水电站课程设计报告

合集下载

水电站厂房课程设计报告书

水电站厂房课程设计报告书

目录➢第一章任务书 (1)➢ 1.1 目的 (1)➢ 1.2 设计容和要求 (1)➢ 1.3 应提交的设计成果 (1)➢第二章基本资料 (2)➢ 2.1 工程概况 (2)➢ 2.2 电站枢纽 (2)➢ 2.3 设计依据及参数 (2)➢第三章设计过程 (5)➢ 3.1 确定设备尺寸 (5)➢ 3.1.1 蜗壳尺寸 (5)➢ 3.1.2 水轮机和尾水管尺寸 (6)➢ 3.1.3 发电机尺寸 (7)➢ 3.2 厂房尺寸 (7)➢ 3.2.1 主厂房的平面尺寸 (7)➢ 3.2.2 主厂房的立面尺寸 (9)➢ 3.3 主厂房各层布置 (10)➢ 3.3.1 发电机层布置 (10)➢ 3.3.2 水轮机层布置 (11)➢ 3.3.3 蜗壳层布置 (12)➢ 3.4 副厂房的布置 (12)➢ 3.5 厂区枢纽布置 (12)第一章任务书➢ 1.1 目的通过本设计,进一步巩固和加深水电站厂房部分的理论知识,使学生初步掌握水电站厂房设计的步骤和方法,培养和提高学生独立分析问题和运用所学理论知识解决实际问题的能力。

➢ 1.2 设计容和要求根据给定的原始资料及机电设备,决定厂房在枢纽中的位置,进行厂区和厂房部的布置,确定厂房的轮廓尺寸。

➢ 1.3 应提交的设计成果(-)设计说明书一份。

(二)水电站厂房设计布置图三:1、沿机组中心线厂房横剖面图(1:100);2、发电机层平面图(1:100-1:200);3、水轮机层、蜗壳层综合平面图(1:100-1:200)。

(三)厂房枢纽布置简图一(1:1000)。

➢第二章基本资料2.1 工程概况湘贺水利枢纽位于向河上游,河流全长270km,流域面积6000km2,属于山区河流。

本枢纽控制流域面积1350km2,总库容22.15m3,为多年调节水库。

本枢纽的目标是防洪和发电。

主要建筑物有重力拱坝,坝高77.5m,弧长370m;泄洪建筑物;开敞式溢洪道或泄洪隧洞;发电引水隧洞及岸边地面厂房等工程。

积石峡水电站课程设计

积石峡水电站课程设计

积石峡水电站课程设计一、教学目标本课程旨在让学生了解积石峡水电站的基本情况,掌握水电站的主要组成部分和工作原理,了解水电站建设对地方经济发展的影响,以及水电站在环境保护和可持续发展方面的作用。

通过本课程的学习,学生将能够:1.描述积石峡水电站的基本情况,包括位置、规模、建设时间等。

2.解释水电站的主要组成部分,如大坝、水库、发电机组等,并理解它们的功能。

3.分析水电站建设对地方经济发展的影响,包括提供电力、促进产业发展、增加就业等。

4.探讨水电站在环境保护和可持续发展方面的作用,如减少温室气体排放、保护生态环境等。

二、教学内容本课程的教学内容主要包括四个方面:1.积石峡水电站概况:介绍水电站的位置、规模、建设时间等基本信息。

2.水电站的主要组成部分:讲解大坝、水库、发电机组等组成部分的功能和作用。

3.水电站建设对地方经济发展的影响:分析水电站建设对电力供应、产业发展、就业等方面的影响。

4.水电站在环境保护和可持续发展方面的作用:探讨水电站对减少温室气体排放、保护生态环境等方面的贡献。

三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法:1.讲授法:教师讲解水电站的基本情况、组成部分、建设影响等知识点。

2.讨论法:学生分组讨论水电站建设对地方经济发展的利弊,以及水电站在环境保护和可持续发展方面的作用。

3.案例分析法:分析其他水电站的案例,让学生更好地理解水电站的建设和发展。

4.实验法:如有条件,可以学生参观水电站,亲身体验水电站的运行和发电过程。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用相关的水电站教材,为学生提供系统的理论知识。

