高中数学选修2-1第1章《常用逻辑用语》测试题

合集下载

高中数学选修2-1第一章常用逻辑用语检测题(二)

高中数学选修2-1第一章常用逻辑用语检测题(二)

选修2-1第一章简易逻辑综合检测题第Ⅰ卷(选择题,共60分)1.给出下列命题:(1)有的四边形是菱形;(2)有的三角形是等边三角形;(3)无限不循环小数是有理数;(4)∀x∈R,x>1;(5)0是最小的自然数.其中假命题的个数为()A.1 B.2 C.3 D.42.命题“若a>b,则a-1>b-1”的否命题是()A.若a>b,则a-1≤b-1 B.若a≥b,则a-1<b-1 C.若a≤b,则a-1≤b-1 D.若a<b,则a-1<b-1 3.已知p:{1}⊆{0,1},q:{1}∈{1,2,3},由它们构成的新命题“p ∧q”“p∨q”“非p”中,真命题的个数为()A.0 B.1 C.2 D.34.对下列命题的否定错误的是()A.p:负数的平方是正数;非p:负数的平方不是正数B.p:至少有一个整数,它既不是合数也不是质数;非p:任意一个整数,它是合数或质数C.p:∀x∈N,x3>x2;非p:∃x∈N,x3≤x2D.p:2既是偶数又是质数;非p:2不是偶数或不是质数5.设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.命题“∀x∈R,|x|+x2≥0”的否定是()A.∀x∈R,|x|+x2<0 B.∀x∈R,|x|+x2≤0C.∃x0∈R,|x0|+x20<0 D.∃x0∈R,|x0|+x20≥08.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是()A.p∧q B.非p∧q C.p∧非q D.非p∧非q9.原命题为“若a n+a n+12<a n,n∈N+,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是() A.真,真,真B.假,假,真C.真,真,假D.假,假,假10.下列叙述中正确的是()A.若a,b,c∈R,则“ax2+bx+c≥0”的充分条件是“b2-4ac≤0”B.若a,b,c∈R,则“ab2>cb2”的充要条件是“a>c”C.命题“对任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”D.l是一条直线,α,β是两个不同的平面,若l⊥α,l⊥β,则α∥β11.设a,b,c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c =0;命题q:若a∥b,b∥c,则a∥c.则下列命题中真命题是() A.p∨q B.p∧qC.(非p)∧(非q) D.p∨(非q)12.已知p:|x-a|<4;q:(x-2)(x-3)<0,若非p是非q的充分不必要条件,则a的取值范围为()A.a≤-1或a≥6 B.a≠-1或a≥6C.-1≤a≤6 D.-1<a<6第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.命题“∀x∈R,x2≠x”的否定是________.14.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为假命题的是________.①p∧非q②非p∧q③非p∧非q④p∧q15.已知p:-1≤x≤5,q:|x|<a(a>0),若p是q的充分不必要条件,则a的取值范围是________.16.已知命题p:∃x∈R,使x2+3x2+2=2;命题q:“a=2”是“函数y=x2-ax+3在区间[1,+∞)上单调递增”的充分但不必要条件.给出下列结论:①命题“p∧q”是真命题;②命题“(非p)∧q”是真命题;③命题“(非p)∨q”是真命题;④命题“p∨(非q)”是假命题.其中正确说法的序号是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)给出下列命题的否定,并判断其真假:(1)p:不论m取何实数,方程x2+mx-1=0都有实根;(2)q:∃x∈{六边形},x是正六边形.18.(12分)指出下列各题中,p是q的什么条件.(1)p:(x-2)(x-3)=0,q:x-2=0;(2)p:四边形的对角线相等,q:四边形是平行四边形;(3)数列{a n}是等比数列,p:a1<a2<a3,q:数列{a n}是递增数列.19.(12分)已知p:A={x||x-2|≤4},q:B={x|(x-1-m)·(x-1+m)≤0}(m>0),若非p是非q的必要不充分条件,求实数m的取值范围.20.(12分)设p:函数f(x)=lg(ax2-4x+a)的定义域为R;q:不等式2x2+x>2+ax,对∀x∈(-∞,-1)恒成立,如果“p∨q”为真,“p∧q”为假,求实数a的取值范围.21.(12分)设集合A=(-∞,-2]∪[3,+∞),关于x的不等式(x -2a)(x+a)>0的解集为B(其中a<0).(1)求集合B;(2)设p:x∈A,q:x∈B,且非p是非q的充分不必要条件,求a的取值范围.22.(12分)(1)如图,证明命题“a是平面π内的一条直线,b是平面π外的一条直线(b不垂直于平面π),c是直线b在平面π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需要证明).参考答案1.B(1)(2)(5)是真命题;无限不循环小数是无理数,故(3)是假命题;(4)显然是假命题.2.C 因为命题“若p ,则q ”的否命题既否定条件,又否定结论,所以命题“若a >b ,则a -1>b -1”的否命题是“若a ≤b ,则a -1≤b -1”.3.B p 真,q 假,所以只有p ∨q 为真命题.4.A A 中非p 应为:有些负数的平方不是正数.5.D 当a =0,b =-1时,a >b 成立,但a 2=0,b 2=1,a 2>b 2不成立,所以“a >b ”是“a 2>b 2”的不充分条件.反之,当a =-1,b =0时,a 2=1,b 2=0,即a 2>b 2成立,但a >b 不成立,所以“a >b ”是“a 2>b 2”的不必要条件.综上,“a >b ”是“a 2>b 2”的既不充分也不必要条件,应选D.6.B 由(2x -1)x =0,得x =12或x =0.故(2x -1)x =0是x =0的必要不充分条件.7.C 全称命题的否定是特称命题,否定结论,所以选C.8.B 由20=30知,p 为假命题.令h (x )=x 3-1+x 2,因为h (0)=-1<0,h (1)=1>0,所以x 3-1+x 2=0在(0,1)内有解.所以∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有非p ∧q 为真命题.故选B.9.A 由a n +a n +12<a n ,得a n +a n +1<2a n ,即a n +1<a n ,所以当a n +a n +12<a n 时,必有a n +1<a n ,则{a n }是递减数列;反之,若{a n }是递减数列,必有a n +1<a n ,从而有a n +a n +12<a n .所以原命题及其逆命题均为真命题,从而其否命题及其逆否命题也均为真命题,故选A.10.D 对于A 项,当a <0时不成立.对于B 项,当b =0时,“a >c ”推不出“ab 2>cb 2”.对于C 项,否定应为存在x ∈R ,x 2<0,故C 不正确.对于D 项,由线面垂直的性质可得α∥β成立.故选D.11.A 对命题p 中的a 与c 可能为共线向量,故命题p 为假命题.由a ,b ,c 为非零向量,可知命题q 为真命题.故p ∨q 为真命题.故选A.12.C 可将条件关系转化为集合间的包含关系求a 的范围.p :|x -a |<4⇔a -4<x <a +4,记为A ={x |a -4<x <a +4},q :(x -2)(x -3)<0⇔2<x <3,记为B ={x |2<x <3},因为非p 是非q 的充分不必要条件,由命题间的关系有q 是p 的充分不必要条件,转化为集合关系即为B A ,所以⎩⎪⎨⎪⎧a -4≤2,a +4≥3,且等号不能同时成立,得-1≤a ≤6. 13.∃x ∈R ,x 2=x解析:全称命题“∀x ∈M ,p (x )”的否定为存在性命题“∃x ∈M ,非p (x )”.14.②③④解析:由题意知,命题p 为真命题,命题q 为假命题,所以非p 为假,非q 为真.所以p ∧非q 为真,非p ∧q 为假,非p ∧非q 为假,p ∧q 为假.15.a >5解析:易知q :-a <x <a .又因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧-1>-a ,a >5,所以a >5. 16.②③④解析:对于命题p :x 2+3x 2+2=2,则x 2+3=2x 2+2,两边平方得x 4+6x 2+9=4x 2+8,即x 4+2x 2+1=0,(x 2+1)2=0不成立,故而p 为假;对于命题q ,若a =2,则函数y =x 2-2x +3在[1,+∞)上单调递增成立;反之不成立,故而q 为真,所以p ∧q 为假,(非p )∧q 为真,(非p )∨q 为真,p ∨(非q )为假,所以正确说法序号为②③④.17.解:非p :∃m ∈R ,方程x 2+mx -1=0无实根.(假命题) 非q :∀x ∈{六边形},x 不是正六边形.(假命题).18.解:(1)p 是q 的必要不充分条件.这是因为:若(x -2)(x -3)=0,则x -2=0或x -3=0,即(x -2)(x -3)=0⇒/ x -2=0,而由x -2=0可以推出(x -2)(x -3)=0.(2)p 是q 的既不充分也不必要条件.这是因为:四边形的对角线相等⇒/ 四边形为平行四边形;反之,四边形是平行四边形⇒/ 四边形的对角线相等.(3)p 是q 的充要条件.这是因为:设等比数列{a n }的公比为q ,若a 1<a 2<a 3,则⎩⎪⎨⎪⎧a 1<a 1q ,a 1q <a 1q 2, 当a 1>0时,可得q >1,此时数列{a n }是递增数列;当a 1<0时,可得0<q <1,此时数列{a n }是递增数列.反之,若数列{a n }是递增数列,则a 1<a 2<a 3.19.解:p :A ={x ||x -2|≤4}={x |-2≤x ≤6},q :B ={x |1-m ≤x ≤1+m }(m >0),因为非p 是非q 的必要不充分条件,所以p 是q 的充分不必要条件.利用数轴分析可得⎩⎪⎨⎪⎧1-m ≤-2,1+m ≥6.两等号不能同时成立,解得m ≥5.故m 的取值范围为[5,+∞).20.解:若p 真,则Δ<0,且a >0,故a >2;若q 真,则a >2x -2x +1,对∀x ∈(-∞,-1)恒成立,y =2x -2x +1在(-∞,-1]上是增函数,y max =1,此时x =-1,故a ≥1.“p ∨q ”为真,“p ∧q ”为假,等价于p ,q 一真一假,故1≤a ≤2.21.解:(1)因为a <0,所以2a <-a ,所以B ={x |x <2a ,或x >-a }=(-∞,2a )∪(-a ,+∞).(2)由(1)知非p :∁R A =(-2,3),非q :∁R B =[2a ,-a ].由非p 是非q 的充分不必要条件知∁R A ∁R B ,故⎩⎪⎨⎪⎧ 2a ≤-2,-a ≥3,a <0,解得a ≤-3,所以a 的取值范围为(-∞,-3].22.解:(1)如图,记c∩b=A,P为直线b上异于点A的任意一点,过点P作PO⊥平面π,垂足为O,则O∈c.∵PO ⊥平面π,a⊂平面π,∴PO⊥a,又a⊥b,b⊂平面P AO,PO∩b=P,∴a⊥平面P AO,∴a⊥c.(2)(1)中命题的逆命题为:a是平面π内的一条直线,b是平面π外的一条直线(b不垂直于平面π),c是直线b在平面π上的投影,若a⊥c,则a⊥b.此逆命题为真命题.。

高中数学 选修2-1《常用逻辑用语》单元测试题(整理含答案)

高中数学 选修2-1《常用逻辑用语》单元测试题(整理含答案)

高中数学选修2-1《常用逻辑用语》单元测试题时间:90分钟满分:120分第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>02.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.与命题“能被6整除的整数,一定能被3整除”等价的命题是()A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除4.若向量a=(x,3)(x∈R),则“x=4是|a|=5”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是()A.p∧q B.綈p∧qC.p∧綈q D.綈p∧綈q6.在三角形ABC中,∠A>∠B,给出下列命题:①sin∠A>sin∠B;②cos2∠A<cos2∠B;③tan ∠A2>tan∠B2.其中正确的命题个数是()A.0个B.1个C .2个D .3个7.下面说法正确的是( )A .命题“∃x 0∈R ,使得x 20+x 0+1≥0”的否定是“∀x ∈R ,使得x 2+x +1≥0”B .实数x >y 是x 2>y 2成立的充要条件C .设p ,q 为简单命题,若“p ∨q ”为假命题,则“綈p ∧綈q ”也为假命题D .命题“若α=0,则cos α=1”的逆否命题为真命题8.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( )A .命题“p ∧q ”是真命题B .命题“p ∧綈q ”是假命题C .命题“綈p ∨q ”是真命题D .命题“綈p ∧綈q ”是假命题 9.下列结论错误的是( )A .命题“若log 2(x 2-2x -1)=1,则x =-1”的逆否命题是“若x ≠-1,则log 2(x 2-2x -1)≠1”B .设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则“α<β”是“tan α<tan β”的充要条件C .若“(綈p )∧q ”是假命题,则“p ∨q ”为假命题D .“∃α∈R ,使sin 2α+cos 2α≥1”为真命题 10.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b 1+b;②若正整数m 和n 满足m ≤n ,则mn -m 2≤n2;③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.给出命题:“若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是__________.12.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是__________.13.若不等式|x-1|<a成立的充分条件是0<x<4,则实数a的取值范围是__________.14.已知命题p:∀x∈[1,2],x2-a≥0,命题q:∃x∈R,x2+2ax+2-a=0,若“p∧q”为真命题,则实数a的取值范围是__________.三、解答题:本大题共4小题,满分50分.15.(12分)命题:已知a,b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.16.(12分)已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若綈p是綈q的充分不必要条件,求实数m的取值范围.17.(12分)设命题p:∃x0∈R,x20+2ax0-a=0.命题q:∀x∈R,ax2+4x+a≥-2x2+1.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.18.(14分)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的取值范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.高中数学选修2-1《常用逻辑用语》单元测试题时间:90分钟满分:120分第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.1.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0B.存在x0∈R,2x0≥0C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>0解析:因为命题“存在x0∈R,2x0≤0”是特称命题,所以它的否定是全称命题.答案:D2.“(2x-1)x=0”是“x=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若(2x-1)x=0,则x=12或x=0,即不一定推出x=0;若x=0,则一定能推出(2x-1)x=0.故“(2x-1)x=0”是“x=0”的必要不充分条件.答案:B3.与命题“能被6整除的整数,一定能被3整除”等价的命题是()A.能被3整除的整数,一定能被6整除B.不能被3整除的整数,一定不能被6整除C.不能被6整除的整数,一定不能被3整除D.不能被6整除的整数,不一定能被3整除解析:一个命题与它的逆否命题是等价命题,选项B中的命题为已知命题的逆否命题.答案:B4.若向量a =(x,3)(x ∈R ),则“x =4是|a |=5”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析:由x =4知|a |=42+32=5;反之,由|a |=x 2+32=5,得x =4或x =-4.故“x =4”是“|a |=5”的充分不必要条件,故选A.答案:A5.(2013·新课标全国卷Ⅰ)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .綈p ∧qC .p ∧綈qD .綈p ∧綈q解析:命题p 为假,因为当x <0时,2x >3x .命题q 为真,因为f (x )=x 3+x 2-1在(0,+∞)内单调递增,且f (0)=-1<0,f (1)=1>0,所以在(0,1)内函数f (x )必存在零点.所以綈p ∧q 为真命题,故选B.答案:B6.在三角形ABC 中,∠A >∠B ,给出下列命题: ①sin ∠A >sin ∠B ;②cos 2∠A <cos 2∠B ;③tan ∠A 2>tan ∠B 2. 其中正确的命题个数是( ) A .0个 B .1个 C .2个D .3个解析:当∠A 、∠B 均为锐角时,由函数的单调性及不等式的性质知都成立;当∠B 为锐角,∠A 为钝角或直角时,又有∠A 、∠B 为三角形的内角,所以π2≤∠A <π,0<∠B <π2,∠A +∠B <π,即π4≤∠A 2<π2,0<∠B 2<π4,∠B <π-∠A <π2,即tan ∠A 2>tan ∠B 2,sin ∠B <sin(π-∠A )=sin ∠A ,cos ∠B >cos(π-∠A )=-cos ∠A ≥0,所以cos 2∠A <cos 2∠B .答案:D7.下面说法正确的是( )A .命题“∃x 0∈R ,使得x 20+x 0+1≥0”的否定是“∀x ∈R ,使得x 2+x +1≥0”B .实数x >y 是x 2>y 2成立的充要条件C .设p ,q 为简单命题,若“p ∨q ”为假命题,则“綈p ∧綈q ”也为假命题D .命题“若α=0,则cos α=1”的逆否命题为真命题解析:对A 选项,命题的否定是:“∀x ∈R ,使得x 2+x +1<0”,故不正确,对于B 选项,由x >yA /⇒x 2>y 2,且x 2>y 2A /⇒x >y ,故不正确.对于C 选项,若“p ∨q ”为假命题,则“綈p ∧綈q ”为真命题,故不正确.对于D 选项,若α=0,则cos α=1是真命题,故其逆否命题也为真命题,故正确. 答案:D8.已知命题p :∃x 0∈R ,使tan x 0=1,命题q :∀x ∈R ,x 2>0.下面结论正确的是( )A .命题“p ∧q ”是真命题B .命题“p ∧綈q ”是假命题C .命题“綈p ∨q ”是真命题D .命题“綈p ∧綈q ”是假命题解析:∵p 真,q 假.故p ∧q 为假,p ∧綈q 为真.綈p ∨q 为假,綈p ∧綈q 为假,选D.答案:D9.下列结论错误的是( )A .命题“若log 2(x 2-2x -1)=1,则x =-1”的逆否命题是“若x ≠-1,则log 2(x 2-2x -1)≠1”B .设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则“α<β”是“tan α<tan β”的充要条件C .若“(綈p )∧q ”是假命题,则“p ∨q ”为假命题D .“∃α∈R ,使sin 2α+cos 2α≥1”为真命题解析:根据逆否命题定义知A选项正确.由正切函数单调性,可判断B选项正确.D 选项作为特称命题正确,对于C选项,“綈p∧q”为假,则綈p,q中至少一个为假,故p∨q真假不定,故选C.答案:C10.给出下列三个命题:①若a≥b>-1,则a1+a≥b1+b;②若正整数m和n满足m≤n,则mn-m2≤n2;③设P(x1,y1)是圆O1:x2+y2=9上的任意一点,圆O2以Q(a,b)为圆心,且半径为1.当(a-x1)2+(b-y1)2=1时,圆O1与圆O2相切.其中假命题的个数为()A.0个B.1个C.2个D.3个解析:①a1+a≥b1+b⇒1-11+a≥1-11+b⇒11+a≤11+b,又a≥b>-1⇔a+1≥b+1>0知本命题为真命题.②用基本不等式:2xy≤x2+y2(x>0,y>0),取x=m,y=n-m,知本命题为真命题.③圆O1上存在两个点A、B满足弦AB=1,所以P、O2可能都在圆O1上,当O2在圆O1上时,圆O1与圆O2相交.故本命题为假命题.答案:B第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.给出命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是__________.解析:∵命题:“若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限”是真命题,其逆命题“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”是假命题,如函数y=x+1.再由互为逆否命题真假性相同知,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是1个.答案:1个12.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是__________. 解析:∵命题“ax 2-2ax -3>0不成立”是真命题,∴不等式ax 2-2ax -3≤0对于任意的实数x 恒成立,(1)当a =0时,符合条件;(2)当⎩⎪⎨⎪⎧a <0,Δ≤0,即-3≤a <0.由(1)、(2)得实数a 的取值范围是{a |a =0或a ≤-3}. 答案:-3≤a ≤013.若不等式|x -1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是__________.解析:∵|x -1|<a ⇔1-a <x <1+a ,又∵不等式|x -1|<a 成立的充分条件是0<x <4, ∴⎩⎪⎨⎪⎧ 1-a ≤0,1+a ≥4,即⎩⎪⎨⎪⎧a ≥1,a ≥3,∴a ≥3. 答案:[3,+∞)14.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x ∈R ,x 2+2ax +2-a =0,若“p ∧q ”为真命题,则实数a 的取值范围是__________.解析:∵“p ∧q ”为真命题,∴p ,q 均为真命题. 由p 为真命题得a ≤1.由q 为真命题得a ≤-2或a ≥1. ∴当p ,q 同时为真时,有a ≤-2或a =1. 答案:a ≤-2或a =1三、解答题:本大题共4小题,满分50分.15.(12分)命题:已知a ,b 为实数,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2-4b ≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.解:逆命题:已知a 、b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集.(3分)否命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b <0.(6分)逆否命题:已知a 、b 为实数,若a 2-4b <0,则关于x 的不等式x 2+ax +b ≤0没有非空解集.(9分)原命题、逆命题、否命题、逆否命题均为真命题. (12分)16.(12分)已知p :|x -3|≤2,q :(x -m +1)(x -m -1)≤0,若綈p 是綈q 的充分不必要条件,求实数m 的取值范围.解:由题意p :-2≤x -3≤2, ∴1≤x ≤5.∴綈p :x <1或x >5.(4分) q :m -1≤x ≤m +1,∴綈q :x <m -1或x >m +1.(8分) 又∵綈p 是綈q 的充分不必要条件, ∴⎩⎪⎨⎪⎧m -1≥1,m +1≤5. ∴2≤m ≤4.(12分)17.(12分)设命题p :∃x 0∈R ,x 20+2ax 0-a =0.命题q :∀x ∈R ,ax 2+4x +a ≥-2x 2+1.如果命题“p ∨q ”为真命题,“p ∧q ”为假命题,求实数a 的取值范围.解:当命题p 为真时,Δ=4a 2+4a ≥0得a ≥0或a ≤-1,当命题q 为真时,(a +2)x 2+4x +a -1≥0恒成立,∴a +2>0且16-4(a +2)(a -1)≤0,即a ≥2.(6分)由题意得,命题p和命题q一真一假.当命题p为真,命题q为假时,得a≤-1;当命题p为假,命题q为真时,得a∈∅;∴实数a的取值范围为(-∞,-1].(12分)18.(14分)给出两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅,命题乙:函数y=(2a2-a)x为增函数.分别求出符合下列条件的实数a的取值范围.(1)甲、乙至少有一个是真命题;(2)甲、乙中有且只有一个是真命题.解:甲命题为真时,Δ=(a-1)2-4a2<0,即a>13或a<-1.乙命题为真时,2a2-a>1,即a>1或a<-12.(1)甲、乙至少有一个是真命题时,即上面两个范围取并集,∴a的取值范围是{a|a<-12或a>13}.(7分)(2)甲、乙中有且只有一个是真命题,有两种情况:甲真乙假时,13<a≤1,甲假乙真时,-1≤a<-12,∴甲、乙中有且只有一个真命题时,a的取值范围为{a|13<a≤1或-1≤a<-12}.(14分)。

