midasgen学习总结
(总结)midas-gen学习总结

(总结)midas-gen学习总结Midas Gen学习总结、YJK导入gen (详见“ YJ K莫型转midas模型程序功能与使用”)YJK.MIDAS 接口程序版本选择口Ver. 730 V^r.300墙休转换。
板t茴醴元楼屋面荷载板上均布荷载□导到周圉梁箱质星来源同¥JK <: MIDAS自算楼扳克现O楼板分块⑶?刑点)? ¥JK网格划分转换施工欖拟次序□峙掀屈曲分析1. 版本选择选择版本V7.30, YJK中的地震反应谱函数和反应谱工况的相关内容不转换V8.00则进行转换。
建议取V8.00。
2. 质量来源(质量源)同YJK查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。
建议取此选项。
Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型” 中参数“将自重转化为质量”也自动勾选。
转入了在YJK定义的各种材料重度及密度。
3. 墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。
YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK导入后查看是否存在整层节点"刚性连接”。
导到周围梁墙:导入midas楼面荷载分配到周边梁墙。
二、gen建模、分析1建模过程:(cad导入法)①前期准备:修改模型单位(mm 定义材料、截面和厚度;②构件建模:从cad中导入梁T单元扩展生成柱墙T墙体分割与开洞T定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)T分配楼面荷载和施加梁荷载T定义风荷载T定义反应谱和地震作用(Rx、Ry)T定义自重;④补充定义:荷载转化成质量T结构自重转化成质量T定义边界(支承条件、释放约束)T定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。
(总结)midasgen学习总结讲解(可编辑修改word版)

Midas Gen 学习总结一、YJK 导入gen(详见“YJK 模型转midas 模型程序功能与使用”)1.版本选择选择版本V7.30,YJK 中的地震反应谱函数和反应谱工况的相关内容不转换V8.00 则进行转换。
建议取V8.00。
2.质量来源(质量源)同YJK:查看midas 工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK 完全一致,不需要在gen 中再将荷载和自重转换为质量。
建议取此选项。
Midas 自算:查看midas 工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。
转入了在YJK 定义的各种材料重度及密度。
3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas 的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4.楼板表现楼板分块:导入到midas 楼板为3 节点或4 节点楼板,需要在midas 划分网格。
YJK 网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas 网格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋面荷载板上均布荷载:导入midas 楼面荷载同YJK。
导入后查看是否存在整层节点“刚性连接”。
导到周围梁墙:导入midas 楼面荷载分配到周边梁墙。
二、gen 建模、分析1、建模过程:(cad 导入法)① 前期准备:修改模型单位(mm)→ 定义材料、截面和厚度;② 构件建模:从cad 中导入梁→ 单元扩展生成柱墙→ 墙体分割与开洞→ 定义楼板类型(刚性板/弹性板);③ 施加荷载:定义静力荷载工况(恒、活、X/Y 风)→分配楼面荷载和施加梁荷载→ 定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④ 补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤ 运行分析:先设定特征值的振型数量,然后点击运行分析。
(总结)midas-gen学习总结

Midas Gen学习总结、YJK导入gen (详见“ YJ K莫型转midas模型程序功能与使用”)YJK.MIDAS 接口程序版本选择口Ver. 730 V^r.300墙休转换。
板t茴醴元楼屋面荷载板上均布荷载□导到周圉梁箱质星来源© 同¥JK <: MIDAS自算楼扳克现O楼板分块⑶•刑点)« ¥JK网格划分转换施工欖拟次序□峙掀屈曲分析1. 版本选择选择版本V7.30, YJK中的地震反应谱函数和反应谱工况的相关内容不转换V8.00则进行转换。
建议取V8.00。
2. 质量来源(质量源)同YJK查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。
建议取此选项。
Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型” 中参数“将自重转化为质量”也自动勾选。
转入了在YJK定义的各种材料重度及密度。
3. 墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。
YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK导入后查看是否存在整层节点"刚性连接”。
导到周围梁墙:导入midas楼面荷载分配到周边梁墙。
二、gen建模、分析1建模过程:(cad导入法)①前期准备:修改模型单位(mm 定义材料、截面和厚度;②构件建模:从cad中导入梁T单元扩展生成柱墙T墙体分割与开洞T定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)T分配楼面荷载和施加梁荷载T定义风荷载T定义反应谱和地震作用(Rx、Ry)T定义自重;④补充定义:荷载转化成质量T结构自重转化成质量T定义边界(支承条件、释放约束)T定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。
midasgen学习总结

一、YJK导入gen(详见“YJK模型转midas模型程序功能与使用”)1.版本选择选择版本,YJK中的地震反应谱函数和反应谱工况的相关内容不转换则进行转换。
建议取。
2.质量来源(质量源)同YJK:查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。
建议取此选项。
Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。
转入了在YJK定义的各种材料重度及密度。
3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。
YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK。
导入后查看是否存在整层节点“刚性连接”。
导到周围梁墙:导入midas楼面荷载分配到周边梁墙。
二、gen建模、分析1、建模过程:(cad导入法)①前期准备:修改模型单位(mm)→定义材料、截面和厚度;②构件建模:从cad中导入梁→单元扩展生成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)→分配楼面荷载和施加梁荷载→定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。
2、分析结果①添加荷载组合;②周期与振型(对应周期比,与YJK对比分析的第一步);③稳定验算(对应刚重比);④侧向刚度不规则验算(对应侧向刚度比,考虑Ex、Ey);⑤楼层承载力突变验算(对应层剪力比,考虑Ex、Ey);⑥层剪重比(反应谱分析)(对应剪重比, ,考虑Ex、Ey);⑦层间位移角(对应层间位移角,考虑Wx、Wy、Ex、Ey);⑧扭转不规则验算(对应层间位移比,考虑Ex、Ey、ECCX(RS)、ECCY(RS))。
MIDAS gen中分析报错总结

Gen中分析报错总结1、MAXIMUM NUMBER OF ITERATION HAS BEEN REACHEDCHECK TOLERANCE IN THE VIBRATION RESULT TABLERECOMMENDATION FOR BETTER CONVERGENCE :INCREASE THE SUBSPACE DIMENSION GREATER THANMIN(2Nf, Nf+8) (Nf=NUMBER OF FREQUENCIES)得到最大迭代次数,请在振动结果表中检查公差。
建议增加子空间维数,大于MIN(2Nf, Nf+8) Nf=数量的频率解:修改“子空间大小”2、节点奇异解:要查看边界条件及荷载加载3、静力弹塑性分析的报错,例题“上海建工林晨”[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 20171[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 2024[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 4059[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 4306[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 4323[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 4570[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 4587[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 4834[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 4850[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5098[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5114[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5131[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5367[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5384[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5401[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING :1[My_I-End] COMP. OF BEAM NO. 5422[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5645[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5647[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5652[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5652[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5653[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5661[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5678[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5699[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_J-End] COMP. OF BEAM NO. 5717[WARNING] : THE YIELDING OCCURRED IN THE INELASTIC HINGE BY INITIAL LOADING : [My_I-End] COMP. OF BEAM NO. 5891< PUSHOVER LOADCASE NO. 1 / 1 >* INCREMENT METHOD : DISPLACEMENT CONTROL( Maximum Translational Displacement )* ANALYSIS OPTION : P-DELTA* CONSIDERING INITIAL LOADCASE* LOADCASE LOAD TYPE : MODE SHAPE* INCORE MULTI-FRONTAL SOLVER1。
(完整word版)(总结)midasgen学习总结讲解

Midas Gen 学习总结一、YJK导入gen(详见“YJK模型转midas模型程序功能与使用”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱工况的相关内容不转换V8.00则进行转换。
建议取V8.00。
2.质量来源(质量源)同YJK:查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。
建议取此选项。
Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。
转入了在YJK定义的各种材料重度及密度。
3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。
YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK。
导入后查看是否存在整层节点“刚性连接”。
导到周围梁墙:导入midas楼面荷载分配到周边梁墙。
二、gen建模、分析1、建模过程:(cad导入法)①前期准备:修改模型单位(mm)→定义材料、截面和厚度;②构件建模:从cad中导入梁→单元扩展生成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)→分配楼面荷载和施加梁荷载→定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。
(总结)midasgen学习总结

(总结)midasgen学习总结Midas Gen 学习总结⼀、YJK导⼊gen(详见“YJK模型转midas模型程序功能与使⽤”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱⼯况的相关内容不转换V8.00则进⾏转换。
建议取V8.00。
2.质量来源(质量源)同YJK:查看midas⼯作树形菜单中“质量”只有节点质量,各节点的质量⼤⼩及分布与YJK完全⼀致,不需要在gen中再将荷载和⾃重转换为质量。
建议取此选项。
Midas⾃算:查看midas⼯作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将⾃重转化为质量”也⾃动勾选。
转⼊了在YJK定义的各种材料重度及密度。
3.墙体转换板:墙与连梁(墙开洞⽅式)都转换成midas的板单元,⾃动⽹格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4. 楼板表现楼板分块:导⼊到midas楼板为3节点或4节点楼板,需要在midas划分⽹格。
YJK⽹格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导⼊midas⽹格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋⾯荷载板上均布荷载:导⼊midas楼⾯荷载同YJK。
导⼊后查看是否存在整层节点“刚性连接”。
导到周围梁墙:导⼊midas楼⾯荷载分配到周边梁墙。