2.参考书:提供相关的参考书籍,让学生课后进一步拓展知识。

3.多媒体资料:制作课件、视频等多媒体资料,直观地展示水电站的建设和运行情况。

4.实验设备:如有条件,准备实验设备,让学生亲身体验水电站的发电过程。

水电站调节课程设计

水电站调节课程设计

水电站调节课程设计一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。

知识目标要求学生掌握水电站的基本原理、调节方式及其对环境的影响;技能目标要求学生能够运用所学知识对水电站的运行进行分析和评估;情感态度价值观目标要求学生培养对水电站建设和管理的兴趣,提高环保意识和社会责任感。

通过分析课程性质、学生特点和教学要求,我们将目标分解为具体的学习成果:了解水电站的基本原理和调节方式,掌握水电站对环境的影响及其评估方法,培养学生的分析和评估能力,提高环保意识和社会责任感。

二、教学内容本课程的教学内容主要包括水电站的基本原理、调节方式、环境影响及其评估方法。

具体安排如下:1.水电站的基本原理:介绍水电站的组成部分、工作原理和运行特点。

2.水电站的调节方式:讲解水电站的径流调节、水位调节和发电调节。

3.环境影响及其评估方法:分析水电站建设对生态环境的影响,介绍环境影响评估的方法和流程。

教学进度安排:共计8课时,第1-4课时讲解水电站的基本原理和调节方式,第5-6课时分析水电站对环境的影响,第7-8课时介绍环境影响评估的方法和流程。

三、教学方法为了激发学生的学习兴趣和主动性,本课程将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:通过讲解水电站的基本原理、调节方式和环境影响,使学生掌握相关知识。

2.讨论法:学生就水电站建设和管理的相关问题进行讨论,提高学生的思考和分析能力。

3.案例分析法:分析实际案例,使学生更好地理解水电站的运行特点和环境影响。

4.实验法:安排实地考察或模拟实验,让学生亲身体验水电站的运行过程,提高学生的实践能力。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用权威、实用的教材,如《水电站运行与管理》等。

2.参考书:提供相关领域的参考书籍,如《水电站环境影响评价》等。

3.多媒体资料:制作精美的课件、视频和图片,直观地展示水电站的运行特点和环境影响。

水电站课程设计

水电站课程设计

水电站课程设计第一部分基本资料某水电站为混合式开发,枢纽由挡水建筑物,泄水建筑物,引水建筑物及水电站厂房组成,装机容量2?17MW ,厂房处平均地面高程350.00米。

1.水位经分析正常蓄水位为414.4米,死水位为399.6米。

尾水位:尾水渠水位流量关系见下表:2.供水方式:集中供水。

3.水头:水电站水头范围:H max =63m, H min =45m, 平均水头H av =51.5m 。

4.引水系统布置:引水隧洞长3000.00米,洞径5.5米,压力钢管由水平段(长50.00米)上斜坡段(长58.00米,坡角为18.43度),下斜坡段(长58.00米,坡角18.4度),和下水平段(长10.00米)组成,之后与蜗壳进口连接,机组间距为14.00米。

第二部分设计内容一.水轮机型号及主要参数:(一)水轮机型号选择:根据该水电站的水头变化范围45-63m ,在水轮机系列型谱表查出适合的机型有HL230和HL220两种,现在将这两种水轮机作为初选方案,分别求出其有关参数,并进行比较分析。

(二)HL220型水轮机方案的主要参数选择: 1.转轮直径D 1计算查书表3-6和图3-12可得HL220型水轮机在限制工况下的单位流量'1m Q =1150L/S=1.15m 3/s ,其中效率m η=89.0%,由此可初步假定原型水轮机该工况下的单位流量'1Q ='1m Q =1.15m 3/s, 效率η=91.0%,上述的'1Q ,η和N r =17000/0.95=17895KW, H r =51.5m ,代入D 1=ηr r rH H Q N '181.9可得D 1=2.172, 选用与之接近而偏大的标称直径为D 1=2.25m 。

