SPSS多元线性回归分析实例操作步骤之欧阳歌谷创编

合集下载

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。

接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。

首先,准备好您的数据。

数据应该以特定的格式整理,通常包括自变量和因变量的列。

确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。

打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。

在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。

这将打开多元线性回归的对话框。

在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。

接下来,点击“统计”按钮。

在“统计”对话框中,您可以选择一些常用的统计量。

例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。

根据您的具体需求选择合适的统计量,然后点击“继续”。

再点击“图”按钮。

在这里,您可以选择生成一些有助于直观理解回归结果的图形。

比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。

选择完毕后点击“继续”。

然后点击“保存”按钮。

您可以选择保存预测值、残差等变量,以便后续进一步分析。

完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。

结果通常包括多个部分。

首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。

R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。

其次是方差分析表,用于检验整个回归模型是否显著。

如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。

最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。

回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度(人/平方公里) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).2 城市居民人均可支配收入(元) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

SPSS多元线性回归分析教程

SPSS多元线性回归分析教程

线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。

数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze / Regression / Linear…,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。

在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:图7-9 线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。

如Regression Coefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。

Model fit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完成后点击Continue返回主对话框。

图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。

利用SPSS进行logistic回归分析(二元、多项)之欧阳法创编

利用SPSS进行logistic回归分析(二元、多项)之欧阳法创编

线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。

Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic 回归。

还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic 回归。

二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。

有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。

把你的自变量选到协变量的框框里边。

细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。

我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。

那么我们为了模型的准确,就把这个交互效应也选到模型里去。

我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。

然后在下边有一个方法的下拉菜单。

默认的是进入,就是强迫所有选择的变量都进入到模型里边。

除去进入法以外,还有三种向前法,三种向后法。

一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。

再下边的选择变量则是用来选择你的个案的。

多元线性回归分析spss

多元线性回归分析spss

多元线性回归分析spss
多元线性回归分析是一种常用的统计分析技术,用于对各因素之间的相互关系进行研究。

使用多元线性回归分析,可以检验一个或多个自变量对因变量具有统计学显著性的影响,从而推断出实际世界存在的不同因素可能带来的影响。

在spss中,我们使用下拉菜单选择“分析”>“回归”>“多元”来开始多元线性回归分析。

在多元线性回归窗口中,我们可以在右边的“可用变量”列中选择变量,拖拽到“因变量”和“自变量”栏中。

接下来,我们可以选择要使用的模型类型,其中包括多元线性回归,截距,变量中心以及相关的其他预测结果。

在进行模型拟合之前,我们可以在“多重共线性”复选框中对共线性进行调整,进行预测和显著性检验,并调整“参数估计”和“残差”复选框,自由地绘制结果。

在运行了多元线性回归分析之后,在spss中,我们可以在输出窗口中查看多元回归方程的系数和检验的结果,以及它们对回归系数的影响,残差分布情况,多重共线性分析和其他一些输出参数。

总而言之,spss中多元线性回归分析是一种有效的统计分析方法,可以用来检验多个自变量对回归方程的影响。

它具有许多内置功能,可以容易地针对回归系数和其他参数进行各种分析,提供了可信的结果,帮助人们深入了解各类因素对研究结果的影响。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。

SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。

本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。

步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。

数据应包含一个或多个自变量和一个因变量,以便进行回归分析。

数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。

步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。

可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。

确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。

步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。

在对话框中,将因变量和自变量移入相应的输入框中。

可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。

步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。

例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。

根据需要,适当调整这些选项。

步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。

结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。

步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。

SPSS多元线性回归分析实例操作步骤之欧阳歌谷创作

SPSS多元线性回归分析实例操作步骤之欧阳歌谷创作

SPSS 统计分析欧阳歌谷(2021.02.01)多元线性回归分析方法操作与分析实验目的:引入1998~上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法 软件:spss19.0 操作过程:第一步:导入Excel 数据文件 第二步:进入如下界面: 输出结果分析: 1.引入/剔除变量表该表显示模型最先引入变量城市人口密度 (人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量Variables Entered/RemovedaModel Variables Entered Variables RemovedMethod1城市人口密度 (人/平方公里). Stepwise (Criteria: ProbabilityofFtoenter <= .050,ProbabilityofFtoremove >= .100).2城市居民人均可支配收入(元). Stepwise (Criteria: ProbabilityofFtoenter <= .050,ProbabilityofFtoremove >= .100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示各模型的方差分析结果。

从表中可以看出,模型的F统计量的观察值为23832.156,概率p值为0.000,在显著性水平为0.05的情形下,可以认为:商品房平均售价(元/平方米)与城市人口密度 (人/平方公里),和城市居民人均可支配收入(元)之间有线性关系。