苏教版高中数学选修2-1本章练测:第1章常用逻辑用语(含答案详解).docx

苏教版高中数学选修2-1本章练测:第1章常用逻辑用语(含答案详解).docx

第1章常用逻辑用语(苏教版选修2-1)建议用时实际用时满分实际得分120分钟160分一、填空题(本大题共14小题,每小题5分,共70分)1.下列说法中,不正确的是_________.①“若则”与“若则”是互逆命题;②“若﹁则﹁”与“若则”是互否命题;③“若﹁则﹁”与“若则”是互否命题;④“若﹁则﹁”与“若则”是互为逆否命题.2.若命题“使得”是假命题,则实数的取值范围是.3.集合,,,则“”是“”的条件.4.设::,若﹁是﹁的必要不充分条件,则实数的取值范围是.5.命题:将函数的图象向右平移个单位长度得到函数的图象;命题:函数的最小正周期是,则复合命题“或”“且”“非”中真命题的个数是______.6.已知命题:,命题:,,若命题“”是真命题,则实数的取值范围是.7.给出下列命题:①若“或”是假命题,则“﹁且﹁”是真命题;②;③若关于的实系数一元二次不等式的解集为,则必有且;④,其中真命题是______.8.关于的函数有以下命题:①,;②;③,都不是偶函数;④,使f是奇函数.其中假命题的序号是.9.有限集合中元素的个数记作,设A,B都是有限集合,给出下列命题:①的充要条件是=;②的必要条件是;③的充分条件是;④的充要条件是.其中正确的命题是.10.已知命题使;命题,都有给出下列结论:①命题“”是真命题;②命题“﹁”是假命题;③命题“﹁”是真命题;④命题“﹁﹁”是假命题.其中正确的是.11.命题:“如果-+=0,则x=2且y=-1”的逆否命题为.12.已知命题p:x∈R,a+2x+3≥0,如果命题p为真命题,则实数a的取值范围是.13.已知命题p:命题q:若命题p是命题q的充分不必要条件,则实数的范围是____________.14.下列四个结论中,正确的有(填序号).①若A是B的必要不充分条件,则非B也是非A的必要不充分条件;②“>-”是“一元二次不等式a+bx+c≥0的解集为R”的充要条件;③“x≠1”是“≠1”的充分不必要条件;④“x≠0”是“x+|x|>0”的必要不充分条件.二、解答题(本大题共6小题,共90分)15.(本小题满分14分)设命题为“若,则关于的方程有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.16.(本小题满分14分)已知命题:任意,,如果命题﹁是真命题,求实数的取值范围.17.(本小题满分14分)设p:实数x满足-4ax+3<0,其中a>0;q:实数x满足--->(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围.18.(本小题满分16分)若函数的图象和轴恒有公共点,求实数的取值范围.19. (本小题满分16分)设P,Q,R,S四人分别获得一到四等奖,已知:(1)若P得一等奖,则Q得四等奖;(2)若Q得三等奖,则P得四等奖;(3)P所得奖的等级高于R;(4)若S未得一等奖,则P得二等奖;(5)若Q得二等奖,则R不是四等奖;(6)若Q得一等奖,则R得二等奖.问P,Q,R,S分别获得几等奖?20.(本小题满分16分)设命题p:函数是R上的减函数,命题q:函数在上的值域为.若“”为假命题,“”为真命题,求的取值范围.第1章常用逻辑用语(苏教版选修2-1)答题纸得分:___一、填空题1.2. 3. 4. 5.6.7. 8. 9.10.11. 12. 13. 14.二、解答题15.解:16.解:17.解:18.解:19.解:20.解:第1章常用逻辑用语(苏教版选修2-1)答案一、填空题1.②解析:“若﹁则﹁”与“若则”是互为逆否的命题,②不正确,故选②.2.[- 1,3] 解析:已知命题是假命题,则它的否定为真命题,命题的否定为若为真命题,需方程的判别式解得3.必要不充分解析:集合集合,故,,所以“”是“”的必要不充分条件.4.解析:由已知得若成立,则,若成立,则.又﹁p是﹁q的必要不充分条件,即q是p的必要不充分条件,所以,<,或<,所以.5.2解析:将函数y=的图象向右平移个单位长度得到函数y==的图象,所以命题P是假命题,“非P”是真命题,“P且Q”是假命题.函数,最小正周期为,命题Q为真命题,所以“P或Q”为真命题.故真命题有2个.6.或解析:若p成立,对有.因为所以即若q成立,则方程的判别式解得或因为命题“”是真命题,所以p真q真,故的取值范围为或7.①②解析:“p或q”是假命题,则它的否定是真命题,即“﹁p且﹁q”是真命题,①是真命题;若,则,若,则,所以②是真命题;数形结合可得,若一元二次不等式的解集是,则必有且,所以③是假命题;当时,必有但当,y=5时,满足但,所以④是假命题.8.①③解析:对于命题①,若==成立,必须是整数,所以命题①是假命题;对于函数f,当=时,函数为偶函数,所以命题③是假命题;同理可得,命题②④是真命题.9.①②解析:,集合和集合没有公共元素,①正确;,集合中的元素都是集合中的元素,②正确;③错误;,则集合中的元素与集合中元素完全相同,元素个数相等,但两个集合的元素个数相等,并不意味着它们的元素相同,④错误.10.②③解析:因为,所以命题p是假命题,﹁是真命题;由函数y=的图象可得,命题q是真命题,﹁是假命题.所以命题“”是假命题, 命题“﹁”是假命题,命题“﹁”是真命题,命题“﹁﹁”是真命题.所以②③正确.11.如果x≠2或y≠-1,则-+≠0 解析:“x=2且y=-1”的否定为“x≠2或y≠-1”,“-+12=0”的否定为-2++12≠0,故原命题的逆否命题为“如果x≠2或y≠-1,则-2++12≠0”.12.a<解析:∵p为真命题,∴p为假命题.又当p为真命题时,需a+2x+3≥0恒成立,显然a=0时不正确,则需4-120aa⎧⎨⎩>,≤,∴a≥,∴当p为假命题时,a<.13.解析:两个命题可分别表示为或,或,要使命题是命题的充分不必要条件,则,,,或,,,解得.14.①②④解析:∵原命题与其逆否命题等价,∴若A是B的必要不充分条件,则非B也是非A的必要不充分条件.x≠1≠1,反例:x=-1=1,∴“x≠1”是“≠1”的不充分条件.x≠0x+|x|>0,反例:x=-2x+|x|=0.但x+|x|>0x>0x≠0,∴“x≠0”是“x+|x|>0”的必要不充分条件.二、解答题15.解:否命题为“若,则关于的方程没有实数根”;逆命题为“若关于的方程有实数根,则”;逆否命题为“若关于的方程没有实数根,则”.由方程根的判别式,得,此时方程有实数根.因为使,所以方程有实数根,所以原命题为真,从而逆否命题为真.但方程有实数根,必须,不能推出,故逆命题为假,从而否命题为假.16.解:因为命题﹁是真命题,所以是假命题.又当是真命题,即恒成立时,应有,,解得,所以当是假命题时,.所以实数的取值范围是.17.解:由-4ax+3<0,得(x-3a)(x-a)<0.又a>0,所以a<x<3a.(1)当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由--->得2<x≤3,即q为真时实数x的取值范围是2<x≤3. 若p∧q为真,则p真q真,所以实数x的取值范围是2<x<3.(2)若ℸp是ℸq的充分不必要条件,即q,且p.设A={x|p},B={x|q},则A B,又A={x|p}={x|x≤a或x≥3a},B={x|q}={x|x≤2或x>3},则有0<a≤2且3a>3,所以实数a的取值范围是1<a≤2.18.解:(1)当时,=的图象与轴恒相交;(2)当时,二次函数=的图象和轴恒有公共点的充要条件是恒成立,即恒成立,又是一个关于的二次不等式,恒成立的充要条件是解得.综上,当时,;当时,.19.解:由(3)知,得一等奖的只有P,Q,S之一(即R不可能是一等奖).若P得一等奖,则S未得一等奖,与(4)矛盾;若Q得一等奖,由(6)知,R得二等奖,P只能得三等奖或四等奖,与(3)矛盾.所以只有S得一等奖.若P是二等奖,由(2)知,Q不得三等奖,只能是四等奖,所以R是三等奖;若P是三等奖,则R是四等奖,Q得二等奖,与(5)矛盾.所以S,P,R,Q分别获得一等奖,二等奖,三等奖,四等奖.20.解:由得.因为在上的值域为,所以.又因为“”为假命题,“”为真命题,所以,一真一假.若真假,则;若假真,则.综上可得,的取值范围是或.。