2.转速n 计算查表3-4可得HL220型水轮机在最优工况下单位转速'10m n =70r/min ,初步假定'10n ='10m n ,将已知的'10n 和H av =51.5m ,D 1=2.25m ,代入n=1`1D Hn =223.2r/min ,选用与之接近而偏大的同步转速n=250r/min. 3.效率及单位参数修正查表3-6可得HL220型水轮机在最优工况下的模型最高效率为max M η=91.0%,模型转轮直径为D 1M =0.46m ,根据公式m ax η=1-(1-Mmas η)511D D M得max η=93%,则效率修正值为η?=93%-91.0%=2.0%,考虑到模型与原型水轮机在制造工艺质量上的差异,常在已求得的η?中再减去一个修正值ξ。

水电站课程设计

水电站课程设计

《水电站》课程设计一、设计目的使学生对水电站初步规划阶段的水能利用、水电站开发方式选择、水电站出力估算、水轮发电机组选择设计和厂房布置等工作内容有全面了解、重点掌握水电站装机容量和机组台数确定、水轮机选择设计、参数计算等工作内容和程序。

通过工程设计实例的训练,培养学生独立工作及综合分析、解决问题的能力,以便将来承担水电站工程设计任务。

二、拟设计水电站参数资料及相关要求拟设计某一引水式水电站,已经过水文水能计算,其各种技术参数及设计要求如下: 1.电站最大水头max 35.6H m =,加权平均水头28av H m =,设计水头28r H m =,最小水头min 24.5H m =;2.电站最大可引用流量3max 27.8/Q m s =;3.拟选用水轮发电机组额定出力(单机容量)及台数:1600,31600f y N KW N KW ==⨯;4.水电站站址海拔高程m 0.860=∇; 5.下游水位流量关系曲线(略); 6.要求最大允许吸出高m H s 5.5-≥。

三、设计内容1.确定水电站装机容量(通过估算水电站出力确定f y nN N =)及台数;2.机型号的选择及主要参数计算;3.水轮机调速设备及水轮机发电机的选配; 4.蜗壳、尾水管型式选择及各有关尺寸计算; 5.厂房布置设计(水电站主厂房各层平面及剖面图)。

四、设计报告1.水轮机型号的选择据该水电站的工作水头范围,在反击式水轮机系列型谱表中查得HL240型水轮机和ZZ440水轮机都可使用,这就需要将两种水轮机都列入比较方案,并对其主要参数分别予以计算。

2.水轮机主要参数的计算2.1 HL240型水轮机方案主要参数的计算2.1.1直径1D 的计算ηr r rH H Q N D 1181.9'=式中31160016840.95281240/ 1.24/(1)f r f r N N kW H m Q L s m s η⎧===⎪⎪⎪=⎨⎪'==⎪⎪⎩由附表查得同时在附图1中查得水轮机模型在限制工况下的效率,由此可初步假设水轮机在该工况的效率为91.0%。

某水电站设计课程设计 精品

某水电站设计课程设计 精品

第一章原始资料及设计条件1.1 概述1.1.1 工程概况某水电站位于沅水一级支流巫水下游峡谷河段,下距会同县若水乡镇2km,距洪江市15km。

坝址下游2km有洪江~绥宁省级公路从若水乡镇经过,交通较为便利。

该工程初拟正常蓄水位191m,迥水至高椅坝址,库容0.0708亿m3,装机16MW,是一座以发电为主,兼有防洪、旅游等综合效益的水电工程,枢纽建筑物由溢流闸坝、重力式挡水坝、右岸引水发电隧洞和引水式厂房组成。

1.2工程等别和建筑物级别本工程以发电为主,兼有防洪、旅游等综合效益。

水库正常蓄水位191m时库容为0.0708亿m3,电站装机容量为16MW,根据水利水电工程等级划分的规定,工程规模为小(1)型,工程等别为Ⅳ等。

永久性建筑物闸坝、电站厂房等属4级建筑物,临时建筑物属5级。

1.2 水文气象资料1.2.1 洪水各频率洪峰流量详见下表表1-1 坝址洪峰流量表1.2.2 水位~流量关系曲线:表1-2 下坝址水位~流量关系曲线表高程系统:85黄海表1-3 上坝址水位~流量关系曲线表 高程系统:85黄海表1-4 厂址水位~流量关系曲线表 高程系统:85黄海多年平均含沙量:0.0893/m kg ; 多年平均输沙量:22.05万t ;设计淤沙高程:169.0m ;淤沙内摩擦角:10˚;淤沙浮容重:0.93/m t 。