⼆、gen建模、分析1、建模过程:(cad导⼊法)①前期准备:修改模型单位(mm)→定义材料、截⾯和厚度;②构件建模:从cad中导⼊梁→单元扩展⽣成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静⼒荷载⼯况(恒、活、X/Y风)→分配楼⾯荷载和施加梁荷载→定义风荷载→定义反应谱和地震作⽤(Rx、Ry)→定义⾃重;④补充定义:荷载转化成质量→结构⾃重转化成质量→定义边界(⽀承条件、释放约束)→定义结构类型和层数据;⑤运⾏分析:先设定特征值的振型数量,然后点击运⾏分析。
(总结)midasgen学习总结讲解

Midas Gen 学习总结一、YJK导入gen(详见“YJK模型转midas模型程序功能与使用”)1.版本选择选择版本V7.30,YJK中的地震反应谱函数和反应谱工况的相关内容不转换V8.00则进行转换。
建议取V8.00。
2.质量来源(质量源)同YJK:查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。
建议取此选项。
Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。
转入了在YJK定义的各种材料重度及密度。
3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。
YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK。
导入后查看是否存在整层节点“刚性连接”。
导到周围梁墙:导入midas楼面荷载分配到周边梁墙。
二、gen建模、分析1、建模过程:(cad导入法)①前期准备:修改模型单位(mm)→定义材料、截面和厚度;②构件建模:从cad中导入梁→单元扩展生成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)→分配楼面荷载和施加梁荷载→定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Midas Gen 学习总结一、YJK导入gen(详见“YJK模型转midas模型程序功能与使用”)1.版本选择选择版本,YJK中的地震反应谱函数和反应谱工况的相关内容不转换则进行转换。
建议取。
2.质量来源(质量源)同YJK:查看midas工作树形菜单中“质量”只有节点质量,各节点的质量大小及分布与YJK完全一致,不需要在gen中再将荷载和自重转换为质量。
建议取此选项。
Midas自算:查看midas工作树形菜单中“质量”有荷载转化为质量,同时“结构类型”中参数“将自重转化为质量”也自动勾选。
转入了在YJK定义的各种材料重度及密度。
3.墙体转换板:墙与连梁(墙开洞方式)都转换成midas的板单元,自动网格划分,分析结果较墙单元精确,但不能按规范给出配筋设计。
墙单元:墙转换成墙单元的板类型,连梁转换成梁单元。
分析结果没有板单元精确,但能按规范给出配筋设计。
4. 楼板表现楼板分块:导入到midas楼板为3节点或4节点楼板,需要在midas划分网格。
YJK网格划分:需要将楼板定义为弹性板,并勾选与梁变形协调,导入midas网格已划分,同时梁也实现分割,与板边界耦合。
4.楼屋面荷载板上均布荷载:导入midas楼面荷载同YJK。
导入后查看是否存在整层节点“刚性连接”。
导到周围梁墙:导入midas楼面荷载分配到周边梁墙。
二、gen建模、分析1、建模过程:(cad导入法)①前期准备:修改模型单位(mm)→定义材料、截面和厚度;②构件建模:从cad中导入梁→单元扩展生成柱墙→墙体分割与开洞→定义楼板类型(刚性板/弹性板);③施加荷载:定义静力荷载工况(恒、活、X/Y风)→分配楼面荷载和施加梁荷载→定义风荷载→定义反应谱和地震作用(Rx、Ry)→定义自重;④补充定义:荷载转化成质量→结构自重转化成质量→定义边界(支承条件、释放约束)→定义结构类型和层数据;⑤运行分析:先设定特征值的振型数量,然后点击运行分析。
2、分析结果①添加荷载组合;②周期与振型(对应周期比,与YJK对比分析的第一步);③稳定验算(对应刚重比);④侧向刚度不规则验算(对应侧向刚度比,考虑Ex、Ey);⑤楼层承载力突变验算(对应层剪力比,考虑Ex、Ey);⑥层剪重比(反应谱分析)(对应剪重比, ,考虑Ex、Ey);⑦层间位移角(对应层间位移角,考虑Wx、Wy、Ex、Ey);⑧扭转不规则验算(对应层间位移比,考虑Ex、Ey、ECCX(RS)、ECCY(RS))。
⑨层位移(对应位移比,考虑Ex、Ey、ECCX(RS)、ECCY(RS))还可以查看:反力、变形、内力、应力、倾覆弯矩、质量比、偏心率等结果。
三、相关设计要点1.Gen提供了自动生成风荷载的功能,该功能一般适用于各层均有刚性楼板的结构上。
Q:要是弹性楼板,风荷载还能自动生成吗?2.P-Delta分析控制:此处应指重力二阶效应P-△(应注意区分构件挠曲二阶效应P-δ,两者组成了建筑结构的几何非线性二阶效应)。
Gen推荐只考虑恒载工况,而YJK为恒活工况组合。
另外Gen做P-Delta分析建议解除刚性板假定。
3.特征值分析:gen默认采用Lanczos,YJK默认采用WYD-Ritz。
4.Gen关于楼板的定义①如何考虑YJK中楼板的定义:注:局部楼板为弹性楼板,在midas gen中如何实现?答:在“边界条件”中的“解除刚膜连接”来实现。
②厚板与薄板:厚板考虑了横向剪切变形的影响,与板的实际情况更符合。
③约束平面内旋转自由度:勾选,板单元与梁单元间的连接为刚接,不勾选则铰接。
④楼板是否建入模型中楼板即使建入,也不能考虑板对梁翼缘的刚度贡献,即梁刚度还是需手动设放大系数。
当采用“分配楼面荷载”输入时,可不建板。
但当按“压力荷载”输入时,必须有楼板,此情况适用于楼板温度应力、舒适度、大开洞、异形板分析等情况。