高中数学选修2-1经典练习100例

高中数学选修2-1经典练习100例

第一章 常用逻辑用语1.条件:12p x +>,条件:2q x ≥,则p ⌝是q ⌝的( )A .充分非必要条件B .必要不充分条件C .充要条件D .既不充分也不必要的条件2.用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数c b a ,, 中恰有一个偶数”时正确的反设为 ( )A .自然数c b a ,,都是奇数B .自然数c b a ,,都是偶数C .自然数c b a ,, 中至少有两个偶数D .自然数 c b a ,,中至少有两个偶数或都是奇数 3. {}{}211,,log 1,A x x x R B x x x R =-≥∈=>∈,则“x A ∈”是“x B ∈”的 () A .充分非必要条件 B .必要非充分条件C .充分必要条件D .既非充分也非必要条件4.命题“对任意的2,310x R x x ∈-+≤”的否定是( )A.不存在2000,310x R x x ∈-+≤B.存在2000,310x R x x ∈-+≤C.存在2000,310x R x x ∈-+>D.对任意的2,310x R x x ∈-+>5.已知命题p :∀x∈R,x>sinx ,则p 的否定形式为( )A.∃x∈R,x<sinxB.∀x∈R,x≤sinxC.∃x∈R,x≤sinx D.∀x∈R,x<sinx6.下列命题中的说法正确的是( )A .命题“若2x =1,则x =1”的否命题为“若2x =1,则x≠1”B.“x=-1”是“2x -5x -6=0”的必要不充分条件C .命题“x ∃∈R,使得x2+x +1<0”的否定是:“x ∀∈R,均有2x +x +1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB”的逆否命题为真命题7.下列说法中正确的是 ( )A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a b >”与“a c b c +>+”不等价C.“220a b +=,则a b ,全为0”的逆否命题是“若a b ,全不为0,则220a b ≠+”D.一个命题的否命题为真,则它的逆命题一定为真8.下列命题中的说法正确的是( )A .命题“若2x =1,则x =1”的否命题为“若2x =1,则x ≠1”B.“x =-1”是“2x -5x -6=0”的必要不充分条件C .命题“0x ∃∈R,使得x 02+x 0+1<0”的否定是:“x ∀∈R,均有2x +x +1>0” D .命题“在△ABC 中,若A >B ,则sinA >sinB”的逆否命题为真命题9.下列说法中,正确的是( )A .命题“若am 2<bm 2,则a<b”的逆命题是真命题B .已知x R ∈,则“x 2-2x-3=0”是“x=3”的必要不充分条件C .命题“p∨q”为真命题,则“命题p”和“命题q”均为真命题D .已知x∈R,则“x>1”是“x>2”的充分不必要条件10.“>x π6”是“>x sin 12”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.给出命题p :若“0>BC AB ,则△ABC 为锐角三角形”;命题q :“实数c b a ,,满足ac b =2,则c b a ,,成等比数列”.那么下列结论正确的是( )A .p 且q 与p 或q 都为真B .p 且q 为真而p 或q 为假C .p 且q 为假且p 或q 为假D .p 且q 为假且p 或q 为真12.已知命题p :∃x ∈R ,使sin x =25;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论:①命题“q p ∧”是真命题; ②命题“q p ⌝∨⌝”是假命题; ③命题“q p ∨⌝”是真命题;④命题“q p ⌝∧”是假命题;其中正确的是( )A .②③B .②④C .③④D .①②③13.给出以下四个命题:①若0ab ≤,则0a ≤或0b ≤;②若b a >则22am bm >;③在△A BC 中,若B A sin sin =,则A=B;④在一元二次方程20ax bx c ++=中,若240b ac -<,则方程有实数根.其中原命题.逆命题.否命题.逆否命题全都是真命题的是( )A.①B.②C.③D.④14.以下命题正确的个数为①命题“若21,1x x >>则”的否命题为“若21,1x x ≤≤则”;②命题“若,αβ>则tan tan αβ>”的逆命题为真命题;③命题“2,10x R x x ∃∈++<使得”的否定是“2,10x R x x ∀∈++≥都有”;④“1x >”是“220x x +->”的充分不必要条件.A .1 B. 2 C.3 D.415.已知a ,b∈R,下列四个条件中,使a <b 成立的必要而不充分的条件是( )A . |a|<|b|B . 2a <2bC . a <b ﹣1D . a <b+116.给定两个命题q p ,,若p ⌝是q 的必要不充分条件,则p 是q ⌝的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.命题p :0∀>x ,1sin -≥x ,则A .p ⌝:0∃>x ,sin 1x <-B .p ⌝:0∀>x ,1sin -<xC .p ⌝:0∃>x ,sin 1x >-D .p ⌝:0∀>x ,1sin -≥x18.设a R ∈,则1a =“”是1(1)3l ax a y +-=“直线:与直线2(1)l a x -:(23)2a y ++=互相垂直的( ).A 充分不必要条件 .B 必要不充分条件.C 充分必要条件 .D 既不充分也不必要条件19.两个事件对立是两个事件互斥的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分又不必要条件20.【湖南省衡阳市八中2014年高二上学期期末】若0a b >,,则“b a >”是“2233ab b a b a +>+”的( )A .充分非必要条件B .必要非充分条件C .充分且必要条件D .既非充分也非必要条件 21.若数列{}n a 满足212n na p a +=(p 为正常数,n N *∈),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件22.下列命题是真命题的是( )A. 若ac bc >,则b a >B. 若d c b a >>,,则bd ac >C. 若b a >,则ba 11< D. 若dbc ad c ->->,,则b a > 23.下列全称命题为真命题的是( )A .所有的质数是奇数B .x ∀∈R ,233x +≥C .x ∀∈R ,120x -=D .所有的平行向量都相等24.设α,β是两个不同的平面,m 是直线且m α⊂,“//m β”是“//αβ”的().A. 充分而不必要条件B.必要而不充分条件C. 充分必要条件D.既不充分也不必要条件25.已知命题p :x R ∀∈,sin 1x ≤,则( )A .¬p :x R ∃∈,sin 1x ≥B .¬p :x R ∀∈,sin 1x ≥C .¬p :x R ∃∈,sin 1x >D .¬p :x R ∀∈,sin 1x >26.下列四个命题中的真命题是( )A .∀x ∈R,x 2+3<0B .∀x ∈N,x 2≥1 C.∃x ∈Z ,使x 5<1 D .∃x ∈Q ,x 2=327.若命题“p q ∧”为假,且“q ⌝”为假,则( )A .“q p ∨”为假B . p 假C .p 真D .不能判断q 的真假28.已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是“2πϕ=”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件29.下列四个命题:①||333x x x ≠⇒≠≠-或;②命题“a 、b 都是偶数,则a +b 是偶数”的逆否命题是“a +b 不是偶数,则a 、b 都不是偶数”;③若有命题p :7≥7,q :l n 2>0, 则p 且q 是真命题; ④若一个命题的否命题为真,则它的逆命题一定是真. 其中真命题为( )A .①④B .②③C .②④D .③④30.已知命题:,cos 1p x x ∀∈≤R ,则( )A .:,cos 1p x x ⌝∃∈≥RB .:,cos 1p x x ⌝∀∈≥RC .:,cos 1p x x ⌝∃∈>RD .:,cos 1p x x ⌝∀∈>R31. “0>x ”是“0342>++x x ”成立的( )A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件32. “a≠1或b≠2”是“a+b≠3”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 33.设p 211x -≤,q:[]()(1)0x a x a --+≤,若q 是p 的必要而不充分条件, 则实数a 的取值范围是( )A.10,2⎡⎤⎢⎥⎣⎦ B .10,2⎛⎫ ⎪⎝⎭ C.()1,0,2⎡⎫-∞+∞⎪⎢⎣⎭ D .()1,0,2⎛⎫-∞+∞ ⎪⎝⎭34.如果命题p ∨q 为真命题,p ∧q 为假命题,那么( )A .命题p 、q 都是真命题B .命题p 、q 都是假命题C .命题p 、q 至少有一个是真命题D .命题p 、q 只有一个真命题35.已知命题p :x R ∀∈,||0x ≥,那么命题p ⌝为( )A .,0x R x ∃∈≤B .,0x R x ∀∈≤C. ,0x R x ∃∈< D .,0x R x ∀∈<36.设n m l ,,表示三条不同的直线,γβα,,表示三个不同的平面,给出下列四个命题: ①若βα⊥⊥⊥m l m l ,,,则βα⊥;②若β⊂m ,n 是l 在β内的射影,n m ⊥,则l m ⊥;③若m 是平面α的一条斜线,α∉A ,l 为过A 的一条动直线,则可能有α⊥⊥l m l 且; ④若γαβα⊥⊥,,则βγ//其中真命题的个数为( )个(A )1 (B )2 (C )3 (D )437. “m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 ( ) A. 充分必要条件 B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件38.下列命题中的假命题是 ( )A. 02,1>∈∀-x R xB. 2tan ,=∈∃x R xC. 1lg ,<∈∃x R xD. ()01,2>-∈∀*x Nx 39.下列说法错误的是( ). A .“21sin =θ”是“ 30=θ”的充分不必要条件 B .命题“若0=a 则0=ab ”否命题是“若0≠a 则0≠ab ” C .若命题,01,:2<+-∈∃ x x R x p 则01,:2≥+-∈∀⌝x x R x p D .如果命题p ⌝与命题q p 或都是真命题,那么命题q 一定是真命题40. 3.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件41.“sin cos αα=”是“cos20α=”的( ).A .充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要42.命题“若b a >,则),,(22R c b a bc ac ∈>”与它的逆命题、否命题、逆否命题中,真命题的个数为( ).A .0B .2C .3D .443.条件42:<<-x p ,条件:(2)()0q x x a ++<;若p 是q 的充分而不必要条件,则a 的取值范围是( )A .(4,)+∞B .(,4)-∞-C .(,4]-∞-D . [4,)-+∞44.已知命题:p ∧q 为真,则下列命题是真命题的是( )A .(p ⌝)∧(q ⌝)B .(p ⌝)∨(q ⌝)C .p ∨(q ⌝)D .(p ⌝)∧q45.下列命题中,正确命题的个数为( )①若,则或”的逆否命题为“若且,则; ②函数的零点所在区间是;③是的必要不充分条件A .0B .1C .2 D. 346."2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ). A .充分条件不必要 B .必要不充分条件C .充要条件D .既不充分也不必要条件47.下列判断错误..的是( )A .“3210x x --≤对x R ∈恒成立”的否定是“存在0x R ∈使得320010x x -->”B .“22am bm <”是“a b <”的充分不必要条件C .若n 组数据()()n n y x y x ,,11⋅⋅⋅的散点都在12+-=x y 上,则相关系数1-=rD .若“p q Λ”为假命题,则,p q 均为假命题48.设是两个单位向量,其夹角为θ,则“36πθπ<<”是“1||<-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件49.命题“若2015x >,则0x >”的否命题是( )A .若2015x >,则0x ≤B .若0x ≤,则2015x ≤C .若2015x ≤,则0x ≤D .若0x >,则2015x >50.设集合}30|{},01|{<<=<-=x x B x xx A ,那么""m A ∈是""m B ∈的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件51. “21<-x 成立”是“0)3(<-x x 成立”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 52.下列命题中错误..的是( ) A .,(3)(7)(4)(6)x R x x x x ∀∈++≤++B .,235x R x x ∃∈-++=C .,x R ∀∈若,a b ≥则22ax bx ≥D .22,22x R x ∃∈=+53.已知命题:p n ∃∈N ,104n n +<,则p ⌝为( ) A .n ∃∈N ,104n n +< B .n ∀∈N ,104n n+> C .n ∃∈N ,104n n +≤ D .n ∀∈N ,104n n+≥ 54. “||2b <是“直线3y x b =+与圆2240x y y +-=相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件55. “直线l 垂直于平面α内两直线a ,b ”是“直线l ⊥平面α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件56.已知命题:p 全等三角形面积相等;命题:q 矩形对角线互相垂直.下面四个结论中正确的是( )A .p q ∧是真命题B .p q ∨是真命题C .p ⌝是真命题D .q ⌝是假命题57. “A ,B ,C ,D 四点不在同一平面内”是“A ,B ,C ,D 四点中任意三点不在同一直线上”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件58.命题:p 20x x -<是命题:02q x <<的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件59.若,R αβ∈,则90αβ+=是sin sin 1αβ+>的( )A .充分而不必要条件B .必要而不充分条件C .充耍条件D .既不充分也不必要条件60.以下命题正确的个数是( )①命题“R x ∀∈,sin 0x >”的否定是“R x ∃∈,sin 0x ≤”.②命题“若2120x x +-=,则4x =”的逆否命题为“若4x ≠,则2120x x +-≠”. ③若p q ∧为假命题,则p 、q 均为假命题.A .0个B .1个C .2个D .3个61.已知命题p :实数m 满足m 2+12a 2<7am(a>0),命题q :实数m 满足方程21x m -+22y m -=1表示的焦点在y 轴上的椭圆,且p 是q 的充分不必要条件,a 的取值范围为________.62.对于函数1()93x x f x m +=-⋅,若存在实数0x 使得00()()f x f x -=-成立,则实数m 的取值范围是 .63.下列命题中,①命题“2(0,2),22x x x ∃∈++<0” 的否定是“2(0,2),22x x x ∀∈++>0”; ②12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件; ③一个命题的逆命题为真,它的否命题也一定为真;④“9<k <15”是“方程221159x y k k +=--表示椭圆”的充要条件. ⑤设P 是以1F 、2F 为焦点的双曲线一点,且120PF PF ⋅=,若21F PF ∆的面积为9,则双曲线的虚轴长为6;其中真命题的是 (将正确命题的序号填上)64.命题“00,20R x x ∃∈≤”的否定是 .65.已知命题p :220R x x ax a ∃∈++≤,,则命题p 的否定是_________________;若命题p 为假命题,则实数a 的取值范围是_______________.66.下列结论:①若命题00:,tan 1;p x R x ∃∈=命题,01,:2>+-∈∀x x R x q 则命题""q p ⌝且是假命题; ②已知直线,01:,013:21=++=-+by x l y ax l 则21l l ⊥的充要条件是3-=b a ; ③命题“若,0232=+-x x 则1=x ”的逆否命题为:“若1≠x 则.0232≠+-x x ”④命题“若0xy =,则0x =或0y =”的否命题为“若0xy ≠则0x ≠或0y ≠”⑤命题“R,20x x ∀∈>”的否定是“00R,20x x ∃∈≤”其中正确结论的序号是.____________(把你认为正确结论的序号都填上) 67.已知命题p :“对∀x ∈R,∃m ∈R 使4x -2x +1+m =0”,若命题非p 是假命题,则实数m 的取值范围是__________.68.已知命题:p R x ∃∈,220x x a ++≤,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)69.命题“0,x ∀>都有sin 1x ≥-”的否定: .70.已知a 、b 、c 是三个非零向量,命题“若a b =,则a c b c ⋅=⋅”的逆命题是 命题(填真或假).71.给出下列四个命题:①若a b <,则22a b <;②若1a b ≥>-,则11a b a b≥++; ③若正整数,m n 满足m n <,则2n m n m -≤(); ④若0x >,且1x ≠,则1ln +2x lnx≥. 其中真命题的序号是________.(请把真命题的序号都填上)72.命题“(,0)x ∃∈-∞,使得34x x <”的否定是 .73.命题“能被5整除的数,末位是0”的否定是________.74.写出命题“若a b >,则1a b +>”的逆否命题: .75.在下列结论中,①""q p ∧为真是""q p ∨为真的充分不必要条件②""q p ∧为假是""q p ∨为真的充分不必要条件③""q p ∨为真是""p ⌝为假的必要不充分条件④""p ⌝为真是""q p ∧为假的必要不充分条件正确的是 .76.命题P :直线2y x =与直线20x y +=垂直;命题Q :异面直线在同一个平面上的射影可能为两条平行直线,则命题P Q ∧为 命题(填真或假).77.已知x y R ∈、,那么命题“若x y 、中至少有一个不为0,则220x y +≠.”的逆否命题是 .78.已知p :112x ≤≤,q :()(1)0x a x a --->,若p 是q ⌝的充分不必要条件,则实数a 的取值范围是 .79.已知命题p :12=x ,命题q :1=x ,则p 是q 的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)80.已知}2|1||{<-=x x A ,}11|{+<<-=m x x B ,若B x ∈成立的一个充分不必要条件是A x ∈,则实数m 的取值范围 .81.“函数()sin()f x x ϕ为奇函数” 是“0ϕ”的 条件.82.命题“∃实数,x y ,使得1x y +>”的否定是 .83.命题0:p x R ∃∈,020x ≤,命题:(0,),sin q x x x ∀∈+∞>,其中真命题的是 ;命题p的否定是84.若“0,,tan 4x x m π⎡⎤∀∈≤⎢⎥⎣⎦”是真命题,则实数m 的最小值为 . 85.已知,:64≤-x p 032≥+x x q :,若命题“ p 且q ”和“¬p ”都为假,求x 的取值范围.86.若p :q :且是的充分不必要条件,求实数的取值范围.87.已知命题p :关于x 的一元二次方程022=++m x x 没有实数根,命题q :函数)161lg()(2m x mx x f +-=的定义域为R ,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.88.已知命题1:132x p --≤;22:210,(0)q x x m m -+-≤> 若p ⌝是q ⌝的充分非必要条件,试求实数m 的取值范围.89.设p :实数x 满足x 2-4ax +3a 2<0,其中a≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p∧q 为真,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.90.已知命题P :2a a <,命题Q : 对任何x ∈R ,都有2410x ax ++>,命题P 且Q 为假,P 或Q 为真,求实数a 的取值范围.91.设有两个命题::p 关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;:q 函数f (x )=-(4-2a )x在(-∞,+∞)上是减函数.若命题p q ∨为真,p q ∧为假,则实数a 的取值范围是多少?92.已知434:2≤⎪⎭⎫ ⎝⎛-x p ,)0(012:22>≤-+-m m x x q 若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围.93.已知0c >,设p :函数xy c =在R 上单调递减,q :不等式21x x c +->的解集为R ,如果p ∧q 是假命题,p ∨q 真命题,求c 的取值范围94.已知命题:“{}|11x x x ∃∈-<<,使等式20x x m --=成立”是真命题. (1)求实数m 的取值集合M ;(2)设不等式()(2)0x a x a -+-<的解集为N ,若x N ∈是x M ∈的必要条件,求a 的取 值范围.95.已知p:01322≤+-x x ,q :0)1()12(2≤+++-a a x a x(1)若a=21,且q p ∧为真,求实数x 的取值范围. (2)若p 是q 的充分不必要条件,求实数a 的取值范围.96.已知命题p :方程210x mx ++=有两个不相等的实根;q :不等式244(2)10x m x +-+>的解集为R ;若p 或q 为真,p 且q 为假,求实数m 的取值范围。

高中数学 第一章 常用逻辑用语B组测试题 新人教A版选修2-1

高中数学 第一章 常用逻辑用语B组测试题 新人教A版选修2-1

(数学选修2-1)第一章 常用逻辑用语[综合训练B 组]一、选择题1.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假2.下列命题中的真命题是( )A .3是有理数B .是实数C .e 是有理数D .{}|x x 是小数R3.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为( )A .①②B .②③C .①③D .③④4.设a R ∈,则1a >是11a < 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件5.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是()A . 若0(,)a b a b R ≠≠∈,则220a b +≠B . 若0(,)a b a b R =≠∈,则220a b +≠C . 若0,0(,)a b a b R ≠≠∈且,则220a b +≠D . 若0,0(,)a b a b R ≠≠∈或,则220a b +≠6.若,a b R ∈,使1a b +>成立的一个充分不必要条件是( )A .1a b +≥B .1a ≥C .0.5,0.5a b ≥≥且D .1b <-二、填空题1.有下列四个命题:①、命题“若1=xy ,则x ,y 互为倒数”的逆命题;②、命题“面积相等的三角形全等”的否命题;③、命题“若1m ≤,则022=+-m x x 有实根”的逆否命题; ④、命题“若A B B = ,则A B ⊆”的逆否命题。

其中是真命题的是 (填上你认为正确的命题的序号)。

2.已知,p q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则s 是q 的 ______条件,r 是q 的 条件,p 是s 的 条件.3.“△A B C 中,若090C ∠=,则,A B ∠∠都是锐角”的否命题为 ;4.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q , 则q p 是的 条件。

最新北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(包含答案解析)

最新北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(包含答案解析)