1.2.4 气象多年平均气温:16.6˚C ;极端最高气温:39.1˚C ;极端最低气温:-8.6˚C ;多年平均水温:18.2˚C ;历年最高气温:34.1˚C ;历年最低气温:2.1˚C ;多年平均风速:1.40s m /; 历年最大风速:13.00s m /,风向:NE ;水库吹程:3.0km ;最大积雪厚度:21cm ;基本雪压:0.252/m KN 。

1.3 工程地质与水文地质1.3.1 工程地质资料(1)该工程区地震基本烈度小于Ⅵ度,不考虑地震荷载。

(2) 基岩物理力学指标上坝址:饱和抗压强度:20~30MPa ;抗剪指标:岩砼/f =0.6~0.65;抗剪断指标:'f=0.8~0.9 ;'c=0.7~0.8MPa。

水电站课程设计

水电站课程设计

《水电站》课程设计说明书院系:水电学院专业:水利水电工程姓名:学号:指导:袁吉栋老师目录第一章基本资料 (1)第二章机组台数与单机容量的选择 (2)第三章水轮机型号、装置方式的确定 (2)第四章水轮机特性曲线的绘制 (9)第五章蜗壳的设计 (11)第六章尾水管的设计 (12)第七章发电机的选择 (14)第八章调速设备的选择 (16)第一章基本资料某梯级开发电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。

电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。

该电站水库库容小不担任下游防洪任务。

经比较分析,该电站坝型采用混凝土重力坝,厂房型式为引水式。

经水工模型试验,采用消力戽消能型式。

经水能分析,该电站有关动能指标为:水库调节性能年调节保证出力 4万kw装机容量 16万kw多年平均发电量 42000 kwh最大工作水头 38.0 m加权平均水头 36.0 m设计水头 36.0 m最小工作水头 34.0 m平均尾水位 152.0 m设计尾水位 150.0 m发电机效率 96%-98%第二章机组台数与单机容量的选择水电站总装机容量等于机组台数和单机容量的乘积,在总装机容量确定的情况下可以拟订出不同的机组台数方案,当机组台数不同时,则当单机容量不同,水轮机的转轮直径、转速也就不同。

有时甚至水轮机的型号也会改变,从而影响水电站的工程投资、运行效率、运行条件以及产品供应。

在确定水电站机组台数和单机容量时,综合考虑下面的因素: (一) 机组台数与工程建设费用的关系;(二) 机组台数与设备制造、运输、安装及枢纽布置的关系; (三) 机组台数与水电站运行效率的关系; (四) 机组台数与水电站维护的关系; (五) 机组台数与电气主接线的关系;从而初步确定水电站采用4台机组,每台机组装机容量4万千瓦。