3.回归系数CoefficientsaMinimum Maximum Mean Std. Deviation N Predicted Value3394.718382.835465.641957.30211Residual47.03540.271.00025.35711 Std. Predicted Value 1.058 1.490.000 1.00011 Std. Residual 1.659 1.420.000.89411 a. Dependent Variable: 商品房平均售价(元/平方米)该表为回归模型的残差统计量,标准化残差(Std.Residual)的绝对值最大为1.659,没有超过默认值3,不能发现奇异值。

多元回归分析SPSS案例

多元回归分析SPSS案例

多元返回分解之阳早格格创做正在大普遍的本质问题中,效率果变量的果素不是一个而是多个,咱们称那类回问题为多元返回分解.不妨修坐果变量y 与各自变量x j(j=1,2,3,…,n)之间的多元线性返回模型:其中:b0是返回常数;b k(k=1,2,3,…,n)是返回参数;e是随机缺面.多元返回正在病虫预报中的应用真例:某天区病虫测报站用相闭系数法采用了以下4个预报果子;x1为最多连绝10天诱蛾量(头);x2为4月上、中旬百束小谷草把乏计降卵量(块);x3为4月中旬降火量(毫米),x4为4月中旬雨日(天);预报一代粘虫幼虫爆收量y(头/m2).分级别数值列成表2-1.预报量y:每仄圆米幼虫0~10头为1级,11~20头为2级,21~40头为3级,40头以上为4级.预报果子:x1诱蛾量0~300头为l级,301~600头为2级,601~1000头为3级,1000头以上为4级;x2卵量0~150块为1级,15l~300块为2级,301~550块为3级,550块以上为4级;x3降火量毫米为1级,毫米为2级,毫米为3级,毫米以上为4级;x4雨日0~2天为1级,3~4天为2级,5天为3级,6天大概6天以上为4级.表2-1x1 x2 x3 x4 y年蛾量级别卵量级别降火量级别雨日级别幼虫稀度级别1960 1022 4 112 1 1 2 1 10 1 1961 300 1 440 3 1 1 1 4 1 1962 699 3 67 1 1 1 1 9 1 1963 1876 4 675 4 4 7 4 55 4 1965 43 1 80 1 1 2 1 1 1 1966 422 2 20 1 0 1 0 1 3 1 1967 806 3 510 3 2 3 2 28 3 1976 115 1 240 2 1 2 1 7 1 1971 718 3 1460 4 4 4 2 45 4 1972 803 3 630 4 3 3 2 26 3数据死存正在“”文献中.1)准备分解数据正在SPSS数据编写窗心中,创修“年份”、“蛾量”、“卵量”、“降火量”、“雨日”战“幼虫稀度”变量,并输进数据.再创修蛾量、卵量、降火量、雨日战幼虫稀度的分级变量“x1”、“x2”、“x3”、“x4”战“y”,它们对于应的分级数值不妨正在SPSS数据编写窗心中通过预计爆收.编写后的数据隐现如图2-1.2-1大概者挨开已存留的数据文献“”.2)开用线性返回历程单打SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将挨开如图2-2所示的线性返回历程窗心.图2-2 线性返回对于话窗心3) 树坐分解变量树坐果变量:用鼠标选中左边变量列表中的“幼虫稀度[y]”变量,而后面打“Dependent”栏左边的背左推按钮,该变量便移到“Dependent”果变量隐现栏里.树坐自变量:将左边变量列表中的“蛾量[x1]”、“卵量[x2]”、“降火量[x3]”、“雨日[x4]”变量,选移到“Independent(S)”自变量隐现栏里.树坐统造变量: 原例子中不使用统造变量,所以不采用所有变量.采用标签变量: 采用“年份”为标签变量.采用加权变量: 原例子不加权变量,果此不做所有树坐.4)返回办法原例子中的4个预报果子变量是通过相闭系数法采用出去的,正在返回分解时不干筛选.果此正在“Method”框中选中“Enter”选项,修坐齐返回模型.5)树坐输出统计量单打“Statistics”按钮,将挨开如图2-3所示的对于话框.该对于话框用于树坐相闭参数.其中各项的意思分别为:图2-3 “Statistics”对于话框①“Regression Coefficients”返回系数选项:“Estimates”输出返回系数战相闭统计量.“Confidence interval”返回系数的95%置疑区间.“Covariance matrix”返回系数的圆好-协圆好矩阵.原例子采用“Estimates”输出返回系数战相闭统计量.②“Residuals”残好选项:“Durbin-Watson”Durbin-Watson考验.“Casewise diagnostic”输出谦脚采用条件的瞅丈量的相闭疑息.采用该项,底下二项处于可选状态:“Outliers outside standard deviations”采用尺度化残好的千万于值大于输进值的瞅丈量;“All cases”采用所有瞅丈量.原例子皆不选.③其余输进选项“Model fit”输出相闭系数、相闭系数仄圆、安排系数、预计尺度误、ANOVA表.“R squared change”输出由于加进战剔除变量而引起的复相闭系数仄圆的变更.“Descriptives”输出变量矩阵、尺度好战相闭系数单侧隐著性火仄矩阵.“Part and partial correlation”相闭系数战偏偏相闭系数.“Collinearity diagnostics”隐现单个变量战共线性分解的公好.原例子采用“Model fit”项.6)画图选项正在主对于话框单打“Plots”按钮,将挨开如图2-4所示的对于话框窗心.该对于话框用于树坐要画造的图形的参数.图中的“X”战“Y”框用于采用X轴战Y轴相映的变量.图2-4“Plots”画图对于话框窗心左上框中各项的意思分别为:•“DEPENDNT”果变量.•“ZPRED”尺度化预测值.•“ZRESID”尺度化残好.•“DRESID”简略残好.•“ADJPRED”安排预测值.•“SRESID”教死氏化残好.•“SDRESID”教死氏化简略残好.“Standardized Residual Plots”树坐各变量的尺度化残好图形输出.其中共包罗二个选项:“Histogram”用曲圆图隐现尺度化残好.“Normal probability plots”比较尺度化残好与正态残好的分集示企图.“Produce all partial plot”偏偏残好图.对于每一个自变量死成其残好对于果变量残好的集面图.原例子不做画图,不采用.7) 死存分解数据的选项正在主对于话框里单打“Save”按钮,将挨开如图2-5所示的对于话框.图2-5 “Save”对于话框①“Predicted Values”预测值栏选项:Unstandardized 非尺度化预测值.便会正在目前数据文献中新增加一个以字符“PRE_”开头命名的变量,存搁根据返回模型拟合的预测值.Standardized 尺度化预测值.Adjusted 安排后预测值.S.E. of mean predictions 预测值的尺度误.原例选中“Unstandardized”非尺度化预测值.②“Distances”距离栏选项:Mahalanobis: 距离.Cook’s”: Cook距离.Leverage values: 杠杆值.③“Prediction Intervals”预测区间选项:Mean: 区间的核心位子.Individual: 瞅丈量上限战下限的预测区间.