一、选择题1.使不等式2x x 60--<成立的一个充分不必要条件是( )A .2x 0-<<B .3x 2-<<C .2x 3-<<D .2x 4-<< 2.已知:11p x -≤, 2:230q x x --≥, 则p 是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知命题p 、q ,如果p ⌝是q ⌝的充分而不必要条件,那么q 是p 的( ) A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要 4.命题“若{}n a 是等比数列,则n n k n k na a a a +-=(n k >且*,n k N ∈)的逆命题、否命题与逆否命题中,假命题的个数为( ) A .0 B .1C .2D .3 5.设0a >,0b >,则“1a b +≤”是“114a b +≥”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 6.已知命题4:0,4p x x x ∀>+≥;0x 命题001:(0,),22x q x ∃∈+∞=,则下列判断正确的是( )A .p 是假命题B .q 是真命题C .()p q ∧⌝是真命题D .()p q ⌝∧是真命题7.在等比数列{}n a 中,“61a =±”是“2a ,10a 是方程2410x x ++=的两根”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知命题:,sin cos 10p x R x x ∀∈++;命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-;则下列命题中是真命题的是( )A .pB .()p q ∨⌝C .()p q ⌝∧D .p q ∧ 9.已知函数()222f x x x =-+,2log g x x t ,对[]10,2x ∀∈,21,162x ⎡⎤∃∈⎢⎥⎣⎦使得()()12f x g x =,则实数t 的取值范围( ) A .(],2-∞- B .[)2+∞, C .()2,2- D .[]22-,10.ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则“()12a b c ≤+”是“A 为锐角”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件11.“1m =”是“椭圆22360mx y m +-=的焦距为4”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 12.已知2:11x p x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( )A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞ 二、填空题13.有下列五个命题:①函数y =2020x在区间(,0)(0,)-∞+∞上是单调递减的;②“0k ≠”是“函数1y kx =+的图像表示一条直线”的充分不必要条件;③函数y =[)0,+∞上是单调递减的;④函数y x =--{|1}y y ≤;⑤22(2)5y x a x =+-+在(4,+∞)上是增函数,则实数a 的取值范围是2a >-;⑥已知函数()y f x =在R 上是单调递增的,若0a b +>,则()()()()f a f b f a f b +>-+-.其中所有正确命题的题号是__________.14.若不等式21x m -<成立的一个充分不必要条件为1<x <2,则实数m 的取值范围为________.15.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件;②函数31()13f x x x =-++有两个零点; ③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 既与定圆22(2)4x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是28(0)y x x =≠;⑤若对任意的正数x ,不等式x e x a ≥+恒成立,则实数a 的取值范围是1a ≤. 其中正确的命题序号是________.16.关于函数2()(1)f x x =-,2()2g x x x =--.有下列命题:①对x R ∀∈,恒有()()f x g x >成立.②12,x x R ∃∈,使得()()12f x g x <成立.③“若()()f a g b >,则有0a <且0b >.”的否命题.④“若0a <且0b >,则有()()g a f b <.”的逆否命题.其中,真命题有_____________.(只需填序号)17.已知a R ∈ ,则“16a =”是“两直线1:210l x ay +-=与()2:3110l a x ay ---=平行”的___________条件(填“充分非必要”、“必要非充分”、“充要”、“既不充分也不必要”).18.设命题:p 函数()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭的值域为R ;命题:q 不等式39x x a -<对一切正实数x 均成立,若命题p 和q 不全为真命题,则实数a 的取值范围是__________. 19.下列命题中,错误的命题是_____(在横线上填出错误命题的序号).(1)边长为1的等边三角形ABC 中,12AB BC ⋅=; (2)当30k -<<时,一元二次不等式23208kx kx +-<对一切实数x 都成立; (3)ABC ∆中,满足sin cos A B =的三角形一定是直角三角形;(4)ABC ∆中,角、、A B C 所对的边为a b c 、、,若2222a c b +=,则cos B 的最小值为12. 20.已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx+1>0.若p ∧q 为真命题,则实数m 的取值范围_____.三、解答题21.已知命题{}:2131p A x a x a =-<<+,命题{}:14q B x x =-<<.(1)若p 是q 的充分条件,求实数a 的取值范围.(2)是否存在实数a ,使得p 是q 的充要条件?若存在,求出a 的值;若不存在,请说明理由.22.设关于x 的不等式254x x ≤-的解集为A ,不等式2(2)20()x a x a a R -++≤∈的解集为B .(1)求集合A ,B ;(2)若x A ∈是x B ∈的必要条件,求实数a 的取值范围.23.命题P :函数()log a f x x =在0,上是增函数;命题Q :x R ∃∈,使得240x x a -+= .(1)若命题Q 为真,求实数a 的取值范围;(2)若命题“P 且Q ”为真,求实数a 的取值范围.24.若函数()y f x =满足“存在正数λ,使得对定义域内的每一个值1x ,在其定义域内都存在2x ,使12()()f x f x λ=成立”,则称该函数为“依附函数”.(1)分别判断函数①()2x f x =,②2()log g x x =是否为“依附函数”,并说明理由; (2)若函数()y h x =的值域为[,]m n ,求证:“()y h x =是‘依附函数’”的充要条件是“0[,]m n ∉”.25.已知p :关于x ,y 的方程C :x 2+y 2﹣4x +6y +m 2﹣3=0表示圆;q :圆x 2+y 2=a 2(a >0)与直线3x +4y ﹣5m +10=0有公共点.若p 是q 的必要不充分条件,求实数a 的取值范围.26.已知命题:p 方程22242220x y x my m m +-++-+=表示圆;命题:q 方程22115x y m a+=--表示焦点在y 轴上的椭圆,若p 是q 的必要不充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先求解二次不等式,然后确定其成立的一个充分不必要条件即可.【详解】由260x x --<得()()230x x +-<,得23x -<<,若使不等式260x x --<成立的一个充分不必要条件,则对应范围是()2,3-的一个真子集,即20x -<<,满足条件,故选A .【点睛】本题主要考查充分条件和必要条件的应用,转化为集合真子集关系是解决本题的关键. 2.A解析:A【分析】利用不等式的解法求出p , q ,然后求出q ⌝,即可得到答案【详解】:11p x -≤,化为111x -≤-≤,解得02x ≤≤2:230q x x --≥,解得3x ≥或1x ≤-则q ⌝:13x -<<则p 是q ⌝的充分不必要条件故选A【点睛】本题主要考查了必要条件,充分条件以及充要条件的判定定理,不等式的解法,属于基础题.3.B解析:B【解析】p ⌝是q ⌝的充分不必要条件,∴根据逆否命题与原命题的等价性可知,q 是p 的充分不必要条件,故选B.4.A解析:A【分析】先判断原命题为真命题,由此得出逆否命题是真命题;判断出原命题的逆命题为真命题,由此判断原命题的否命题也是真命题,由此确定假命题的个数.【详解】若{}n a 是等比数列,则n a 是n k a -与n k a +的等比中项,所以原命题是真命题,从而,逆否命题是真命题; 反之,若(*)n n k n k n a a n k n k a a +-=>∈N ,,,则当1k =时,11(1*)n n n na a n n a a +-=>∈N ,, 所以{}n a 是等比数列,所以逆命题是真命题,从而,否命题是真命题.故选:A .【点睛】本小题主要考查四种命题及其相互关系,考查等比数列的性质,属于基础题.5.A解析:A【分析】先利用基本不等式证明充分性成立,再举反例说明必要性不成立即可.【详解】解:因为0a >,0b >,所以1a b ≤+≤,所以104ab <≤, 所以14ab≥(当且仅当12a b ==时取等号),所以114a b +≥≥=(当且仅当12a b ==时取等号). 所以“1a b +≤”是“114a b +≥”的充分条件. 反之,当13a =,1b =时114a b +≥,但是1a b +>,所以“1a b +≤”是“114a b +≥”的不必要条件.故选:A.本题主要考查基本不等式的应用、充分条件与必要条件,属于中档题.6.C解析:C【分析】根据均值不等式得到p 为真命题,根据指数函数单调性得到q 为假命题,对比选项得到答案.【详解】0x >时,44x x +≥=,当2x =时等号成立,故p 为真命题; 当0x >时,0221x >=,故q 为假命题. 则()p q ∧⌝是真命题,()p q ⌝∧是假命题.故选:C.【点睛】本题考查了命题的真假判断,命题的否定,且命题,意在考查学生的计算能力和推断能力. 7.B解析:B【分析】由韦达定理可得2101a a ⋅=,且a 2和a 10均为负值,由等比数列的性质可得61a =-,故必要性满足充分性不满足.【详解】∵由2a ,10a 是方程2410x x ++=的两根,∴2102104,1a a a a +=-⋅=,∴a 2和a 10均为负值,由等比数列的性质可知a 6为负值,且622101a a a =⋅=,∴61a =-,故“61a =±”是“2a ,10a 是方程2410x x ++=的两根”的必要不充分条件,故选:B .【点睛】本题考查充分条件、必要条件,根据充分条件和必要条件的定义,结合等比数列的性质、二次方程根与系数关系等进行判断即可,属于基础题. 8.C解析:C【分析】由辅助角公式化简命题p ,利用特殊值判断命题p 为假命题;根据直线与圆相切的性质,结合点到直线距离公式,可求得m 的值,判断出命题q 为真命题.即可由复合命题真假判断选项.命题:,sin cos 10p x R x x ∀∈++≥由辅助角化简可得sin cos 114x x x π⎛⎫++=++ ⎪⎝⎭,可知当34x π=-104x π⎛⎫++< ⎪⎝⎭,故p 为假; 命题:q 直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切的一个充分不必要条件是5m =-若直线:0l x y m -+=与圆22:(2)(1)8C x y -+-=相切,则d ==, 即|1|4d m =+=,解得3m =或5m =-,故q 为真,故()p q ⌝∧为真,故选:C.【点睛】本题考查了三角函数式的化简,根据直线与圆位置关系求参数的值,充分必要条件的判定,复合命题真假的判断,综合性强,属于中档题. 9.D解析:D【分析】求出()(),f x g x 的值域,A B ,由题意可得A B ⊆,列不等式求解即可.【详解】()222f x x x =-+,当[]0,2x ∈时,()f x 的值域为[]1,2A =,2log g xx t ,1,162x ⎡⎤∈⎢⎥⎣⎦,()g x 的值域[]1,4t t B =-+, 由条件可知A B ⊆, 即[][]1,21,4t t ⊆-+,从而有1142t t -≤⎧⎨+≥⎩, 可得22t -≤≤.故选:D.【点睛】本题主要考查全称命题与特称命题的综合应用,关键是要将问题进行转化,转化为值域之间的包含问题,是中档题.10.A解析:A【分析】由题知:()()()22222111242a b c a b c b c b c ≤+⇔≤+<+≤+,结合余弦定理,可推出A 为锐角,反之无法推出,因此“()12a b c ≤+”是“A 为锐角”的充分非必要条件. 【详解】①在ABC ∆中,若()12a b c ≤+, 则()2214a b c ≤+,即22224()2()a b c b c ≤+≤+, 222a b c ∴<+,222cos 02b c a A bc+-∴=>, A ∴为锐角,即“()12a b c ≤+”⇒“A 为锐角”, ②若A 为锐角,则222cos 02b c a A bc+-=>,即222b c a +>, 无法推出2222b c a +≥,所以“A 为锐角”⇒“()12a b c ≤+”, 综上所述:“()12a b c ≤+”是“A 为锐角”的充分非必要条件, 故选:A.【点睛】本题考查了充分必要条件的判定,结合了基本不等式及余弦定理等相关知识,综合性较强. 11.A解析:A【分析】由椭圆22360mx y m +-=的焦距为4,分类讨论求得1c =或5c =时,再结合充分条件和必要条件的判定方法,即可求解.【详解】由题意,椭圆22360mx y m +-=可化为22162x y m +=,当03m <<时,4c ==,解得1c =,当3m >时,4c ==,解得5c =,即当1c =或5c =时,椭圆22360mx y m +-=的焦距为4,所以“1m =”是“椭圆22360mx y m +-=的焦距为4”的充分不必要条件.故选:A .【点睛】本题主要考查了椭圆的标准方程及几何性质,以及充分条件、必要条件的判定,其中解答中熟记椭圆的标准方程和几何性质,结合充分条件、必要条件的判定求解是解答的关键,着重考查了推理与计算能力,属于基础题.12.A解析:A【分析】由p 为q 的充分不必要条件可得211x x <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案.【详解】解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<,∴:11p x -<<,由p 为q 的充分不必要条件可得211x x <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件;当3a >时,解得:q x a >或3x <,满足条件;当3a <时,解得:3q x >或x a <,∴13a ≤<,综上:1a ≥,故选:A .【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.②④⑥【分析】根据单调性的定义判断命题①③⑤⑥根据充分不必要条件的定义判断②结合二次函数性质求出函数值域判断④【详解】函数例如此时函数在不是减函数①错误;时函数的图象是一条直线充分的但时函数的图象也解析:②④⑥【分析】根据单调性的定义判断命题①③⑤⑥,根据充分不必要条件的定义判断②,结合二次函数性质求出函数值域判断④.【详解】 函数2020y x =,例如11x =-,21x =,此时122020202020202020x x =-<=,函数在(,0)(0,)-∞+∞不是减函数,①错误;0k ≠时,函数1y kx =+的图象是一条直线,充分的,但0k =时函数1y kx =+的图象也是一条直线,不必要.②正确;函数y =的定义域是[1,1]-,③错误;2(1)121)2y x x =--=-+-+=-+,0≥,所以21)1≥,21)21y =-+≤,值域为(,1]-∞,④正确;22(2)5y x a x =+-+22(2)5(2)x a a =+-+--在(4,+∞)上是增函数,则24a -+≤,2a ≥-,⑤错;0a b +>,则,a b b a >->-,又函数()y f x =在R 上是单调递增,则()(),()()f a f b f b f a >->-,所以()()()()f a f b f a f b +>-+-,⑥正确. 故答案为:②④⑥.【点睛】关键点点睛:本题考查函数的单调性,函数的值域与充分不必要条件.单调性中强调区间内自变量的任意性,即函数()f x 在(,)a b 和(,)m n 是都是增函数,不能直接说明()f x 在(,)(,)a b m n 上是增函数(减函数也是如此).14.【分析】根据不等式的性质以及充分条件和必要条件的定义即可得到结论【详解】解:由题意不等式的解为且1<x<2是的充分不必要条件所以且等号不能同时取得则故答案为:【点睛】结论点睛:本题考查由充分不必要条 解析:112⎡⎤⎢⎥⎣⎦, 【分析】根据不等式的性质,以及充分条件和必要条件的定义即可得到结论.【详解】 解:由题意不等式21x m -<的解为2121m x m -<<+,且1<x <2是2121m x m -<<+的充分不必要条件,所以211212m m -≤⎧⎨+≥⎩,且等号不能同时取得,则112m ≤≤, 故答案为:112⎡⎤⎢⎥⎣⎦,. 【点睛】结论点睛:本题考查由充分不必要条件求参数的范围,一般可根据如下规则建立不等式组:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.15.①③⑤【分析】①用导数法求出在R 上的增函数的充要条件与对比即可判断结果;②求出函数的极值并判断正负即可判断结论;③列出从AB 中各任意取一个数所有情况算出两数之和等于4的基本事件即可求出概率判断结论真 解析:①③⑤【分析】①用导数法求出()sin f x ax x =-在R 上的增函数的充要条件,与2a >对比即可判断结果;②求出函数31()13f x x x =-++的极值,并判断正负,即可判断结论; ③列出从A ,B 中各任意取一个数所有情况,算出两数之和等于4的基本事件,即可求出概率,判断结论真假;④按求轨迹的方法求出动点轨迹方程,即可判断结论,或举出反例;⑤构造函数(),(0,)x f x e x x =-∈+∞,求出最小值或取值范围,进而得出a 的范围,即可判断命题真假.【详解】①()sin f x ax x =-在R 上的增函数,()cos 0,cos ,f x a x a x x R '∴=-≥≥∈恒成立,1a ≥.“2a >”是“1a ≥”的充分不必要条件,所以①正确; ②321()1,()1(1)(1)3f x x x f x x x x '=-++=-+=--+, ()0,11,()0,1f x x f x x ''>-<<<<-或1x >,()f x 递增区间是(1,1)-,递减区间是(,1),(1,)-∞-+∞,()f x ∴极大值为5(1),()3f f x =的极小值为1(1)3f -=, ()f x 只有一个零点,②不正确;③集合{2,3}A =,{1,2,3}B =,从A ,B 中各任意取一个数,所以情况有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种取法,两数之和等于4有2种取法,所以概率为13,③正确; ④设圆心(,)C x y ,定圆22(2)4x y -+=圆心为(2,0),半径为2||2x =+,平方化简得244||y x x -=,当0x >时,28y x =,当0,0x y ==,C 在定圆上不合题意,当0x <时,0y =,④不正确;⑤设(),(0,),()10x x f x e x x f x e '=-∈+∞=->在(0,)x ∈+∞上恒成立,(),(0,)x f x e x x =-∈+∞单调递增,()(0)1f x f >=,不等式x e x a ≥+在(0,)x ∈+∞上恒成立,1a ∴≤,⑤正确.故答案为:①③⑤.【点睛】本题考查命题真假的判定,涉及到:充分不必要条件判断、函数零点、古典概型概率、轨迹方程、不等式恒成立问题,属于中档题.16.①②③【分析】设可判定①是真命题;令得到可判定②是真命题;根据二次函数的性质和四种命题的等价关系可判定③是真命题④是假命题【详解】由题意设所以即对恒有成立所以①是真命题;令可得此时即使得成立所以②是解析:①②③【分析】设()()()2210h x f x g x x =-=+>,可判定①是真命题;令121,1x x ==-,得到()()12f x g x <,可判定②是真命题;根据二次函数的性质和四种命题的等价关系,可判定③是真命题,④是假命题.【详解】由题意,设()()()222(1)(2)210h x f x g x x x x x =-=----=+>,所以()()f x g x >,即对x R ∀∈,恒有()()f x g x >成立,所以①是真命题;令121,1x x ==-,可得(1)0,(1)1f g =-=,此时()()12f x g x <,即12,x x R ∃∈,使得()()12f x g x <成立,所以②是真命题;因为当0a <时,函数()2(1)f a a =-在(,0)a ∈-∞单调递减,所以()()01f a f >=, 当0b >时,函数22()2(1)1g b b b b =-+--+=在(0,)+∞单调递减,所以((0)0)g g b <=,所以命题“若0a <且0b >,则有()()g a f b >”是真命题,所以④是假命题;又由命题“若0a <且0b >,则有()()g a f b >”与命题“若()()f a g b >,则有0a <且0b >”互为逆否关系,所以命题“若()()f a g b >,则有0a <且0b >”是真命题,所以③是真命题,综上可得,①②③是真命题.故答案为:①②③.【点睛】本题主要考查了命题的真假判定,其中解答中数练应用一元二次函数的图象与性质,以及四种命题的等价关系,合理运算是解答的关键,着重考查了推理与论证能力,属于基础题. 17._充分非必要【解析】【分析】由两直线l1:x+2ay ﹣1=0与l2:(3a ﹣1)x ﹣ay ﹣1=0平行列式求得a 值再由充分必要条件的判定得答案【详解】解:由两直线l1:x+2ay ﹣1=0与l2:(3a解析:_充分非必要【解析】【分析】由两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行列式求得a 值,再由充分必要条件的判定得答案.【详解】解:由两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行,可得()23101310a a a a ⎧---=⎨-+-≠⎩ ,即a =0或a =16 . ∴“a =16”是“两直线l 1:x +2ay ﹣1=0与l 2:(3a ﹣1)x ﹣ay ﹣1=0平行”的充分非必要条件.故答案为充分非必要.【点睛】本题考查充分必要条件的判定,考查两直线平行与系数的关系,是基础题.18.【分析】根据对数型复合函数值域可知是的值域的子集根据二次函数图象分析可得不等关系求得命题为真时;利用换元法将转化为求解的最值可求得命题为真时;求出当全为真时的范围取补集得到结果【详解】若命题为真即值 解析:(,0)(2,)-∞+∞【分析】根据对数型复合函数值域可知()0,∞+是2116y ax x a =-+的值域的子集,根据二次函数图象分析可得不等关系,求得命题p 为真时,02a ≤≤;利用换元法将39x x a -<转化为()21a t t t >->,求解2t t -的最值可求得命题q 为真时,0a ≥;求出当,p q 全为真时a 的范围,取补集得到结果.【详解】若命题p 为真,即()21lg 16f x ax x a ⎛⎫=-+ ⎪⎝⎭值域为R 当0a =时,0x ->,解得:0x <,满足题意当0a ≠时,201104a a >⎧⎪⎨∆=-≥⎪⎩,解得:02a <≤ 综上所述:若命题p 为真,则02a ≤≤若命题q 为真,即不等式39x x a -<对()0,x ∈+∞恒成立令31x t =>,则2a t t >-1t > 2110t t ∴-<-= 0a ∴≥即若命题q 为真,则0a ≥∴当命题,p q 全为真命题时,02a ≤≤命题,p q 不全为真命题 a ∴的取值范围为:()(),02,-∞+∞ 故答案为:()(),02,-∞+∞【点睛】本题考查根据命题的真假性求解参数范围,涉及到根据对数型复合函数的值域求解参数范围、不等式恒成立问题的求解等知识. 19.(1)(3)【分析】直接利用向量的数量积计算一元二次不等式恒成立问题解法三角函数关系式的变换余弦定理的应用基本不等式的应用求出结果【详解】解:对于选项(1)边长为1的等边三角形中由于:所以错误对于选 解析:(1)(3)【分析】直接利用向量的数量积计算,一元二次不等式恒成立问题解法,三角函数关系式的变换,余弦定理的应用,基本不等式的应用求出结果.【详解】解:对于选项(1)边长为1的等边三角形ABC 中,由于:1||||cos1202AB BC AB BC ⋅=︒=-,所以12AB BC ⋅=错误, 对于选项(2)当30k -<<时,一元二次不等式23208kx kx +-<对一切实数x 都成立, 故:22342308k k k k ⎛⎫-⋅⋅-=+< ⎪⎝⎭, 解得:30k -<<,当0k =时,308-<恒成立. 故:30k -<≤,由于:()(]3,03,0-⊂-.故(2)正确..对于选项(3)ABC ∆中,满足sin co ()s 2sin A B B π==-, 故:2A B π=-或2A B ππ+-=, 所以:2A B π+=或2A B π-=所以:三角形ABC 不一定是直角三角形;故(3)错误.对于选项(4)ABC ∆中,角、、A B C 所对的边为a b c 、、,若2222a c b +=,所以:2b ac ≥ 故:22221cos 222a cb b B ac ac +-==≥. 故(4)正确.故选(1)(3).【点睛】本题主要考查了三角函数关系式的应用,平面向量的数量积的应用,余弦定理和基本不等式的应用及一元二次不等式恒成立问题,主要考察学生的运算能力和转化能力,属于中档题.20.【解析】【分析】结合非命题的性质根据不等式恒成立分别求出命题中的取值范围利用且命题的性质即可得到结论【详解】若为真则为真则若为真则若为真命题则实数的取值范围是故答案为【点睛】本题主要考查复合命题之间 解析:(2,0)-【解析】【分析】结合非命题的性质,根据不等式恒成立分别求出命题,p q 中m 的取值范围,利用且命题的性质即可得到结论.【详解】2:,10p x R mx ⌝∀∈+>,若p ⌝为真,则0m ≥ ,p ∴为真,则0m <,若q 为真,则240,22m m -<-<<,若p q ∧为真命题,{}{}{}|0|22|20m m m m m m <⋂-<<=-<<,则实数m 的取值范围是()2,0-,故答案为()2,0- .【点睛】本题主要考查复合命题之间的关系,以及一元二次不等式恒成立问题,属于中档题. 一元二次不等式恒成立问题主要方法:(1)若实数集上恒成立,考虑判别式小于零即可;(2)若在给定区间上恒成立,则考虑运用“分离参数法”转化为求最值问题.三、解答题21.(1)(][],20,1-∞-;(2)不存在,理由见解析.【分析】(1)由已知得A B ⊆,分为A =∅或A ≠∅两种情况来讨论,建立不等式(组),求解可得出实数a 的取值范围.(2)由已知可得A B =,根据集合相等建立不等式组可得结论.【详解】(1)集合{}2131A x a x a =-<<-,集合{}14B x x =-<<.因为p 是q 的充分条件,所以A B ⊆,∴集合A 可以分为A =∅或A ≠∅两种情况来讨论:当A =∅时,满足题意,此时2131a a -≥-,解得:2a ≤-;当A ≠∅时,要使A B ⊆成立, 需满足211314012131a a a a a -≥-⎧⎪+≤⇒≤≤⎨⎪-<+⎩, 综上所得,实数a 的取值范围(][],20,1-∞-.(2)假设存在实数a ,使得p 是q 的充要条件,那么A B =,则必有211314a a -=-⎧⎨+=⎩,解得01a a =⎧⎨=⎩,综合得a 无解. 故不存在实数a ,使得A B =,即不存在实数a ,使得A 是B 的充要条件.【点睛】本题考查充分必要条件,集合间的关系,根据集合间的关系求参数的范围,属于中档题. 22.(1){}14A x x =≤≤,当2a >时,{}2B x x a =≤≤;当2a =时,{2}B =;当2a <时,{}2B x a x =≤≤;(2)14a ≤≤. 【分析】(1)利用一元二次不等式的解法,即可求得A ,将不等式2(2)20()x a x a a R -++≤∈因式分解,讨论2a >、2a =、2a <三种情况,即可得答案;(2)根据题意可得B A ⊆,讨论2a >、2a =、2a <三种情况,即可得答案.【详解】(1)不等式254x x ≤-,整理得2540x x -+≤,即(1)(4)0x x --≤,解得14x ≤≤,所以{}14A x x =≤≤.不等式2(2)20()x a x a a R -++≤∈,整理得()(2)0x a x --≤,当2a >时,解得2x a ≤≤,所以解集为{}2B x x a =≤≤;当2a =时,解集为{2}B =;当2a <时,解得2a x ≤≤,所以解集为{}2B x a x =≤≤.(2)因为x A ∈是x B ∈的必要条件,即B A ⊆,当2a >时,{}2B x x a =≤≤,所以4a ≤,即24a <≤;当2a =时,{2}B =,满足题意;当2a <时,{}2B x a x =≤≤,所以1a ≥,即12a ≤<,综上14a ≤≤.【点睛】本题考查一元二次不等式的解法,充分、必要条件等知识,考查分析理解,分类讨论,计算化简的能力,属中档题.23.(1)4a ≤;(2)14a <≤.【分析】(1)根据条件将问题转化为方程有解,从而得到1640a ∆=-≥,由此求解出a 的取值范围;(2)根据含逻辑联结词的复合命题的真假判断出,P Q 的真假,由此求解出a 的取值范围.【详解】(1)因为x R ∃∈使得240x x a -+=,所以240x x a -+=在R 上有解,所以1640a ∆=-≥,所以4a ≤;(2)因为“P 且Q ”为真,所以,P Q 均为真,当P 为真时,1a >;当Q 为真时,4a ≤,所以14a <≤.【点睛】本题考查根据命题、复合命题的真假求解参数范围,着重考查了含逻辑联结词的复合命题的分析方法,难度一般.24.(1)①是,②不是;理由详见解析(2)详见解析.【分析】(1)①可取1λ=,说明函数()2x f x =是“依附函数”; ②对于任意正数λ,取11x =,此时关于2x 的方程12()()g x g x λ=无解,说明2()log g x x =不是“依附函数”; (2)先证明必要性,再证明充分性,即得证.【详解】(1)①可取1λ=,则对任意1x ∈R ,存在21x x =-∈R ,使得12221x x ⋅=成立, (说明:可取任意正数λ,则221log x x λ=-)∴()2x f x =是“依附函数”,②对于任意正数λ,取11x =,则1()0g x =,此时关于2x 的方程12()()g x g x λ=无解,∴2()log g x x =不是“依附函数”. (2)必要性:(反证法)假设0[,]m n ∈,∵()y h x =的值域为[,]m n ,∴存在定义域内的1x ,使得1()0h x =,∴对任意正数λ,关于2x 的方程12()()h x h x λ=无解,即()y h x =不是依附函数,矛盾,充分性:假设0[,]m n ∉,取0mn λ=>,则对定义域内的每一个值1x ,由1()[,]h x m n ∈,可得1[,][,]()m n h x n m λλλ∈=,而()y h x =的值域为[,]m n ,∴存在定义域内的2x ,使得21()()h x h x λ=,即12()()h x h x λ=成立,∴()y h x =是“依附函数”.【点睛】本题主要考查函数的新定义,考查充分必要条件的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力.25.(),2-∞.【分析】转化条件为p :44m <<-,q :22a m a ≤≤+-,再根据p 是q 的必要充分条件即可得解.【详解】∵p :关于x ,y 的方程2224630C x y x y m +++:--=表示圆;∴()()2222316x y m ++--=表示圆,即2160m ->,∴44m <<-; ∵q :圆2220x y a a +>=()与直线345100x y m +-+=有公共点.∴510m d a -+=≤,解得22a m a ≤≤+-;∵p 是q 的必要不充分条件,∴2424a a ->-⎧⎨+<⎩,解得2a <; 故实数a 的取值范围是(),2-∞.【点睛】本题考查了圆的解析式、直线与圆的位置关系、条件之间的关系,属于中档题. 26.45a ≤<【分析】分别求出命题p ,q 为真命题时参数m 的取值范围,因为p 是q 的必要不充分条件,转化为集合的包含关系,求参数的取值范围.【详解】解:由22242220x y x my m m +-++-+=,得:()()2222x y m m m -++=-++表示圆, 220m m ∴-++>,解得:12m -<<,q 表示焦点在y 上的椭圆,所以015m a <-<-,若p 是q 必要不充分条件,则6205a a -≤⎧⎨<-⎩, 45a ∴≤<. 故答案为:45a ≤<.【点睛】关键点点睛:利用圆和椭圆的方程的等价条件是解决本题的关键.。