4万千瓦×4=16万千瓦满足水电站要求。

第三章 水轮机型号、装置方式的确定由基本资料,根据水电站的工作水头范围,在反击式水轮机系列型号谱表中查得HL240型水轮机和ZZ440型水轮机都可以使用。

水电站厂房课程设计报告书

水电站厂房课程设计报告书

目录➢第一章任务书 (1)➢ 1.1 目的 (1)➢ 1.2 设计容和要求 (1)➢ 1.3 应提交的设计成果 (1)➢第二章基本资料 (2)➢ 2.1 工程概况 (2)➢ 2.2 电站枢纽 (2)➢ 2.3 设计依据及参数 (2)➢第三章设计过程 (5)➢ 3.1 确定设备尺寸 (5)➢ 3.1.1 蜗壳尺寸 (5)➢ 3.1.2 水轮机和尾水管尺寸 (6)➢ 3.1.3 发电机尺寸 (7)➢ 3.2 厂房尺寸 (7)➢ 3.2.1 主厂房的平面尺寸 (7)➢ 3.2.2 主厂房的立面尺寸 (9)➢ 3.3 主厂房各层布置 (10)➢ 3.3.1 发电机层布置 (10)➢ 3.3.2 水轮机层布置 (11)➢ 3.3.3 蜗壳层布置 (12)➢ 3.4 副厂房的布置 (12)➢ 3.5 厂区枢纽布置 (12)第一章任务书➢ 1.1 目的通过本设计,进一步巩固和加深水电站厂房部分的理论知识,使学生初步掌握水电站厂房设计的步骤和方法,培养和提高学生独立分析问题和运用所学理论知识解决实际问题的能力。

➢ 1.2 设计容和要求根据给定的原始资料及机电设备,决定厂房在枢纽中的位置,进行厂区和厂房部的布置,确定厂房的轮廓尺寸。

➢ 1.3 应提交的设计成果(-)设计说明书一份。

(二)水电站厂房设计布置图三:1、沿机组中心线厂房横剖面图(1:100);2、发电机层平面图(1:100-1:200);3、水轮机层、蜗壳层综合平面图(1:100-1:200)。

(三)厂房枢纽布置简图一(1:1000)。

➢第二章基本资料2.1 工程概况湘贺水利枢纽位于向河上游,河流全长270km,流域面积6000km2,属于山区河流。

本枢纽控制流域面积1350km2,总库容22.15m3,为多年调节水库。

本枢纽的目标是防洪和发电。

主要建筑物有重力拱坝,坝高77.5m,弧长370m;泄洪建筑物;开敞式溢洪道或泄洪隧洞;发电引水隧洞及岸边地面厂房等工程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水电站课程设计一:计算水轮机安装高程参考教材,立轴混流式水轮机的安装高程Z s 的计算方法如下:0/2s s Z H b ω=∇++式中ω∇为设计尾水位,取正常高尾水位1581.20m ;0b为导叶高度,1.5m ;sH 为吸出高度,m 。

其中,10.0()900s m H H σσ∇=--+∆ 式中,∇为水轮机安装位置的海拔高程,在初始计算时可取为下游平均水位的海拔高程,设计取1580m ;m σ为模型气蚀系数,从该型号水轮机模型综合特性曲线(教材P69)查得m σ=0.20,σ∆为气蚀系数的修正值,可在教材P52页图2-26中查得σ∆=0.029;H 为水轮机水头,一般取为设计水头,本设计取H=38m 。

水头H max 及其对应工况的m σ进行校核计算。

10.0()900s m H H σσ∇=--+∆=10.0-1580900-(0.2+0.029)⨯38=-0.458 0/2s s Z H b ω=∇++=1581.20-0.458+1.5/2=1581.49m 。

二:绘制水轮机、蜗壳、尾水管和发电机图2.1水轮机的计算图1.1 转轮布置图如图所示,可得HL240具体尺寸:表1.11 转轮参数表D1D2D3D4D5D6b0h1h2h3h41.0 1.0780.9280.7250.4830.1280.3650.0540.16 0.593 0.2834.1 4.423.8052.9731.980.5251.4970.2210.6562.431 1.1602.2 蜗壳计算进口断面尺寸计算(1)进口断面流量的确定由资料,该水电站初步设计时确定该电站装机17.6×410kW ,电站共设计装4台机组,故每台机组的单机容量为17.6×410kW ÷4=4.4×410kW 。

由水轮机出力公式:9.81N QH QH ωγ===4.4×410kW 式中:Q 为水轮机设计流量(3/m s );H 为设计水头,m ;由设计资料得H=38.0m 。

所以,4×10//=118.039.81 4.4Q N H ω=⨯=(9.8138.0)(3/m s ) 进口断面流量计算公式: 00360Q Q ϕ=0360Q Q ϕ==345118.03360⨯=113.11(3/m s ) 式中:ϕ0—蜗壳包角,通常均采用3450Q —水轮机设计流量,Q =118.03m 3/s (2)进口断面流速的确定蜗壳进口断面平均流速可由教材P36(图2-8a ,已知设计水头38.0m ,本设计为金属蜗壳可取为上限值)查得:0V =5.8m/s 。