5.如何建立虚梁截面定义为100x100,弹性模量设为较小值,容重设置为0。
6.midas/gen应用实例教程及疑难解答条指出“程序规定将风荷载加在楼板刚心上,如果解除其中一层刚性楼板假定,会把风荷载分配到相邻上下两层中。
”经实践,勾选“对弹性板考虑风荷载和静力地震作用”,将风荷载自动分配到本楼层的所有节点上。
四、板单元内力与应力查看1.板单元内力:Mxx:作用在与局部坐标系或用户坐标系x轴垂直平面内,绕y轴旋转的单位宽度弯矩(绕局Myy:作用在与局部坐标系或用户坐标系y轴垂直平面内,绕x轴旋转的单位宽度弯矩(绕局Mxy:作用在与局部坐标系或用户坐标系x轴垂直平面内,绕x轴旋转的单位宽度扭矩(Mxy=Myx)。
Vxx:作用在与局部坐标系或用户坐标系x轴垂直平面内,沿单元局部坐标系或用户坐标系z轴(厚度)方向上单位宽度的剪力。
Vyy:作用在与局部坐标系或用户坐标系y轴垂直平面内,沿单元局部坐标系或用户坐标系z轴(厚度)方向上单位宽度的剪力。
2.板单元应力在整体坐标系中Sig-XX:整体坐标系X轴方向的轴向应力。
Sig-YY:整体坐标系Y轴方向的轴向应力。
Sig-ZZ:整体坐标系Z轴方向的轴向应力。
Sig-XY:整体坐标系X-Y平面内的剪应力。
Sig-YZ:整体坐标系Y-Z平面内的剪应力。
Sig-XZ:整体坐标系X-Z平面内的剪应力。
Sig-Max:最大主应力。
Sig-Min:最小主应力。
Sig-EFF:有效应力(von-Mises 应力)。
在单元坐标系中Sig-xx:在单元局部坐标系x方向的轴向应力(垂直于局部坐标系y-z平面)Sig - yy:在单元局部坐标系y方向的轴向应力(垂直于局部坐标系x-z平面)Sig - xy:单元局部坐标系x-y平面内的剪应力(平面内剪应力)向量:用矢量显示最大和最小主应力。
3.通过板内力与应力求得配筋梁①普通工况(对于楼板,主要考虑恒活,对于墙,主要考虑风、地震)对于楼板,配筋可查看Mxx、Myy,而板顶和板底应力由Mxx和Myy引起,关系如下图:由图上可知,q1=q2=,Mxx=,板厚130mm,混凝土标号C35,a s=25mm,As=,取1m作为计算长度。
复核过程:Mxx=2M1=-2q1L2/3=-2x()x652/3x1000=。
配筋根据Mxx求As,计算截面取1000x130,使用探索者计算工具按抗弯构件正截面验算求得As=。
通过复核,数据吻合。
另外通过实践发现,应力和配筋之间的比值近似相同,具体详见“应力配筋法”。
②温度工况Gen在计算温度作用时,需注意:1.楼板释放刚性板假定,查看“刚性连接”和层数据;2.楼板面内面外厚度均按实际,同弹性板6,并进行网格划分;3.通常按“系统温度”输入,输入数值等于YJK输入温差乘以徐变折减系数(注意:YJK查看温度应力,应查看调整后,“调整后”即考虑徐变折减)。
通过查看Fxx和Fyy,按轴向受拉构件计算温降工况下的配筋量,分项系数取,组合值系数取(是否考虑,要对比温度荷载和活荷载,判断温度荷载是否会成为主导活荷载或称第一活荷载,此系数对配筋影响很大)。
(参考资料中通常采用温度应力sig-xx和sig-yy才表示温降工况的影响,sig-xx=Fxx/h,h为板厚)案例:湘东医院,框架结构,X向近120米,中间跨楼板Fxx大致为180kN,C30,板厚120,三级钢,不考虑组合值系数。
一层板底X向额外附加钢筋As1=360/2=350mm2。
五、组合结构分析设计要点1、钢结构与混凝土的连接,一般取弹性连接;2、组阻尼:按应变能因子输入,在反应谱荷载工况的“阻尼比计算方法”选择应变能因子。
3、风荷载:定义速度压后,按面风压、梁单元风压、节点风压自动施加,不需要加蒙皮。
通过“风荷载形状”复核。
六、楼板舒适度分析1.竖向自振频率(混规条和高钢规)①按弹性板建立模型,网格划分按成人步距,一般可取~。
②定义质量:将自重转换为质量,转换为Z;将荷载转换成质量,方向为Z,取恒+活。
③振型数量:满足振型质量参与系数90%④结果查看:2.楼盖加速度峰值(高规条)①前期准备弹性模量修改:midas杨工指出动力荷载作用下混凝土弹性模量可放大倍。
初始荷载:先定义一个D+L的工况组合,然后“使用荷载组合”建立荷载工况。
②定义时程荷载工况参数中一般选择“线性”、“振型叠加法”、“瞬态”;分析时间:当采用连续步行荷载时,分析时间不小于荷载时间。
当采用单步(分单步单工况和单步多工况)步行荷载时,与荷载时间保持一致。
分析时间步长:取基本周期(midas杨工指出是取满足振型质量参与系数90%时,最大振型数对应的周期)的10%。
加载顺序:连续和单步单工况,初始条件取之前定义好的初始荷载D+L。
单步多工况时,第一工况无初始条件,后续工况按前一工况作为初始条件。
阻尼比:混凝土结构取,钢结构取。
③定义时程函数步行荷载工况时程函数:主要用到“行走1步”和“连续行走”,fs根据慢走和快走取~,其中连续行走通过反复次数来控制荷载时间。
放大系数:单人行走取1,多人行走按以下取值:人群密度小于人/m2,放大系数取人群总人数开根号,人群密度大于1人/m2,放大系数取人群总人数开根号,再乘以。
④指定节点动力荷载连续步行:输入工况和函数,方向取Z,到达时间不用修改,系数取-1。
单步单工况:输入工况和函数,方向取Z,到达时间按路径上各节点依次输入,系数取-1。
单步多工况:输入第一个工况和单步函数,方向取Z,到达时间取0,系数取-1。
然后依次输入其他工况。
⑤分析结果查看时程图形,定义函数:选择节点,勾选加速度,成分取Z。
然后从函数列表添加到竖轴。
注:若严格按高规附录A进行验算,上述参数中时程函数放大选择“最大值”,阻尼比按附录A取值。