2020年山东省临沂市中考数学模拟试题(含答案)
山东省2020年临沂市中考数学模拟试题(含答案)

山东省2020年临沂市中考数学模拟试题含答案一、选择题(每小题3分,共36分)1、下列运算中,正确的是( )A 、B 、C 、D 、2、 如图,把一张长方形纸片沿EF 折叠后,点D ,C 分别落在D',C'的位置,若∠EFB=650,则∠AED'等于( )A 、500B 、550C 、600D 、6503、若代数式()231-+x x 有意义,则实数x 的取值应满足( ) A 、1-≥x B 、31≠-≥x x 且 C 、x>-1 D 、31≠->x x 且4、一个几何体的三视图如图所示:其中主视图和左视图都是腰长为4、底边长为2的等腰三角形,则这个几何体的侧面积展开图的面积为( )A 、π2B 、π21 C 、π4 D 、π85、若不等式⎩⎨⎧->-≥+2210x x a x 无解,则实数a 的取值范围是( )A 、1-≥aB 、1-<aC 、1≤aD 、1-≤a6、如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( )A 、34米B 、56米C 、512米D 、24米C D E C'主视图左视图俯视图 A B C DE7、下列事件:①在足球赛中,弱队战胜强队;②抛掷1枚硬币,硬币落地时正面朝上;③任取两个正整数,其和大于1;④长为3cm ,5cm ,9cm 的三条线段能围成一个三角形。
其中确定的事件有( )A 、1个B 、2个C 、3个D 、4个8、方程()0622=++-m x m x 有两个相等的实数根,且满足2121x x x x =+,则m 的值是( )A 、—2或3B 、3C 、—2D 、—3或29、如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O 。
若∠DAC=280,则∠OBC 的度数为( )A 、280B 、520C 、620D 、7210、已知⊙O 的半径为2,点P 是⊙O 内一点,且OP=3,过P 作互相垂直的两条弦AC 、BD ,则四边形ABCD 的面积的最大值为( )A 、4B 、5C 、6D 、711、如图,一次函数y 1=x 与二次函数c bx ax y ++=22的图象相交于P 、Q 两点,则函数()c x b ax y +-+=12的图象可能为( )12、如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与⊙O 过A 点的切线xy o A x y o B x y o C o x y D交于点B ,且∠APB=600,设OP=x ,则ΔPAB 的面积y 关于x 的函数图象大致是( )二、填空题(每小题4分,共20分)13、用科学计数法表示0.000000645这个数为___________。
2020年临沂市中考模拟考试(一)初中数学

2020年临沂市中考模拟考试(一)初中数学本试卷分第I 卷〔选择题〕和第二卷〔非选择题〕两部分,第I 卷1至3页,第二卷4至8页,总分值l20分,考试时刻l20分钟。
第I 卷〔选择题 共42分〕本卷须知:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦洁净后,再选涂其它答案。
不能答在试卷上。
3.考试、终止,将本试卷和答题卡一并交回。
一、选择题〔每题3分,在给出的四个选项中,只有一项为哪一项符合题目要求的〕 1.以下运算中,正确的选项是A .4222a a a =+ B .632a a a =⋅ C .236a a a =÷D .4222)(b a ab =2.当我们从上面观看图1所示的两个物体时,看到的将是3.刘翔在出征北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行统计分 析,判定他的成绩是否稳固,那么教练需要明白刘翔这20次成绩的 A .众数 B .平均数 C .频数D .方差4.如图2,给出了过直线外一点作直线的平行线的方法,其依据是A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等5.在边长为a 的正方形中挖去一个边长为b 的小正方形〔b a >〕〔如图3〕,把余下的部分拼成一个矩形〔如图4〕,依照两个图形中阴影部分的面积相等,能够验证 A .2222)(b ab a b a ++=+ B .2222)(b ab a b a +-=- C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+6.中央电视台2套〝快乐辞典〞栏目中,有一期的题目如图5所示。
两个天平都平稳,那么三个球体的重量等于〔 〕个正方体的重量。
A .2B .3C .4D .57.李老师骑自行车内班,最初以某一速度匀速行进,中途由于自行车发生故障,停下来修车耽搁了8分钟,为了按时到校,李老师加快了速度,但仍保持匀速,结果准时到校。
临沂市2020届数学中考模拟试卷