正在目前数据文献中新增加一个以字符“LICI_”开头命名的变量,存搁预测区间下限值;以字符“UICI_”开头命名的变量,存搁预测区间上限值.Confidence Interval:置疑度.原例不选.④“Save to New File”死存为新文献:选中“Coefficient statistics”项将返回系数死存到指定的文献中.原例不选.⑤“Export model information to XML file”导出统计历程中的返回模型疑息到指定文献.原例不选.⑥“Residuals” 死存残好选项:“Unstandardized”非尺度化残好.“Standardized”尺度化残好.“Studentized”教死氏化残好.“Deleted”简略残好.“Studentized deleted”教死氏化简略残好.原例不选.⑦“Influence Statistics” 统计量的效率.“DfBeta(s)”简略一个特定的瞅测值所引起的返回系数的变更.“Standardized DfBeta(s)”尺度化的DfBeta值.“DiFit” 简略一个特定的瞅测值所引起的预测值的变更.“Standardized DiFit”尺度化的DiFit值.“Covariance ratio”简略一个瞅测值后的协圆好矩隈的止列式战戴有局部瞅测值的协圆好矩阵的止列式的比率.原例子不死存所有分解变量,不采用.8)其余选项正在主对于话框里单打“Options”按钮,将挨开如图2-6所示的对于话框.图2-6 “Options”树坐对于话框①“Stepping Method Criteria”框用于举止逐步返回时里里数值的设定.其中各项为:“Use probability of F”如果一个变量的F值的概率小于所树坐的加进值(Entry),那么那个变量将被选进返回圆程中;当变量的F值的概率大于树坐的剔除值(Removal),则该变量将从返回圆程中被剔除.由此可睹,树坐“Use probability of F”时,应使加进值小于剔除值.“Ues F value”如果一个变量的F值大于所树坐的加进值(Entry),那么那个变量将被选进返回圆程中;当变量的F值小于树坐的剔除值(Removal),则该变量将从返回圆程中被剔除.共时,树坐“Use F value”时,应使加进值大于剔除值.原例是齐返回不树坐.②“Include constant in equation”采用此项表示正在返回圆程中有常数项.原例选中“Include constant in equation”选项正在返回圆程中死存常数项.③“Missing Values”框用于树坐对于缺得值的处理要领.其中各项为:“Exclude cases listwise”剔除所有含有缺得值的瞅测值.“Exchude cases pairwise”仅剔除介进统计分解预计的变量中含有缺得值的瞅丈量.“WordStr with mean”用变量的均值与代缺得值.原例选中“Exclude cases listwise”.9)提接真止正在主对于话框里单打“OK”,提接真止,截止将隐现正在输出窗心中.主要截止睹表2-2至表2-4.10) 截止分解主要截止:表2-2表2-2 是返回模型统计量:R 是相闭系数;R Square 相闭系数的仄圆,又称判决系数,判决线性返回的拟合程度:用去证明用自变量阐明果变量变同的程度(所占比率);Adjusted R Square 安排后的判决系数;Std. Error of the Estimate 预计尺度缺面.表2-3表2-3 返回模型的圆好分解表,F值为,隐著性概率是,标明返回极隐著.表2-4分解:修坐返回模型:根据多元返回模型:把表6-9中“非尺度化返回系数”栏目中的“B”列系数代进上式得预报圆程:预测值的尺度好可用结余均圆预计:返回圆程的隐著性考验:从表6-8圆好分解表中得知:F统计量为,系统自动考验的隐著性火仄为.F(0.05,4,11)值为,F(0.01,4,11) 值为,F(0.001,4,11) 值为.果此返回圆程相闭非常隐著.(F值可正在Excel中用FINV( )函数赢得).回代考验需要做预报效验的考证时,正在主对于话框(图6-8)里单打“Save”按钮,正在挨开如图3-6所示对于话框里,选中“Predicted Values”预测值选项栏中的“Unstandardized”非尺度化预测值选项.那样正在历程运算时,便会正在目前文献中新增加一个“PRE_1”命名的变量,该变量存搁根据返回模型拟合的预测值.而后,正在SPSS数据窗心预计“y”与“PRE_1”变量的好值(图2-7),原例子把千万于好值大于视为不切合,反之则切合.截止切合的年数为15年,1年不切合,履历切合率为93.75%.图2-7 多元返回分解法可概括多个预报果子的效率,做出预报,正在统计预报中是一种应用较为一致的要领.正在本质使用中,采与将预报果子战预报量按一定尺度分为多级,用分级尺度代换较大的数字,更能掀穿预报果子与预报量的闭系,预报效验比采与数量值统计要领有明隐的普及,正在本质应用中具备一定的现真意思.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS 统计分析
欧阳歌谷(2021.02.01)
多元线性回归分析方法操作与分析
实验目的:
引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:
以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法
软件:spss19.0
操作过程:
第一步:导入Excel数据文件
1.open data document——open data——open;
2. Opening excel data source——OK.
第二步:
1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.
进入如下界面:
2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.
3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.
4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals (残差)选项组中的Unstandardized;点击Continue.
5.点击右侧Options,默认,点击Continue.
6.返回主对话框,单击OK.
输出结果分析:
1.引入/剔除变量表
Variables Entered/Removed a
Model Variables Entered Variables Removed Method
1 城市人口密度 (人/平方公里) . Stepwise (Criteria:
Probability-of-F-to-enter
<= .050, Probability-of-F-to-
remove >= .100).
2 城市居民人均可支配收入(元) . Stepwise (Criteria:
Probability-of-F-to-enter
<= .050, Probability-of-F-to-
remove >= .100).
a. Dependent Variable: 商品房平均售价(元/平方米)
该表显示模型最先引入变量城市人口密度 (人/平方公里),第
二个引入模型的是变量城市居民人均可支配收入(元),没有变量
被剔除。

