总体积相等,即
p RT n V V V
/)(,B B B B ∑∑==
3.实际气体的PVT 性质
(1)实际气体的PVT 性质
RT pV nRT pV Z /)/( def m =
理想气体状态方程与实际气体状态方程有偏差,偏差值为修正因子,称压缩因子Z 。
Z 的数值直接表示出实际气体对理想气体的偏差程度。
(2)范德华方程与维里方程
①范德华方程
气体物质的量为1mol 的范德华方程:()m 2m a p b V RT V ⎛
⎫+-= ⎪⎝⎭
a 、范氏方程只适用中压范围。
b 、当p →0时,范氏方程可还原为理想气体方程。
②维里方程
+++=+⎪⎭⎫ ⎝⎛'+⎪⎭⎫ ⎝⎛'+'=2211Cp Bp A V C V B A pV
4.实际气体的液化与临界性质
(1)饱和蒸气压与沸点
在一定温度下,当液(或固)体与其蒸气达成液(或固)、气两相平衡时,此时气相的压力则称为该液(或固)体在该温度下的饱和蒸气压,简称蒸气压。
沸点:当液体饱和蒸气压与外压相等时,液体沸腾,此时相应的温度称为液体的沸点。
正常沸点:101.325KPa 外压下的沸点。
水是373.15K 。
(2)实际气体的液化
气体加压所允许的最高温度称为临界温度,以T c 表示;
气体在临界温度时发生液化所需的最小压力称为临界压力,以p c 表示;
物质在临界温度、临界压力的摩尔体积成为临界摩尔体积,以V m,c 表示。
T c 、p c 、V m,c 称为物质的临界参数。
它是物质固有的一种特性参数。
物质处在临界温度、临界压力下的状态称为临界状态。
5.对比参数、对应状态原理
(1)对比参数
r c r m,c m r c T T T V V V p p p ===
p r 、T r 、V r :分别称对比压力、对比温度、对比体积,又统称为气体的对比参数。
对比参数反映了气体所处状态偏离临界点的倍数。
(2)对应状态原理:各种不同的气体,只要有两个对比参数相同,则第三个对比参数必定(大致)相同。
()0,,r r r =T V p f
具有相同对比参数的气体称为处于相同的对应状态。
由于各种气体的Z C 近似相同,如果它们处于对应状态,必有相同的压缩因子。
()r r ,T p f Z =
重要公式
1.n PV RT = RT pV =m
2.y B B P P = B B P
P =∑
3.B B V V =∑ n /B B V RT P ⎛⎫= ⎪⎝⎭
∑
()m 2m a 4.b P V RT V ⎛⎫+-= ⎪⎝
⎭ 5.n PV Z RT =。