(易错题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(答案解析)

(易错题)高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(答案解析)

一、选择题1.已知命题p 、q ,如果p ⌝是q ⌝的充分而不必要条件,那么q 是p 的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要2.下列说法不正确的是( ) A .命题“若a b >,则ac bc >”是真命题 B .命题“若220a b +=,则,a b 全为0”是真命题C .命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠”D .命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠” 3.下列四个命题中,真命题的个数是( ) ①命题“若ln 1x x +>,则1x >”;②命题“p 且q 为真,则,p q 有且只有一个为真命题”; ③命题“所有幂函数()af x x =的图象经过点()1,1”;④命题“已知22,,4a b R a b ∈+≥是2a b +≥的充分不必要条件”. A .1B .2C .3D .44.9k >是方程22194x y k k +=--表示双曲线的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件5.已知条件p :()()30x m x m --->;条件q :2340x x +-<,若q 是p 的充分不必要条件,则实数m 的取值范围是( ) A .(,7)(1,)-∞-+∞B .(],7[1,)-∞-+∞C .()7,1-D .[]7,1-6.已知()0,x π∈,则“6x π>”是“1sin 2x >”成立的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要7.已知ABC 的三个内角分别为A ,B ,C ,则“A B C <<”是“cos cos cos A B C >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 8.已知点A ,B ,C 不共线,则“AB 与AC 的夹角为3π”是“AB AC BC +>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件9.已知条件:12p x +>,条件:q x a >,且p ⌝是q ⌝的充分不必要条件,则实数a 的值范围为( ) A .[)1,+∞B .[)1,-+∞C .(],1-∞D .(],3-∞10.ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则“()12a b c ≤+”是“A 为锐角”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分又非必要条件 11.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件12.已知2:11xp x <+,:()(3)0q x a x -->,p 为q 的充分不必要条件,则a 的范围是( ) A .[)1,+∞B .()1,+∞C .[)0,+∞D .()1,-+∞二、填空题13.下列说法中:①命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤”;②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”是“函数()y f x =在区间D 上的最小值为M ”的必要不充分条件;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()()()1212f x f x f x x +=;④若1x ,2x ∈R ,12x x ≠,则函数()2xf x =满足()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭.所有正确说法的序号______.(把满足条件的序号全部写在横线上) 14.若0, 0a >b >,则“4a b +≤”是 “4ab ≤”的_____条件 15.已知集合261|()13x x A x --⎧⎫=≤⎨⎬⎩⎭,3{|log ()}1B x x a ≥=+,若“x ∈A ”是“x ∈B ”的必要不充分条件,则实数a 的取值范围是________.16.“直线l 垂直于平面α内的无数条直线”是“l α⊥”的________条件(填“充分非必要”或“必要非充分”或“充要”或“既非充分也非必要”).17.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.18.设:p 对任意的x ∈R 都有22x x a ->, q :存在0x R ∈,使20220x ax a ++-=,如果命题p q ∨为真,命题p q ∧为假,则实数a 的取值范围是______. 19.下列命题中,错误的命题是_____(在横线上填出错误命题的序号).(1)边长为1的等边三角形ABC 中,12AB BC ⋅=; (2)当30k -<<时,一元二次不等式23208kx kx +-<对一切实数x 都成立; (3)ABC ∆中,满足sin cos A B =的三角形一定是直角三角形;(4)ABC ∆中,角、、A B C 所对的边为a b c 、、,若2222a c b +=,则cos B 的最小值为12. 20.已知命题p :∃x ∈R ,mx 2+1≤0,命题q :∀x ∈R ,x 2+mx+1>0.若p ∧q 为真命题,则实数m 的取值范围_____.三、解答题21.定义:如果存在实数x ,y 使c xa yb =+,那么就说向量c 可由向量a b ,线性表出.给出命题:p :空间三个非零向量a b c ,,中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a b c ,,共面.判断p 是q 的什么条件,并证明你的结论.22.设:p 实数x 满足22430x ax a -+<,其中0a >.:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩.(1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)非p 是非q 的充分不必要条件,求实数a 的取值范围.23.已知m R ∈,p :m 128<<;q :不等式240x mx -+≥对任意实数x 恒成立. (1)若q 为真命题,求实数m 的取值范围;(2)如果“p q ∨”为真命题,且“p q ∧”为假命题,求实数m 的取值范围.24.设:p 实数x 满足22430x ax a -+<,其中0a <;:q 实数x 满足260x x --≤,且p 是q 的充分不必要条件,求a 的取值范围.25.已知条件:p 对任意[3,4]x ∈,不等式2223x m m -≥-恒成立;条件:q 当[0,1]x ∈时,函数221m x x a =-++.(1)若p 是真命题,求实数m 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.26.设命题p :实数x 满足()()20x a x a --<,其中0a >;命题q :实数x 满足()()216220xx --≤.(1)若2a =,,p q 都是真命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B【解析】p ⌝是q ⌝的充分不必要条件,∴根据逆否命题与原命题的等价性可知,q 是p 的充分不必要条件,故选B.2.A解析:A 【分析】根据不等式性质,真命题,否命题,逆否命题性质逐一判断各个选项即可. 【详解】A 选项,若a b >,当0c ≤时,ac bc >不成立,所以命题为假命题,所以A 不正确B 选项,若220a b +=,则,a b 全为0正确,所以命题为真命题,正确C 选项,否命题否定结论和条件,本选项满足否命题形式,正确D 选项,命题“若0a =,则0ab =”的逆否命题是“若0ab ≠,则0a ≠”满足逆否命题的形式. 所以答案选A 【点睛】本题考查了不等式的性质,真命题的判断,否命题和逆否命题的知识.属于基础题目.3.C解析:C 【分析】①令()ln f x x x =+,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数()af x x =的图象判断.④由()222222a ba b a b a b +=++≥+,判断充分性,取特殊值1a b ==判断必要性. 【详解】①令()ln f x x x =+,()110f x x=+>',所以()f x 在{}1,+∞上递增 所以()()1f x f >,所以1x >,故正确. ②若p 且q 为真,则,p q 都为真命题,故错误.③因为所有幂函数()af x x =的图象经过点()1,1,故正确.④因为()2222224a ba b a b a b +=++≥+≥,所以2a b +≥,故充分性成立,当1a b ==时,推不出224a b +≥,所以不必要,故正确.故选:C 【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.4.B解析:B 【分析】由9k >⇒方程22194x y k k +=--表示双曲线;方程221994x y k k k +=⇒>--或4k <. 【详解】解:已知9k >,90k ∴-<,40k ->, ∴方程22194x y k k +=--表示双曲线,反之,若已知方程22194x y k k +=--表示双曲线,(9)(4)0k k ∴--<,解得9k >或4k <,9k ∴>是方程22194x y k k +=--表示双曲线的充分不必要条件.故选:B . 【点睛】本题考查充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件的判断,是基础题,解题时要认真审题,注意双曲线的性质的合理运用5.B解析:B 【分析】解一元二次不等式求得条件q 中x 的范围,解一元二次不等式求得条件p 中x 的范围,根据q 是p 的充分不必要条件列不等式组,解不等式组求得m 的取值范围. 【详解】对于条件q ,()()234410x x x x +-=+-<,解得41x -<<.对于条件p ,由()()30x m x m --->,解得x m <或3x m >+.由于q 是p 的充分不必要条件,所以34m +≤-或m 1≥,解得(],7[1,)m ∈-∞-+∞. 故选:B 【点睛】本小题主要考查一元二次不等式的解法,考查根据充分不必要条件求参数的取值范围,属于中档题.6.B解析:B 【分析】 求出不等式1sin 2x >在()0,x π∈上的解,然后利用集合的包含关系即可得出结论. 【详解】()0,x π∈,解不等式1sin 2x >,得566x ππ<<,5,66ππ⎛⎫ ⎪⎝⎭ ,6ππ⎛⎫⎪⎝⎭,因此,“6x π>”是“1sin 2x >”成立的必要不充分条件.故选:B. 【点睛】本题考查必要不充分条件的判断,涉及正弦不等式的求解,考查推理能力与运算求解能力,属于中等题.7.C解析:C 【分析】结合余弦函数在()0,π上的单调性,分别判断充分性与必要性,可得出答案. 【详解】先来判断充分性:ABC 的三个内角分别为A ,B ,C ,由A B C <<可得0πA B C <<<<,因为函数cos y x =在()0,π上单调递减,所以cos cos cos A B C >>,故充分性成立; 再来判断必要性:ABC 的三个内角分别为A ,B ,C ,且0πA <<,0πB <<,0πC <<,因为函数cos y x =在()0,π上单调递减,且cos cos cos A B C >>,所以0πA B C <<<<,即A B C <<,故必要性成立.所以“A B C <<”是“cos cos cos A B C >>”的充分必要条件. 故选:C. 【点睛】本题考查命题的充分性与必要性,考查余弦函数单调性的应用,考查学生的推理论证能力,属于基础题.8.A解析:A 【分析】利用向量数量积的性质,可判断AB AC BC +>与AB 与AC 的夹角为3π的推出关系,即可求解. 【详解】当AB 与AC 的夹角为3π时 222=||+2+||2=2||||cos03AB AC AB AB AC AC AB AC AB AC π+⋅⋅⋅⋅>,,222222=||+2+||||2+||||AB AC AB AB AC AC AB AB AC AC AC AB ∴+⋅>-⋅=-,||AB AC AC AB BC ∴+>-=,当AB AC BC +>时,2222222=||+2+||||2+|||||AB AC AB AB AC AC AB AB AC AC AC AB BC +⋅>-⋅=-=,化简得:0AB AC ⋅>, A ,B ,C 不共线,∴AB 与AC 的夹角为锐角,所以“AB 与AC 的夹角为3π”是“AB AC BC +>”的充分不必要条件, 故选:A 【点睛】本题主要考查了数量积的运算性质,充分不必要条件,属于中档题.9.A解析:A 【分析】由题意,可先解出p ⌝:31x -≤≤与q ⌝:x a ≤,再由p ⌝是q ⌝的充分不必要条件列出不等式即可得出a 的取值范围. 【详解】由条件:12p x +>,解得1x >或3x <-,故p ⌝:31x -≤≤, 由条件:q x a >得q ⌝:x a ≤, ∵p ⌝是q ⌝的充分不必要条件, ∴1a ≥, 故选:A . 【点睛】本题以不等式为背景考查充分条件必要条件的判断,考查了推理判断能力,准确理解充分条件与必要条件是解题的关键.10.A解析:A 【分析】 由题知:()()()22222111242a b c a b c b c b c ≤+⇔≤+<+≤+,结合余弦定理,可推出A 为锐角,反之无法推出,因此“()12a b c ≤+”是“A 为锐角”的充分非必要条件. 【详解】①在ABC ∆中,若()12a b c ≤+,则()2214a b c ≤+,即22224()2()a b c b c ≤+≤+, 222a b c ∴<+,222cos 02b c a A bc+-∴=>,A ∴为锐角,即“()12a b c ≤+”⇒“A 为锐角”, ②若A 为锐角,则222cos 02b c a A bc+-=>,即222b c a +>,无法推出2222b c a +≥, 所以“A 为锐角”⇒“()12a b c ≤+”, 综上所述:“()12a b c ≤+”是“A 为锐角”的充分非必要条件, 故选:A. 【点睛】本题考查了充分必要条件的判定,结合了基本不等式及余弦定理等相关知识,综合性较强.11.C解析:C 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥ 且224x y+≤ ,422x y ∴≤⇒⇒+≤ ,等号成立的条件是x y =,又x y +≥,0,0x y >>21xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.12.A解析:A 【分析】由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集,从而可求出答案. 【详解】 解:∵211x x <+,∴2101x x x --<+,即101x x -<+, ∴()()110x x +-<,解得11x -<<, ∴:11p x -<<,由p 为q 的充分不必要条件可得211xx <+的解集是()(3)0x a x -->的解集的真子集, 当3a =时,解得:3q x ≠,满足条件; 当3a >时,解得:q x a >或3x <,满足条件; 当3a <时,解得:3q x >或x a <,∴13a ≤<, 综上:1a ≥, 故选:A . 【点睛】本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题的等价条件是解决本题的关键,属于基础题.二、填空题13.②③④【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用;③对数的运算关系式的应用;④根据基本不等式可得答案;【详解】①命题对任意的有的否定为存在有故①错误;②对于任意的总有(为解析:②③④ 【分析】①直接利用命题的否定判断;②函数的最小值和必要不充分条件的应用; ③对数的运算关系式的应用; ④根据基本不等式可得答案; 【详解】①命题“对任意的1x >,有21x >”的否定为“存在1x >,有21x ≤”,故①错误; ②“对于任意的x D ∈,总有()f x M ≥(M 为常数)”由于没有说明0x D ∈()0f x M =,所以“函数()y f x =在区间D 上的最小值为M ”不一定成立;函数()y f x =在区间D 上的最小值为M ,总有()f x M ≥(M 为常数)成立,故②正确;③若1x ,()20,x ∈+∞,则函数()log a f x x =满足()1212log log log a a a x x x x =+, 所以()()()1212f x f x f x x +=成立,故③正确;④若1x ,2x ∈R ,12x x ≠,()()1212,33x x f x f x ==,1212232x xx x f ++⎛⎫= ⎪⎝⎭, 因为()30xf x =>,所以()()1212122322x x f x f x x x f +++⎛⎫>=== ⎪⎝⎭,故④正确.故答案为:②③④.【点睛】本题考查了命题的否定、函数的最小值和充分条件和必要条件的应用、对数的运算关系、不等式比较大小的问题.14.充分不必要【分析】根据题意利用基本不等式可判定充分性是成立的可举出反例说明必要性不成立即可得到答案【详解】当时由基本不等式可得当时有解得充分性是成立的;例如:当时满足但此时必要性不成立综上所述是的充解析:充分不必要 【分析】根据题意,利用基本不等式,可判定充分性是成立的,可举出反例,说明必要性不成立,即可得到答案. 【详解】当0,0a b >>时,由基本不等式,可得a b +≥当4a b +≤时,有4a b +≤,解得4ab ≤,充分性是成立的; 例如:当1,4a b ==时,满足4ab ≤,但此时=5>4a+b ,必要性不成立, 综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 故答案为充分不必要条件. 【点睛】本题主要考查了充分不必要条件的判定,其中解答中熟记充分条件、必要条件的判定方法,以及合理利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.15.(-∞0【分析】由集合AB 得到元素的范围根据x ∈A 是x ∈B 的必要不充分条件知即可求得a 的范围【详解】由得x2-x -6≥0即x≤-2或x≥3∴A ={x|x≤-2或x≥3}由得x +a≥3即x≥3-a 则B解析:(-∞,0] 【分析】由集合A 、B 得到元素的范围,根据“x ∈A ”是“x ∈B ”的必要不充分条件知B A ,即可求得a 的范围【详解】 由261|()13x x A x --⎧⎫=≤⎨⎬⎩⎭,得x 2-x -6 ≥ 0 即x ≤-2或x ≥ 3∴ A ={x |x ≤-2或x ≥ 3}由31log ()x a ≥+,得x +a ≥ 3,即x ≥ 3-a ,则B ={x |x ≥ 3-a }由题意知:B A∴ 3-a ≥ 3,得a ≤ 0.故答案为:(-∞,0]【点睛】本题考查了必要条件,应用必要条件与对应集合间的包含关系解不等式,求参数范围 16.必要不充分【分析】根据线面垂直的定义以及充分条件和必要条件的定义即可得到结论【详解】根据线面垂直的定义可知直线与平面内任意无数条直线都垂直当直线与平面内无数条直线都垂直时直线与平面垂直不一定成立∴直 解析:必要不充分【分析】根据线面垂直的定义以及充分条件和必要条件的定义即可得到结论.【详解】根据线面垂直的定义可知,直线l 与平面α内任意无数条直线都垂直,当直线l 与平面α内无数条直线都垂直时,直线l 与平面α垂直不一定成立,∴“直线l 与平面α内无数条直线都垂直”是“直线l 与平面α垂直”的必要不充分条件. 故答案为必要不充分.【点睛】本题主要考查充分条件和必要条件的判断,利用线面垂直的定义是解决本题的关键,注意“无数条”和“任意条”的区别.17.【分析】根据命题否定为真结合二次函数图像列不等式解得结果【详解】因为命题是假命题所以为真所以【点睛】本题考查命题的否定以及一元二次不等式恒成立考查基本分析求解能力属基础题 解析:1,2⎛⎫+∞ ⎪⎝⎭【分析】根据命题否定为真,结合二次函数图像列不等式,解得结果【详解】 因为命题20001:,02p x R ax x ∃∈++≤是假命题,所以21,02x R ax x ∀∈++>为真所以011202a a a >⎧∴>⎨-<⎩ 【点睛】本题考查命题的否定以及一元二次不等式恒成立,考查基本分析求解能力,属基础题. 18.【解析】【分析】分别求出命题为真命题的的范围由为真为假可得一真一假再由集合运算求解【详解】由题意:对于命题对任意的即恒成立△得即;对于命题存在使△得解得或即或为真为假一真一假①真假时得;②假真时得综 解析:(2,1)[1,)--+∞【解析】【分析】分别求出命题,p q 为真命题的a 的范围,由p q ∨为真,p q ∧为假,可得,p q 一真一假,再由集合运算求解.【详解】由题意:对于命题p ,对任意的x ∈R ,22x x a ->,即220x x a -->恒成立, ∴△440a =+<,得1a <-,即:1p a <-; 对于命题q ,存在0x R ∈,使200220x ax a ++-=, ∴△244(2)0a a =--,得220a a +-,解得1a 或2a -,即:1q a 或2a -.p q ∨为真,p q ∧为假,p ∴,q 一真一假,①p 真q 假时,121a a <-⎧⎨-<<⎩,得21a -<<-; ②p 假q 真时,112a a a -⎧⎨-⎩或,得1a . 综上,(2,1)[1a ∈--,)+∞. 故答案为:(2,1)[1--,)+∞. 【点睛】本题主要考查复合命题真假关系的应用,求出命题为真命题的a 的范围是解决本题的关键,是中档题.19.(1)(3)【分析】直接利用向量的数量积计算一元二次不等式恒成立问题解法三角函数关系式的变换余弦定理的应用基本不等式的应用求出结果【详解】解:对于选项(1)边长为1的等边三角形中由于:所以错误对于选 解析:(1)(3)【分析】直接利用向量的数量积计算,一元二次不等式恒成立问题解法,三角函数关系式的变换,余弦定理的应用,基本不等式的应用求出结果.解:对于选项(1)边长为1的等边三角形ABC 中,由于:1||||cos1202AB BC AB BC ⋅=︒=-,所以12AB BC ⋅=错误, 对于选项(2)当30k -<<时,一元二次不等式23208kx kx +-<对一切实数x 都成立, 故:22342308k k k k ⎛⎫-⋅⋅-=+< ⎪⎝⎭,解得:30k -<<,当0k =时,308-<恒成立. 故:30k -<≤,由于:()(]3,03,0-⊂-.故(2)正确..对于选项(3)ABC ∆中,满足sin co ()s 2sin A B B π==-, 故:2A B π=-或2A B ππ+-=, 所以:2A B π+=或2A B π-=所以:三角形ABC 不一定是直角三角形;故(3)错误.对于选项(4)ABC ∆中,角、、A B C 所对的边为a b c 、、,若2222a c b +=,所以:2b ac ≥ 故:22221cos 222a cb b B ac ac +-==≥. 故(4)正确.故选(1)(3).【点睛】本题主要考查了三角函数关系式的应用,平面向量的数量积的应用,余弦定理和基本不等式的应用及一元二次不等式恒成立问题,主要考察学生的运算能力和转化能力,属于中档题.20.【解析】【分析】结合非命题的性质根据不等式恒成立分别求出命题中的取值范围利用且命题的性质即可得到结论【详解】若为真则为真则若为真则若为真命题则实数的取值范围是故答案为【点睛】本题主要考查复合命题之间 解析:(2,0)-【解析】结合非命题的性质,根据不等式恒成立分别求出命题,p q 中m 的取值范围,利用且命题的性质即可得到结论.【详解】2:,10p x R mx ⌝∀∈+>,若p ⌝为真,则0m ≥ ,p ∴为真,则0m <,若q 为真,则240,22m m -<-<<,若p q ∧为真命题,{}{}{}|0|22|20m m m m m m <⋂-<<=-<<,则实数m 的取值范围是()2,0-,故答案为()2,0- .【点睛】本题主要考查复合命题之间的关系,以及一元二次不等式恒成立问题,属于中档题. 一元二次不等式恒成立问题主要方法:(1)若实数集上恒成立,考虑判别式小于零即可;(2)若在给定区间上恒成立,则考虑运用“分离参数法”转化为求最值问题.三、解答题21.充分不必要条件,证明见解析.【分析】利用给出的定义、向量共面定理即可判断出关系.【详解】p :空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出.q :空间三个非零向量a ,b ,c 共面.p 是q 的充分不必要条件.证明如下:若空间三个非零向量a ,b ,c 中存在一个向量可由另两个向量线性表出,不妨设c xa yb =+,则由向量共面定理知,a ,b ,c 共面,即p q ⇒,反之不成立,例如,三个非零向量a ,b ,c 共面,且//a b ,而c 与a ,b 不共线,则c 无法用a ,b 线性表示.p ∴是q 的充分不必要条件.【点睛】本题考查了向量共线共面定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.22.(1)()2,3;(2)(]1,2.【分析】(1)将1a =代入p 中的不等式,并解出该不等式,同时也解出p 中的不等式组,由p q∧为真,可知p 、q 均为真命题,将p 、q 中的不等式(组)的解集取交集可得出实数x 的取值范围;(2)求出非p 与非q 中x 的取值范围,结合已知条件转化为两集合的包含关系,可得出关于实数a 的不等式组,即可解得实数a 的取值范围.【详解】(1)当1a =时,解不等式2430x x -+<,解得13x <<,即:13p x <<.解不等式260x x --≤,解得23x -≤≤,解不等式2280x x +->,解得4x <-或2x >,:23q x ∴<≤.{}{}()13232,3x x x x <<⋂<≤=,若p q ∧为真,则p 、q 均为真命题,此时,实数x 的取值范围是()2,3;(2)当0a >时,解不等式22430x ax a -+<,解得3a x a <<,即:3p a x a <<, 则非:p x a ≤或3x a ≥,非:2q x ≤或3x >.因为非p 是非q 的充分不必要条件,则{x x a ≤或}3x a ≥ {2x x ≤或}3x >, 所以,2330a a a ≤⎧⎪>⎨⎪>⎩,解得12a <≤.因此,实数a 的取值范围是(]1,2.【点睛】本题考查利用复合命题的真假求参数,同时也考查了利用充分不必要条件求参数,考查化归与转化思想的应用,属于中等题.23.(1)[4,4]-(2)[4,0][3,4]-⋃【分析】(1)解不等式2160m ∆=-即得解;(2)由“p q ∨”为真,且“p q ∧”为假知p ,q 一真假,再分两种情况分析讨论得解.【详解】(1)由“不等式240x mx -+≥对任意实数x 恒成立”为真得2160m ∆=-,解得44m -≤≤,故实数m 的取值范围为[4,4]-.(2)由“m 128<<”为真得m 的取值范围为03m <<,由“p q ∨”为真,且“p q ∧”为假知p ,q 一真假,当p 真q 假时,有0344m m m <<⎧⎨-⎩或,此时m 无解; 当p 假q 真时,有0344m m m ≤≥⎧⎨-≤≤⎩或,解得40m -≤≤或34m ≤≤; 综上所述,m 的取值范围为[4,0][3,4]-⋃.【点睛】本题主要考查二次不等式的恒成立问题,考查复合命题真假的判断,意在考查学生对这些知识的理解掌握水平.24.203a -≤< 【分析】p 是q 的充分不必要条件,则集合A 是集合B 的子集,运用区间端点值之间的关系可求a 的取值范围.【详解】解:0a <,由22430x ax a -+<得3a x a <<,设{}3A x a x a =<<,由260x x --≤得23x -≤≤,设{}23B x x =-≤≤, p 是q 的充分不必要条件,A ∴ B ,323a a ≥-⎧∴⎨≤⎩0a <203a ∴-≤<. 【点睛】 本题是命题真假的判断与应用,考查了必要条件问题,属于中档题.判断充要条件的方法是:①若p ⇒q 为真命题且q ⇒p 为假命题,则命题p 是命题q 的充分不必要条件;②若p ⇒q 为假命题且q ⇒p 为真命题,则命题p 是命题q 的必要不充分条件;③若p ⇒q 为真命题且q ⇒p 为真命题,则命题p 是命题q 的充要条件;④若p ⇒q 为假命题且q ⇒p 为假命题,则命题p 是命题q 的即不充分也不必要条件.⑤判断命题p 与命题q 所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p 与命题q 的关系.25.(1)[]1,4-;(2)[]1,3-.【分析】(1)把命题p 转化为当[3,4]x ∈时,2min (22)3x m m -≥-,即可求解;(2)根据二次函数的性质,求得[1,4],[,1]A B a a =-=+,根据p 是q 的必要不充分条件,得到B 是A 的真子集,列出不等式组,即可求解.【详解】(1)由题意,对任意[3,4]x ∈,不等式2223x m m -≥-恒成立,即当[3,4]x ∈时,2min (22)3x m m -≥-,又由3x =时,min (22)4x -=,即243m m ≥-,解得14m -≤≤,即实数m 的取值范围[]1,4-.(2)对于命题q :当[0,1]x ∈时,函数221m x x a =-++,当[0,1]x ∈时,函数2221(1)[,1]m x x a x a a a =-++=-+∈+,记[1,4],[,1]A B a a =-=+,因为p 是q 的必要不充分条件,所以B 是A 的真子集,可得114a a ≥-⎧⎨+≤⎩且“=”不能同时成立,解得13a -≤≤, 经验证,当1,3a =-时满足题意,所以实数a 的取值范围[]1,3-.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 26.(1)()2,4;(2)[]1,2.【分析】(1)先分别求出命题p ,q 为真时对应的集合,取交集即可求出x 的范围;(2)根据集合间的基本关系与充分、必要条件的关系列出不等式即可求出a 的取值范围.【详解】(1)当2a =时,由()()240x x --<,得命题p :{}24P x x =<<,由()()216220x x --≤,所以命题q :{}14Q x x =≤≤, ,p q 都是真命题,即()2,4P Q =,因此x 的取值范围是()2,4;(2)由题意可得{}2P x a x a =<<,{}14Q x x =≤≤,若p 是q 的充分不必要条件所以P Q .当=P ∅即0a ≤时,因为0a >不成立;当P ≠∅即0a >时, 124a a ≥⎧⎨≤⎩[]11,22a a a ≥⎧⇒⇒∈⎨≤⎩, 故a 的取值范围是[]1,2.【点睛】结论点睛:本题主要考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含.。