2 Regression 38310296.528 2 19155148.264 23832.156 .000b
Residual 6430.018 8 803.752
Total 38316726.545 10
a. Predictors: (Constant), 城市人口密度 (人/平方公里)
b. Predictors: (Constant), 城市人口密度 (人/平方公里), 城市居民人均可支配收入(元)
c. Dependent Variable: 商品房平均售价(元/平方米)
该表显示各模型的方差分析结果。

从表中可以看出,模型的
F统计量的观察值为23832.156,概率p值为0.000,在显著性水
平为0.05的情形下,可以认为:商品房平均售价(元/平方米)与
城市人口密度 (人/平方公里),和城市居民人均可支配收入(元)之间
有线性关系。

4.回归系数
该图为回归标准化残差的直方图,正态曲线也被显示在直方图上,用以判断标准化残差是否呈正态分布。

但是由于样本数只有11个,所以只能大概判断其呈正态分布。

9.回归标准化的正态P-P图
该图回归标准化的正态P-P图,该图给出了观测值的残差分布与假设的正态分布的比较,由图可知标准化残差散点分布靠近直线,因而可判断标准化残差呈正态分布。

10.因变量与回归标准化预测值的散点图
该图显示的是因变量与回归标准化预测值的散点图,其中DEPENDENT为x轴变量,*ZPRED为y轴变量。

由图可见,两变量呈直线趋势。

附件:
原始数据:
自变量散点图:
由散点图可以看出,可进入分析的变量为城市人口密度、城市居民人均可支配收入。

相关文档
最新文档