(3)进口断面半径0ρ 由公式0000360Q V ϕρπ==113.112.4925.83.14m =⨯(4)进口断面中心距i a由公式0a =0a r ρ+=2.492+3.15=5.642 式中a r =/2a D (5)断面外半径0R由公式:002a R r ρ=+=3.15+2×2.492=8.134m绘制蜗壳单线图时,在蜗壳上共取0—0~7—7共八个蜗壳断面(从0—0开始每隔45°取一个断面),利用下列公式进行断面计算,得各断面的参数。

任一断面i —i 的流量:0360ii Q Q ϕ=断面半径:0360ii i Q V ϕρπ=(断面上沿径向各点的水流圆周分速度等于一个常数,即0i V V =)断面中心距:i a =a i r ρ+ 断面外半径:2i a i R r ρ=+ 各断面参数计算列表如下:蜗壳计算列表(圆形断面)断面号 i ϕ(°)i Q (3/m s )i ρ(m)i a (m)i R (m)0 345 113.11 2.492 5.642 8.134 1 300 98.36 2.324 5.474 7.798 2 255 83.60 2.143 5.293 7.435 3 210 68.85 1.944 5.094 7.039 4 165 54.10 1.723 4.873 6.597 5 120 39.34 1.470 4.620 6.090 6 75 24.59 1.162 4.312 5.474 7309.840.7353.8854.6202.3尾水管计算由水轮机型号可知转轮直径D 1=410cm转轮出口直径D 2=1.078D 1=1.078×410=441.98㎝。

满足条件D 1≤2D ,采用标准混凝土肘管,故可用推荐的尾水管尺寸表(教材第二章P42表2-1) 参数 h/D 1 L/D 1 B 5/D 1 D 4/D 1 h 4/D 1 h 6/D 1 L 1/D 1 h 5/D 1 比例 2.64.52.7201.351.350.6751.821.22尾水管各参数尺寸表 参数hLB 5 D 4h 4 h 6 L 1h 5长度(m) 10.66 18.45 11.1525.535 5.5352.76757.462 5.0022.3.1 直锥段各尺寸的确定 (1) 导叶底环至转轮出口高度1h1h =0.221+0.656=0.877m(2) 转轮出口至尾水管直锥段进口高度2h对于混流式水轮机组,2h 为保证水轮机组正常运行的安装缝的高度,一般可忽略不计,此设计取2h =0.05m 。

(3)尾水管进口直锥段高度3h3h =124h h h h ---=10.66-0.877-0.05-5.535=4.198m 。

(4)尾水管直锥段进口直径3D3D ≈2D =441.98㎝2.3.2 中间弯肘段尺寸的确定弯肘段尺寸可由教材推荐使用的标准混凝土肘管的尺寸图(教材P43图2—18和表2—2),其中所列的数据对应4h =4D =1000mm ,应用时乘以选定的4h (或与之相等的4D )即可得到弯肘段各参数值。

2.3.3 出口扩散段尺寸的确定由尾水管参数尺寸表可得:5h =5.002m ;6h =2.7675m ;L =18.45m ;1L =7.462m 。

由数据用此公式可算得 561 5.002 2.7675tan 0.20318.457.462h h L L α--===-- 尾水管顶板仰角α=11.5°。

三:确定主厂房轮廓尺寸3.1 主厂房长度的确定 3.1.1主厂房的长度主厂房的长度可由公式0L nL L L =++∆安 式中:n —机组台数0L —机组段长度。

本机组段间距由蜗壳尺寸控制,按公式0L =蜗壳平面尺寸+2l ∆计算。

(l ∆—蜗壳外的混凝土结构厚度。

混凝土蜗壳一般取0.8~1.0m ,金属蜗壳一般可取1~2m ,边机组段一般取1~3m 。

)。

经综合考虑,中间机组段按0L =15.42+2⨯1.5=18.42m 计算,边机组按0L =15.42+2⨯2=19.42m 计算。

L 安—安装间长度。

按公式L 安=(1.0~1.5)0L 计算,此处按L 安=1.20L 处理。

L ∆—边机组段加长。

按公式L ∆=(0.1~1.0)1D 计算,此处按L ∆=0.51D主厂房长度3(6.698.732 1.5)(6.698.7322) 1.218.420.5 4.1L =⨯++⨯+++⨯+⨯+⨯=98.834m 。