北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(含答案解析)

北师大版高中数学高中数学选修2-1第一章《常用逻辑用语》测试卷(含答案解析)

一、选择题1.命题“若{}n a 是等比数列,则n n kn k na a a a +-=(n k >且*,n k N ∈)的逆命题、否命题与逆否命题中,假命题的个数为( ) A .0B .1C .2D .32.给出如下四个命题:①若“p 且q ”为假命题,则,p q 均为假命题;②命题“若a b >,则221a b >-”的否命题为“若a b <,则221a b ≤-”; ③“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”; 其中正确的命题的个数是( ) A .0B .1C .2D .33.“函数()2()311f x ax a x =--+在区间[)1+∞,上是增函数”是“01a ≤≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.下列命题中假命题是( ) A .∃x 0∈R ,ln x 0<0 B .∀x ∈(-∞,0),e x >x +1 C .∀x >0,5x >3xD .∃x 0∈(0,+∞),x 0<sin x 05.已知命题p :若x y >且y z >,则()()1122log log x y y z -<-,则命题p 的逆否命题及其真假分别为( )A .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,真B .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,真C .若()()1122log log x y y z -≥-,则x y ≤且y z ≤,假D .若()()1122log log x y y z -≥-,则x y ≤或y z ≤,假6.已知命题():0,p x ∀∈+∞,1102xm ⎛⎫+-> ⎪⎝⎭;命题():0,q x ∃∈+∞,2410mx x +-=,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.9k >是方程22194x y k k +=--表示双曲线的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件8.下列判断错误的是( )A .()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件B .命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->RC .命题“若11x -<<,则21x <”的逆否命题是“若21x >,则1x >或1x <-”D .若0m >,则方程20x x m +-=有实数根的逆命题是假命题 9.在平面直角坐标系1A xy -中,直线134x y+=与x 、y 轴分别交于点2A 、3A ,记以点(1,2,3)i A i =为圆心,半径为r 的圆与三角形123A A A 的边的交点个数为M .对于下列说法:①当1i =时,若3M =,则125r =;②当2i =时,若04r <<,则2M =;③当3i =时,M 不可能等于3;④M 的值可以为0,1,2,3,4,5.其中正确的个数为( ) A .1B .2C .3D .410.命题“已知直线1l :10ax y ++=和2l :20x by ++=,若1ab =,则12l l //”,该命题的逆命题、否命题、逆否命题中正确的个数为( ) A .0B .1C .2D .311.记不等式()()22124x y -+-≤表示的平面区域为D .命题p :()x y D ∀∈,,28x y +≤;命题q :(),x y D ∃∈,21x y +≤-.下面给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝.这四个命题中,所有真命题的编号是( ) A .①③ B .②④C .②③D .①④12.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件二、填空题13.给出下列命题:①纯虚数z 的共轭复数是z -; ②若120z z -=,则12z z =;③若12R z z +∈,则1z 与2z 互为共轭复数; ④若120z z -=,则1z 与2z 互为共轭复数. 其中正确命题的序号是_________. 14.关于以下结论: ①*n N ∀∈,22n n ≤;②函数44()sin cos f x x x =-的最小正周期为π; ③若向量0a b ⋅=,则向量a b ⊥;④20182019log 2019log 2020>. 以上结论正确的个数为______. 15.给出下列命题:①命题“若21x =,则1x =”的否命题为“若21x =,则1x ≠”; ②“1x =-”是“2560x x --=”的必要不充分条件;③x R ∃∈命题“,使得210x x +-<”的否定是:“x R ∀∈,均有210x x -->”; ④命题“若x y =,则 sin sin x y =”的逆否命题为真命题 其中所有正确命题的序号是________.16.定义在R 上的函数()f x ,给出下列三个论断: ①()f x 在R 上单调递增;②1x >;③()(1)f x f >.以其中的两个论断为条件,余下的一个论断为结论,写出一个正确的命题:________. 17.已知命题:P :不等式20x mx m -+>的解集为R ;Q :不等式2x x m --<的解集为R ,若命题P 与命题Q 中至少有一个为假命题,则m 的取值范围为_______________. 18.设集合{1,2}A =,2{|10}B x x ax =--≤,若x A ∈是x B ∈的充分条件,则实数a 的取值范围是________ 19.“”是“函数为R 上的增函数”的_______.(填“充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件”中的一个) 20.给出如下四个命题:①若“p 或q ”为真命题,则p 、q 均为真命题; ②命题“若且,则”的否命题为“若且,则”;③在中,“”是“”的充要条件;④已知条件,条件,若是的充分不必要条件,则的取值范围是; 其中正确的命题的是________.三、解答题21.已知命题:|1|2a α-<,β:方程2(2)10x a x +++=没有正根.求实数a 的取值范围,使得命题,αβ有且只有一个真命题.22.已知命题p :[]1,1m ∀∈-,不等式2572a a m -+≥+恒成立;命题q :220x ax ++=有两个不同的实数根,若p q ∨为真,且p q ∧为假,求实数a 的取值范围.23.设命题p :实数x 满足22430x ax a -+<,命题q :实数x 满足|3|1x -<. (1)若1a =,且p q ∨为真,求实数x 的取值范围;(2)若0a >且p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.24.已知a R ∈,p :“[]1,3x ∀∈,20x a -≥”,q :“方程2220x ax ++=无实数解”. (1)若p 为真命题,求实数a 的取值范围;(2)若“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围. 25.已知命题p :实数x 满足245220x x ⋅-⋅+≥,命题q :实数x 满足2(21)(1)0x m x m m -+++≥.(1)求命题p 为真命题,求实数x 的取值范围;(2)若命题q 是命题p 的必要不充分条件,求实数m 的取值范围.26.设命题:p 对任意[]0,1x ∈,不等式2234x m m -≥-恒成立,命题:q 存在[]1,1x ∈-,使得不等式2210x x m -+-≤成立.(1)若p 为真命题,求实数m 的取值范围;(2)若p ,q 有且只有一个为真,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先判断原命题为真命题,由此得出逆否命题是真命题;判断出原命题的逆命题为真命题,由此判断原命题的否命题也是真命题,由此确定假命题的个数. 【详解】若{}n a 是等比数列,则n a 是n k a -与n k a +的等比中项,所以原命题是真命题, 从而,逆否命题是真命题;反之,若(*)n n k n k n a a n k n k a a +-=>∈N ,,,则当1k =时,11(1*)n n n na a n n a a +-=>∈N ,, 所以{}n a 是等比数列,所以逆命题是真命题,从而,否命题是真命题. 故选:A . 【点睛】本小题主要考查四种命题及其相互关系,考查等比数列的性质,属于基础题.2.B解析:B 【分析】结合命题相关知识,对选项逐个分析即可得到答案. 【详解】对于①,,p q 可能为一真一假也可能两个都为假,故①错误;对于②,命题“若a b >,则221a b >-”的否命题为“若a b ≤,则221a b ≤-”,故②错误;对于③,“x ∀∈R ,211x +≥”的否定是“x ∃∈R ,211x +<”,正确.故只有③正确,答案为B. 【点睛】本题考查了复合命题的性质,考查了命题的否定、原命题的否命题,属于基础题.3.C解析:C 【解析】0a <时,“函数()()2311f x ax a x =--+在区间[)1,+∞上不是增函数”,0a =时,()1f x x =+在[)1,+∞上是增函数,0a >时,令3112a a-≤,得01a <≤,∴“()()2311f x ax a x =--+在区间[)1,+∞上是增函数” 的充分必要条件“01a ≤≤”,故选C.4.D解析:D 【详解】∃x 0∈R ,lnx 0<0,的当x ∈(0,1)时,恒成立,所以正确;x ∈(﹣∞,0),令g (x )=e x ﹣x ﹣1,可得g ′(x )=e x ﹣1<0,函数是减函数,g (x )>g (0)=0,可得∀x ∈(﹣∞,0),e x >x +1恒成立,正确; 由指数函数的性质的可知,∀x >0,5x >3x 正确;令f (x )=sin x -x (x >0),则f ′(x )=cos x -1≤0,所以f (x )在(0,+∞)上为减函数,所以f (x )<f (0),即f (x )<0,即sin x <x (x >0),故∀x ∈(0,+∞),sin x <x ,所以D 为假命题,故选D.5.D解析:D 【分析】先根据逆否命题的概念写出命题p 的逆否命题,再举反例说明其真假. 【详解】命题p 的逆否命题为“若()()1122log log x y y z -≥-,则x y ≤或y z ≤”;由于原命题为假(如4x =,3y =,1z =),故其逆否命题也为假, 故选:D. 【点睛】本题主要考查命题的逆否命题及其真假的判断,意在考查学生对这些知识的理解掌握水平,属于基础题.6.A解析:A 【分析】分别计算得到m 1≥和4m ≥-,根据范围大小判断得到答案. 【详解】():0,p x ∀∈+∞,1102x m ⎛⎫+-> ⎪⎝⎭,即112x m ⎛⎫>- ⎪⎝⎭,易知函数()112xf x ⎛⎫=- ⎪⎝⎭单调递增,故m 1≥.命题():0,q x ∃∈+∞,2410mx x +-=, 2214124m x x x ⎛⎫=-=-- ⎪⎝⎭,故4m ≥-. 故命题p 是命题q 的充分不必要条件.故选:A . 【点睛】本题考查了根据命题求参数,充分不必要条件,意在考查学生的推断能力.7.B解析:B 【分析】由9k >⇒方程22194x y k k +=--表示双曲线;方程221994x y k k k +=⇒>--或4k <. 【详解】解:已知9k >,90k ∴-<,40k ->, ∴方程22194x y k k +=--表示双曲线,反之,若已知方程22194x y k k +=--表示双曲线,(9)(4)0k k ∴--<,解得9k >或4k <,9k ∴>是方程22194x y k k +=--表示双曲线的充分不必要条件.故选:B . 【点睛】本题考查充分不必要条件、必要不充分条件、充要条件、既不充分又不必要条件的判断,是基础题,解题时要认真审题,注意双曲线的性质的合理运用8.C解析:C 【分析】根据必要不充分条件的判断方法,即可得出A 正确;写出原命题的否定命题,即可判断B ;写出原命题的逆否命题,即可判断C ;写出原命题的逆命题,即可判断D. 【详解】对于A ,()0f x '=是0x x =为可导函数()y f x =的极值点的必要不充分条件,故A 正确;对于B ,命题“32,10x x x ∀∈--≤R ”的否定是32,10x x x ∃∈-->R ,故B 正确; 对于C ,命题“若11x -<<,则21x <”的逆否命题是“若21x ≥,则1≥x 或1x ≤-”,故C错误;对于D ,命题“若0m >,则方程20x x m +-=有实数根”的逆命题是 “若方程20x x m +-=有实数根,则0m >”当方程20x x m +-=有实数根时,140m =+≥,即14m ≥-, 所以命题“若0m >,则方程20x x m +-=有实数根”的逆命题为假命题,故D 正确. 故选:C. 【点睛】(1)从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. (2)含有一个量词的命题的否定:一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论;对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.(3)由原命题写出其他三种命题,关键要分清原命题的条件和结论:将原命题的条件和结论交换,即得原命题的逆命题;将原命题的条件和结论进行否定,作为新命题的条件和结论,即得原命题的否命题.否定命题的条件或结论,关键是否定条件或结论的关键词;先写出原命题的逆命题,再写出逆命题的否命题,即得逆否命题,也可以先写出原命题的否命题,再写出否命题的逆命题,即得逆否命题.9.B解析:B 【分析】 作出直线134x y+=,可得1(0,0)A ,2(3,0)A ,3(0,4)A ,分别考虑圆心和半径r 的变化,结合图形,即可得到所求结论. 【详解】作出直线134x y+=,可得1(0,0)A ,2(3,0)A ,3(0,4)A ,①当1i =时,若3M =,当圆222x y r +=与直线相切,可得125r =; 当圆经过点(3,0),即3r =, 则125r =或3r =,故①错误; ②当2i =时,若04r <<,圆222(3)x y r -+=,当圆经过O 时,3r =,交点个数为2,4r =时,交点个数为1,则2M =,故②正确;③当3i =时,圆222(4)x y r +-=,随着r 的变化可得交点个数为1,2,0,M 不可能等于3,故③正确;④M 的值可以为0,1,2,3,4,不可以为5,故④错误. 故选:B. 【点睛】本题考查命题的真假判断与应用,考查直线和圆的位置关系,考查分析能力和计算能力.10.C解析:C 【分析】判断原命题为假命题得到逆否命题为假,逆命题为真得到否命题为真,得到答案. 【详解】 取12a =,2b =,满足1ab =,两直线重合,故原命题为假,故逆否命题为假; 若12l l //,则1ab =,故逆命题为真,故否命题为真. 故选:C . 【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.11.B解析:B 【分析】画出平面区域D ,直线28x y +=和直线21x y +=-,根据图像判断出命题p 和命题q 的真假,从而得到答案. 【详解】平面区域为D 满足不等式()()22124x y -+-≤, 画出其图像如图所示,再画出直线28x y +=和直线21x y +=-,根据图像可得存在(),x y D ∈,在直线28x y +=的上方, 所以命题p :()x y D ∀∈,,28x y +≤,是假命题,不存在(),x y D ∈,在直线21x y +=-的下方 所以命题q :(),x y D ∃∈,21x y +≤-,是假命题.所以①p q ∨为假命题;②p q ⌝∨为真命题;③p q ∧⌝为假命题;④p q ⌝∧⌝为真命题. 故选:B.【点睛】本题考查判断含有逻辑联结词命题的真假,根据不等式画可行域,判断点是否在可行域内,属于中档题.12.C解析:C 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】2222x y x y ++≥ 且224x y+≤ ,224222x y x y x y ++∴≤⇒⇒+≤ ,等号成立的条件是x y =, 又2x y xy +≥,0,0x y >>221xy xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立,∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.