3.2 主厂房宽度的确定以机组中心线为界,将厂房宽度分为上游侧宽度s B 和下游侧宽度x B ,则厂房总宽度为B=s B +x B 。

s B 、x B 应分别考虑各层的布置要求确定,一般需考虑发电机层,水轮机层和蜗壳层的布置要求。

各层的s B 、x B 确定后,厂房的上、下游侧宽度应取各层上、下游侧宽度的最大值,即s B =max(s B ) x B =max(x B )B= max(s B )+max(x B ) 3.2.1 蜗壳层s B 、x B 的确定s B 的确定上游侧宽度s B 为机组中心至上游侧蜗壳外缘尺寸加上外包混凝土厚度l ∆,再加上蝴蝶阀室的宽度(参照教材湖南镇水电站主厂房蝴蝶阀设计,取为5m )。

s B =5.3927+1.5+5=11.8927m 。

x B 的确定下游侧宽度x B 为机组中心至下游侧蜗壳外缘尺寸加上外包混凝土厚度l ∆。

x B =7.78+1.5=9.28m 。

3.2.2 发电机层s B 、x B 的确定s B 的确定s B =s +D A 风(s A 为发电机层风罩外缘至上游侧墙的宽度,一般由主要及次要交通通道、附属设备的布置、吊运方式以及运行管理方便等因素确定) 由设计资料,s B =s +D A 风=4.5+2.5+1.5+1+1=10.5m 。

考虑到发电机转子的吊运及附属设备的布置,取s B =12m 。

x B 的确定x B =D 风+x A (x A 为发电机层风罩外缘至下游侧墙的宽度,一般由主要及次要交通通道、附属设备的布置、吊运方式以及运行管理方便等因素确定)x B =D 风+x A =4.5+1.5+1+1=8m 。

3.2.3 水轮机层s B 、x B 的确定一般上下游侧分别布置水轮机辅助设备(即油气水管路等)和发电机辅助设备(电流电压互感器,电缆等)。

这些设备一般靠墙、风罩壁布置或在顶板布,不影响水轮机层交通,因此对厂房的宽度影响不大,此处不予计算。

3.2.4 主厂房宽度的最终确定s B =max(s B )=12m x B =max(x B )=9.28mB= max(s B )+max(x B )=12+9.28=21.28m 。

3.3 主厂房高度及各层高程的确定3.3.1 水轮机安装高程T ∇(第一节已经确定)s Z =0/2T s H b ω∇=∇++=1581.20-0.458+1.5/2=1581.49m3.3.2 主厂房基础开挖高程F ∇ 主厂房基础开挖高程可由公式:321()F T h h h ∇=∇-++确定。

式中:(32h h +)—尾水管的尺寸;1h —尾水管底板混凝土厚度(根据地基性质和尾水管结构形式而定,岩基上的尾水管底板厚一般取1~2m )321()F T h h h ∇=∇-++=1581.49-(4.198+5.535+1.5)=1570.257m 。

3.3.3 水轮机层地面高程1∇ 水轮机层地面高程1∇可由公式:14T h ∇=∇+(4h =蜗壳进口半径+蜗壳顶部混凝土层厚度。

金属蜗壳顶部混凝土一般不低于1.0m ,混凝土蜗壳顶板厚根据结构计算决定。

)14T h ∇=∇+=1581.49+(5.53/2+1.2)=1585.455m 。

3.3.4发电机装置高程G ∇ 发电机装置高程可由公式:156G h h ∇=∇++求出。

式中:5h —发电机机墩进入孔高度(一般取1.8~2.0m ),2.0m ;还须满足水轮机层附属设备油气水管道和发电机出线布置要求的高度。

相关文档
最新文档