二、填空题13.①④【分析】对于①根据纯虚数和共轭复数的定义可知正确;对于②由得出再由复数相等和共轭复数的定义可知不一定有可知②不正确;对于③则可能均为实数但不一定相等或与的虚部互为相反数但实部不一定相等即可判断出解析:①④ 【分析】对于①,根据纯虚数和共轭复数的定义可知正确;对于②,由120z z -=得出12z z =,再由复数相等和共轭复数的定义,可知不一定有12z z =,可知②不正确;对于③,12R z z +∈,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,,即可判断出③;对于④,由120z z -=得出12z z =,则1z 与2z 互为共轭复数,则④正确;综合得出答案. 【详解】解:根据纯虚数和共轭复数的定义,可知命题①显然正确; 对于②,若120z z -=,只能得到12z z =,不一定有12z z =,所以命题②不正确;对于③,若12R z z +∈,则12,z z 可能均为实数,但不一定相等, 或1z 与2z 的虚部互为相反数,但实部不一定相等, 则1z 与2z 不一定互为共轭复数,所以命题③不正确; 由120z z -=得出12z z =,则1z 与2z 互为共轭复数,可知命题④正确;所以正确命题的序号是①④.故答案为:①④. 【点睛】本题考查复数相关命题的真假,考查对复数的概念中实数、虚数、纯虚数以及相等复数和共轭复数的特征的理解,属于基础题.14.2【分析】对命题逐一分析正误得出结论即可【详解】解:对于①当时∴;故①错误;②函数所以的最小正周期为;故②正确;③若向量则向量;当时或当时但不垂直于;故③错误;④;④正确证明如下:∵;而∴;∴故②④解析:2【分析】对命题逐一分析正误,得出结论即可. 【详解】解:对于①*n N ∀∈,22n n ≤,当3n =时,29n =,28n =,∴22n n >;故①错误;②函数44()sin cos cos2f x x x x =-=-,所以()f x 的最小正周期为T π=;故②正确;③若向量0a b ⋅=,则向量a b ⊥;当0a =时或当0b =时,0a b ⋅=,但a 不垂直于b ;故③错误;④20182019log 2019log 2020>;④正确,证明如下:∵220182019lg2019lg2020(lg2019)lg2018lg2020log 2019log 2020lg2018lg2019lg2018lg2019-⋅-=-=⋅;而22lg 2018lg 2020lg 2018lg 2020()2+⋅<=2220182020(lg)(lg 2019)2+<=. ∴2(lg2019)lg2018lg20200-⋅>; ∴20182019log 2019log 2020>. 故②④正确;正确的个数为2个; 故答案为:2. 【点睛】本题考查命题判断真假的方法,需要逐个判断,属于基础题.15.④【分析】①根据命题的否命题和原命题之间的关系判断②利用充分条件和必要条件的定义判断③利用特称命题的否定判断④利用逆否命题的等价性进行判断【详解】解:①根据否命题的定义可知命题若则的否命题为若则所以解析:④ 【分析】①根据命题的否命题和原命题之间的关系判断.②利用充分条件和必要条件的定义判断.③利用特称命题的否定判断.④利用逆否命题的等价性进行判断. 【详解】解:①根据否命题的定义可知命题“若21x =,则1x =”的否命题为“若21x ≠,则1x ≠”,所以①错误.②由2560x x --=得1x =-或6x =,所以②“1x =-”是“2560x x --=”的充分不必要条件,所以②错误.③根据特称命题的否定是全称命题得命题“x R ∃∈,使得210x x +-<”的否定是:“x R ∀∈,均有210x x +-”,所以③错误.④根据逆否命题和原命题为等价命题可知原命题正确,所以命题“若x y =,则sin sin x y =”的逆否命题为真命题,所以④正确.故答案为④. 【点睛】本题主要考查命题的真假判断,以及四种命题的真假关系的判断,比较基础.16.①②推出③;【分析】写出答案再根据函数单调性得到证明【详解】①②推出③;证明:在单调递增且当时有得证故答案为:①②推出③【点睛】本题考查了利用函数单调性判断命题意在考查学生的推断能力解析:①②推出③; 【分析】写出答案,再根据函数单调性得到证明. 【详解】 ①②推出③;证明:()f x 在R 单调递增且当1x >时,有()(1)f x f >,得证. 故答案为:①②推出③ 【点睛】本题考查了利用函数单调性判断命题,意在考查学生的推断能力.17.【分析】先求得均为真命题时的取值范围再求得至少有一个为假命题时的取值范围【详解】当为真命题时解得当为真命题时解得故均为真命题时的取值范围是所以命题与命题中至少有一个为假命题则的取值范围为故填:【点睛 解析:(,0][2,)-∞+∞【分析】先求得,P Q 均为真命题时m 的取值范围,再求得,P Q 至少有一个为假命题时m 的取值范围. 【详解】当P 为真命题时,240m m ∆=-<,解得04m <<.当Q 为真命题时,2x x m x m x x m x m --=--≤+-=<,解得22m -<<.故,P Q 均为真命题时m的取值范围是()0,2,所以命题P 与命题Q 中至少有一个为假命题,则m 的取值范围为(,0][2,)-∞+∞.故填:(,0][2,)-∞+∞. 【点睛】本小题主要考查命题真假性,考查不等式的解集恒成立问题,属于基础题.18.【分析】解不等式求得集合B 再根据充分必要条件可得不等式组即可求得实数的取值范围【详解】因为集合所以解可得因为集合且是的充分条件所以解不等式组可得所以即实数的取值范围为故答案为:【点睛】本题考查了充分解析:3[,)2+∞【分析】解不等式,求得集合B,再根据充分必要条件可得不等式组,即可求得实数a 的取值范围. 【详解】因为集合2{|10}B x x ax =--≤ 所以解210x ax --≤可得224422a a a a x -+++≤≤因为集合{1,2}A =且x A ∈是x B ∈的充分条件所以22412422a a a a ⎧-+≤⎪⎪⎨++⎪≤⎪⎩解不等式组可得032a a ≤⎧⎪⎨≤⎪⎩所以32a ≤,即实数a 的取值范围为3[,)2+∞故答案为: 3[,)2+∞ 【点睛】本题考查了充分必要条件的简单应用,含参数一元二次不等式的解法,属于中档题.19.充分不必要条件【解析】【分析】先从充分性进行研究再从必要性角度研究从而得到结果【详解】解:当k>1时故函数f(x)=kx+2为R 上的增函数满足充分性当函数f(x)=kx+2为R 上的增函数时可以得到k解析:充分不必要条件. 【解析】 【分析】先从充分性进行研究,再从必要性角度研究,从而得到结果. 【详解】 解:当时,故函数为R 上的增函数,满足充分性,当函数为R 上的增函数时,可以得到,故不满足必要性,故本题的答案是充分不必要条件.【点睛】本题考查了充分必要条件,解题此类问题首先要搞清楚什么是条件,什么是结论,由条件得出结论满足充分性,由结论推出条件满足必要性.20.④【解析】试题分析:若或为真命题则pq 至少有一真所以命题 错误;命题若且则的否命题为若或则故命题 错误;三角形ABC 中角A 时故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件由因p:所以由一解析:④ 【解析】试题分析:若“p 或q ”为真命题,则p 、q 至少有一真,所以命题•错误;命题“若且,则”的否命题为“若或,则”,故命题 错误;三角形ABC 中,角A时,,故命题 错误;若是的充分不必要条件即p 是q 的充分不必要条件.由因p:,所以由一元二次方程根的分布可得,解得,.故正确的命题是④.考点:命题的真假性判断.三、解答题21.(4,1][3,)--+∞【分析】先求得命题,αβ为真命题时,实数a 的取值范围,再根据命题,αβ有且只有一个真命题,分类讨论,即可求解. 【详解】由题意,命题:|1|2a α-<,即212a -<-<,解得13a -<<, 命题β:方程2(2)10x a x +++=没有正根,可得分为两类:一是方程无根,二是方程由两个非正实根, 令()2(2)1f x x a x =+++,则()01f =,当方程无根时,2(2)40a ∆=+-<,解得40a ;当方程有两个非正根时,则满足0202a ∆≥⎧⎪⎨+-<⎪⎩,解得0a ≥,所以当方程2(2)10x a x +++=没有正根时,a 的取值方程为4a >-; 又因为命题,αβ有且只有一个真命题, 当α真β假时,即134a a -<<⎧⎨≤-⎩,此时a φ∈;当α假β真时,即134a a a ≤-≥⎧⎨>-⎩或,此时41a -<≤-或3a ≥,所以命题,αβ有且只有一个真命题时,实数a 的取值范围是(4,1][3,)--+∞. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中正确求解命题,αβ为真命题时,实数a 的取值范围,再分类讨论求解是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.22.221a -≤或224a <<. 【分析】先求出当p 真、q 真时,a 的取值范围,由p 、q 一真一假列式计算即可.【详解】命题p 真:[]1,1m ∀∈-,不等式2572a a m -+≥+恒成立()2max 57231a a m a ⇒-+≥+=⇒≤或4a ≥;命题q 真:220x ax ++=有两个不同的实数根280a a ⇒∆=->⇒<-a >若p q ∨为真,且p q ∧为假,则p 、q 一真一假,当p 真q假时,141a a a a ≤≥⎧⎪-≤⎨-≤⎪⎩或当p 假q真时,144a a a a <<⎧⎪⇒<<⎨-⎪⎩∴实数a的取值范围为:1a -≤≤或4a <<. 【点睛】本题考查了复合命题真假的判断,考查了一元二次不等式的解法,考查了计算能力与分类讨论思想的应用,属于基础题. 23.(1)(1,4);(2)4,23⎡⎤⎢⎥⎣⎦.【分析】(1)分别求解当命题p 命题q 为真时x 的取值范围,在分“p 真q 假”和“q 真p 假”两种情况求对应的实数x 的取值范围即可.(2)根据0a >再因式分解求得命题p :3a x a <<,再根据p ⌝是q ⌝的充分不必要条件可知p ⌝对应的集合是q ⌝对应的集合的子集,再根据集合区间端点的位置关系求出实数a 的取值范围即可. 【详解】(1)由22430x ax a -+<得()(3)0x a x a --<, 当1a =时,13x <<,即p 为真时,(1,3)x ∈. 由|3|1x -<,得131x -<-<,得24x <<, 即q 为真时,(2,4)x ∈. 若p q ∨为真,则p 真或q 真, 所以实数的取值范围是(1,4).(2)由22430x ax a -+<得()(3)0x a x a --<,0,a >3a x a ∴<<.由|3|1x -<,得131x -<-<,得24x <<. 设{|3},A x x a x a =≤≥或{|24}B x x x =≤≥或, 若p ⌝是q ⌝的充分不必要条件,则A 是B 的真子集,故0234a a <≤⎧⎨≥⎩, 所以实数a 的取值范围为4,23⎡⎤⎢⎥⎣⎦.【点睛】本题主要考查了根据充分与必要条件求解参数的范围问题.需要根据参数的范围求解对应的集合区间,再根据区间端点的位置关系列式求出参数的范围.属于中档题. 24.(1)1a ≤; (2)a ≤1a <<.【分析】(1)依题意可得()2mina x≤,由[]1,3x ∈,即可得解;(2)首先求出命题q 是真命题时参数的取值范围,再根据命题“p q ∨”为真命题,命题“p q ∧”为假命题,可得两命题一真一假,分类讨论最后取并集可得; 【详解】(1)∵命题[]1,3x ∀∈,20x a -≥为真命题, ∴()2mina x≤,又∵[]1,3x ∈,∴1a ≤.(2)若命题q 是真命题,∴2480a ∆=-<,∴a <<因为命题“p q ∨”为真命题,命题“p q ∧”为假命题,所以两命题一真一假,当命题p 为真,命题q为假,1a a a ≤⎧⎪⎨≤≥⎪⎩∴a ≤当命题p 为假,命题q为真,1a a >⎧⎪⎨<⎪⎩∴1a <<综上所述:a ≤1a <<【点睛】本题考查命题的真假的判断与应用,不等式恒成立,二次函数的简单性质的应用,考查计算能力,属于中档题.25.(1){1x x ≤-或}1x ≥;(2)[]1,0-. 【分析】(1)根据题意得(22)(221)0x x -⋅-≥,进而得122x≤或22x ≥,即可得{1x x ≤-或}1x ≥(2)解不等式2(21)(1)0x m x m m -+++≥得{B x x m =≤或}1x m ≥+,结合(1)得{1A x x =≤-或}1x ≥,根据题意得AB ,进而根据集合关系即可得答案.【详解】(1)由命题p 为真命题,则245220x x ⋅-⋅+≥可化为(22)(221)0x x -⋅-≥解得122x≤或22x ≥,所以实数x 的取值范围是{1x x ≤-或}1x ≥ (2)命题q :由2(21)(1)0x m x m m -+++≥, 得[]()(1)0x m x m --+≥,解得x m ≤或1x m ≥+. 设{1A x x =≤-或}1x ≥,{B x x m =≤或}1x m ≥+ 因为命题q 是命题p 的必要不充分条件,所以AB111m m ≥-⎧⎨+≤⎩,解得10m -≤≤, 所以实数m 的取值范围为[]1,0-. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, 则q 对的集合与p 对应集合互不包含. 26.(1)13m ≤≤;(2)1m <或23m <≤ 【分析】(1)p 为真命题时,任意[]0,1x ∈,不等式2234x m m -≥-恒成立可转化为()2min 234x m m -≥-,求解即可(2)由题可得,p q 一真一假,结合(1),再化简命题q ,即可求出m 的取值范围. 【详解】对于p :()2min 234x m m -≥-成立,而[]0,1x ∈,有()min 233x -=-,∴234m m -≥-,∴13m ≤≤.q :存在[]1,1x ∈-,使得不等式2210x x m -+-≤成立,只需()2min210x x m -+-≤,而()2min212x x m m -+-=-+,∴20m -+≤,∴2m ≤;(1)若p 为真,则13m ≤≤;(2)若p ,q 有且只有一个为真,则,p q 一真一假.若q 为假命题,p 为真命题,则132m m ≤≤⎧⎨>⎩,所以23m <≤;若p 为假命题,q 为真命题,则132m m m ⎧⎨≤⎩或,所以1m <.综上,1m <或23m <≤. 【点睛】思路点睛:本题考查根据命题的真假求参数,解决此类问题一般先求出命题为真时对应的参数范围,再结合命题的真假或复合命题的真假列出对应的不等式求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章《常用逻辑用语》测试题
供题人:金丙建 2012 9 15
一、选择题:
1.函数f (x )=x|x+a|+b 是奇函数的充要条件是( )
A .ab=0
B .a+b=0
C .a=b
D .a 2+b 2=0
2.“至多有三个”的否定为( )
A .至少有三个
B .至少有四个
C .有三个
D .有四个
3.有金盒、银盒、铅盒各一个,只有一个盒子里有肖像.金盒上写有命题p :肖像在这个盒子里;银盒上写有命题q :肖像不在这个盒子里;铅盒上写有命题r :肖像不在金盒里.p 、q 、r 中有且只有一个是真命题,则肖像在( )
A .金盒里
B .银盒里
C .铅盒里
D .在哪个盒子里不能确定
4.不等式
04)2(2)2(2<--+-x a x a 对于R x ∈恒成立,那么a 的取值范围是( ) A .)2,2(- B .]2,2(- C .]2,(-∞ D .)2,(--∞
5.“a 和b 都不是偶数”的否定形式是( )
A .a 和b 至少有一个是偶数
B .a 和b 至多有一个是偶数
C .a 是偶数,b 不是偶数
D .a 和b 都是偶数
6.某食品的广告词为:“幸福的人们都拥有”,初听起来,这似乎只是普通的赞美说词,然 而他的实际效果大哩,原来这句话的等价命题是( )
A .不拥有的人们不一定幸福
B .不拥有的人们可能幸福
C .拥有的人们不一定幸福
D .不拥有的人们不幸福
7.若命题“p 或q ”为真,“非p ”为真,则( )
A .p 真q 真
B .p 假q 真
C .p 真q 假
D .p 假q 假
8.条件p :1>x ,1>y ,条件q :2>+y x ,1>xy ,则条件p 是条件q 的( )
A .充分而不必要条件
B .必要而不充分条件
C .充要条件
D .即不充分也不必要条件
9.2x2-5x -3<0的一个必要不充分条件是( )
A .-21<x <3
B .-21<x <0
C .-3<x <21
D .-1<x <6
10.设原命题:若a+b ≥2,则a,b 中至少有一个不小于1。

则原命题与其逆命题的真假情况是( )
A .原命题真,逆命题假
B .原命题假,逆命题真
C .原命题与逆命题均为真命题
D .原命题与逆命题均为假命题
二、填空题:
11.下列命题中_________为真命题.
①“A ∩B=A ”成立的必要条件是“A B ”;
②“若x2+y2=0,则x ,y 全为0”的否命题;
③“全等三角形是相似三角形”的逆命题;
④“圆内接四边形对角互补”的逆否命题。

12.若p:“平行四边形一定是菱形”,则“非p”为___ _____.
13.知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则s是q的条件,r是q的条件,p是s的条件.
14.设p、q是两个命题,若p是q的充分不必要条件,那么非p是非q的条件.15.所给命题:
①菱形的两条对角线互相平分的逆命题;
②{}R
x
x
x∈
=
+,0
1
|2= {}=
或;
③对于命题:“p且q”,若p假q真,则“p且q”为假;
④有两条边相等且有一个内角为60°是一个三角形为等边三角形的充要条件.
其中为真命题的序号为.
三、解答题:
16.分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.
(1)矩形的对角线相等且互相平分;(2)正偶数不是质数.
17.写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的复合命题,并指出所构成的这些复合命题的真假.
(1)p:连续的三个整数的乘积能被2整除,q:连续的三个整数的乘积能被3整除.(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形.
18.给定两个命题,
P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如
果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.
19.已知p ,q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,那么
(1)s 是q 的什么条件(2)r 是q 的什么条件(3)p 是q 的什么条件
20.设0<a, b, c<1,求证:(1-a )b ,(1-b )c ,(1-c )a 不同时大于41

21.求证:关于x的方程x2+2ax+b=0 有实数根,且两根均小于2的充分但不必要条件是a ≥2且|b| ≤4.
选修1-1第一章《常用逻辑用语》单元测试题答案:
命题人:杨丽霞 审题人:王珂
; ; ; ; ; ; ; ; ; ; 11. ②④; 12. 平行四边形不一定是菱形;或至少存在一个平行四边形不是菱形; 13. 必要,充分,必要;14. 必要不充分15. ②③④.
16.四种命题间的关系.
解:(1)逆命题:若一个四边形的对角线相等且互相平分,则它是矩形(假命题).
否命题:若一个四边形不是矩形,则它的对角线不相等或不互相平分(假命题).
逆否命题:若一个四边形的对角线不相等或不互相平分,则它不是矩形(真命题).
(2)逆命题:如果一个正数不是质数,那么这个正数是正偶数(假命题).
否命题:如果一个正数不是偶数,那么这个数是质数(假命题).
逆否命题:如果一个正数是质数,那么这个数不是偶数(假命题).
17解:(1)根据真值表,复合命题可以写成简单形式:
p 或q :连续的三个整数的乘积能被2或能被3整除.
p 且q :连续的三个整数的乘积能被2且能被3整除.
非p :存在连续的三个整数的乘积不能被2整除.
∵连续的三整数中有一个(或两个)是偶数,而有一个是3的倍数,
∴p 真,q 真,∴p 或q 与p 且q 均为真,而非p 为假.
(2)根据真值表,只能用逻辑联结词联结两个命题,不能写成简单形式:
p 或q :对角线互相垂直的四边形是菱形或对角线互相平分的四边形是菱形.
p 且q :对角线互相垂直的四边形是菱形且对角线互相平分的四边形是菱形.
非p :存在对角线互相垂直的四边形不是菱形.
∵p 假q 假,∴p 或q 与p 且q 均为假,而非p 为真.
18.对任意实数x 都有012>++ax ax 恒成立⎩⎨⎧<∆>=⇔000a a 或
40<≤⇔a ;关于x 的方程02=+-a x x 有实数根
41041≤⇔≥-⇔a a ;如果P 正确,且Q 不正确,有44141,40<<∴><≤a a a 且;如果Q 正确,且P 不正确,有041,40<∴≤≥<a a a a 且或。

所以实
数a 的取值范围为
()⎪⎭⎫ ⎝⎛∞-4,410, 。

19.考查充要条件、充分条件、必要条件.对于这类问题,将语言叙述符号化,画出它
们的综合结构图,再给予判定.
解:p 、q 、r 、s 的关系如图所示,由图可知
答案:(1)s 是q 的充要条件 (2)r 是q 的充要条件 (3)p 是q 的必要条件
20.用反证法,假设⎪⎪⎪⎩⎪⎪⎪⎨⎧>->->-⇒⎪⎪⎪⎩
⎪⎪⎪⎨⎧>->->-21)1(21)1(21)1(41)1(41)1(41)1(a c c b b a a c c b b a ,①+②+③得: 23212121)1()1()1(23=+-++-++-≤-+-+-<a c c b b a a c c b b a ,左右矛盾,故假设不成立,∴(1-
∴方程有实数根 ① a )b,(1-b )c ,(1-c )a 不同时大于41
.
21.解析:先证充分性,而必要性只需要通过举反例来否定.
先证明条件的充分性:
,2202020)2)(2(0)2()2(,
08484444)(2)2)(2(,
0844424)()2()2(,44242,
0)(4,44
22
1212121212121212122⎩⎨⎧<<⇒⎩⎨⎧<-<-⇒⎩⎨⎧>--<-+-∴>=++-≥++=++-=--<-=--≤--=-+=-+-∴⎩
⎨⎧-≥-≤-⇒⎩⎨⎧-≥≥≥-=∆∴≥≥⇒⎩⎨⎧≤≥x x x x x x x x a b x x x x x x a x x x x b a b a b a b a b a 而
①、②知“a ≥2且|b|≤4” ⇒“方程有实数根,且两根均小于2”. 再验证条件不必要: ∵方程x2-x=0的两根为x1=0, x2=1,则方程的两根均小于2,而a=-21
<2, ∴“方程的两根小于2” ⇒“a ≥2且|b|≤4”.
综上,a ≥2且|b|≤4是方程有实数根且两根均小于2的充分但不必要条件.。

相关文档
最新文档