临沂市2020届数学中考模拟试卷一、选择题1.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=32或t=72,其中正确的结论有()A.1个B.2个C.3个D.4个2.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=70°,那么∠CDE的度数为()A.20°B.15°C.30°D.25°3.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠BCD=40°,则∠ABD的度数为()A.40°B.50°C.80°D.90°4.计算:2-2的结果是( )A.4 B.1 C.0 D.-45.如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则DE的长为()A.13πB.23πC.76πD.43π6.某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出cos∠AOB的值是()A.34B.710C.45D.357.(2008•衢州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( ) A .289(1﹣x )2="256" B .256(1﹣x )2=289 C .289(1﹣2x )2="256"D .256(1﹣2x )2=2898.下列运算中,正确的是( ) A .(﹣12)﹣1=﹣2 B .a 3•a 6=a 18 C .6a 6÷3a 2=2a 3D .(﹣2ab 2)2=2a 2b 49.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点(13,0)A ,直线12y kx =+与O 交于B 、C 两点,则弦BC 长的最小值( )A .24B .10C .8D .2510.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )A.6B.5C.4D.711.如图,在锐角三角形ABC 中,BC =4,∠ABC =60°,BD 平分∠ABC ,交AC 于点D ,M ,N 分别是BD ,BC 上的动点,则CM+MN 的最小值是( )A .B .2C .2D .412.分式方程, 2133xx x +=-+-的解为( ). A .0x = B .6x =C .15x =-D .15x =二、填空题13.观察下列等式: 第1层1+2=3 第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2019在第_____层.14.如图,矩形ABCD 中,AB =6,AD =,点E 是BC 的中点,点F 在AB 上,FB =2,P 是矩形上一动点.若点P 从点F 出发,沿F→A→D→C 的路线运动,当∠FPE =30°时,FP 的长为_____.15.计算2的结果等于_____.16.若在实数范围内有意义,则x 的取值范围是______.17.如图所示,长方形ABCD 中,AB =1,AD =2,将长方形向上、下、左、右各扩大1得到长方形A 1B 1C 1D 1,…,依此类推,则长方形A n B n ∁n D n 的周长可以表示为_____.18.若x =2是关于x 的方程2x ﹣m+1=0的解,则m =_____. 三、解答题19.已知关于x 的方程x 2﹣2x+m ﹣2=0有两个不相等的实数根. (1)求m 的取值范围;(2)如果m 为正整数,且该方程的根都是整数,求m 的值. 20.(1)计算:()112cos3020192π-⎛⎫---- ⎪⎝⎭(2)解方程:4501x x -=-21﹣2019022.某校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下: 数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min):⑴用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为_____;⑵如果该校现有学生400人,估计等级为“B”的学生有多少人?⑶假设平均阅读一本课外书的时间为320分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?23.如图,已知点A、B分别在反比例函数1yx=-(x>0),kyx=(k<0,x>0)的图象上.点B的横坐标为4,且点B在直线y=x﹣5上.(1)求k的值;(2)若OA⊥OB,求tan∠ABO的值.24.解方程组:235 45 x yx y+=-⎧⎨+=⎩25.为推进“全国亿万学生阳光体育运动”的实施,组织广大同学开展健康向上的第二课堂活动.我市某中学准备组建球类社团(足球、篮球、羽毛球、乒乓球)、舞蹈社团、健美操社团、武术社团,为了解在校学生对这4个社团活动的喜爱情况,该校随机抽取部分初中生进行了“你最喜欢哪个社团”调查,依据相关数据绘制成以下不完整的统计表,请根据图表中的信息解答下列问题:(2)请补全统计图;(3)被调查的60个喜欢球类同学中有3人最喜欢足球,若该校有3000名学生,请估计该校最喜欢足球的人数.【参考答案】***一、选择题13.4414.4或8或415.516.x≥-217.8n+6.18.5三、解答题19.(1)m<3;(2)m=2.【解析】【分析】(1)根据题意得出△>0,代入求出即可;(2)求出m=1或2,代入后求出方程的解,即可得出答案.【详解】(1)∵方程有两个不相等的实数根.∴△=4﹣4(m﹣2)>0.∴m<3;(2)∵m<3 且 m为正整数,∴m=1或2.当 m=1时,原方程为 x2﹣2x﹣1=0.它的根不是整数,不符合题意,舍去;当 m=2时,原方程为 x2﹣2x=0.∴x(x﹣2)=0.∴x1=0,x2=2.符合题意.综上所述,m=2.【点睛】本题考查了根的判别式和解一元二次方程,能根据题意求出m的值和m的范围是解此题的关键.20.(11;(2)5x =. 【解析】 【分析】(1)根据整数指数幂的运算以及特殊三角函数值计算即可; (2)根据解分式方程的步骤解即可,注意要验根. 【详解】(1)()112cos3020192π-⎛⎫---- ⎪⎝⎭=21+2-,1+; (2)4501x x-=- , 去分母得:4x-5(x-1)=0 去括号得,4x-5x+5=0 移项得,4x-5x=-5, 合并,得:-x=-5, 系数化为1,得:x=5.经检验,x=5是原分式方程的解. 【点睛】本题主要考查了实数的运算以及解分式方程,计算时一定要细心,分式方程要检验.21.【解析】 【分析】按顺序先分别代入特殊角的三角函数值,化简二次根式 ,进行0次幂运算,然后再按运算顺序进行计算即可. 【详解】20190=2×12+﹣1=. 【点睛】本题考查了实数的综合运算能力,涉及了特殊角的三角函数值,二次根式的化简,0次幂,熟练掌握各运算的运算法则是解题的关键.22.整理数据:5;4;分析数据:81;81;得出结论:(1)B ;(2)160人;(3)13本. 【解析】 【分析】整理数据:从表格中的数据直接找出40≤x<80有5人,120≤x<160有4人;中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数;众数:是一组数据中出现次数最多的数据;据此求出即可.(1)根据分析数据统计显示,平均数是80 ,中位数与众数都是81,都是B 等级,据此可估计该校学生每周用于课外阅读时间的情况等级为B.(2)直接用400乘以B等级在样本中所占比列即得.(3)根据题意选择样本平均数来估计.【详解】解:整理数据:5;4.分析数据:81;81.得出结论:⑴B⑵等级为“B”的学生有820×400=160(人)⑶以平均数来估计:80320×52=13,∴假设平均阅读一本课外书的时间为320分钟,以样本的平均数来估计,该校学生每人一年(按52周计算)平均阅读13本课外书。
临沂市2020中考数学模拟题

临沂市2020中考数学模拟题一、选择题(本大题共14小题,每小题3分,共42分)1.2π是一个( ) A .整数 B .分数 C .有理数 D .无理数2. 11月11日为中国购物狂欢节,截至当天24时天猫网站的成交额是35000000000元,这个数据用科学计数法表示为( ) A .3.5×1011元 B . 35×109元 C . 0.35×1011元 D . 3.5×1010元 3.如图,已知DE ∥BC ,AB=AC ,∠1=125°,则∠C 的度数是( ) A . 35° B . 45° C . 55° D . 65°4.下列运算正确的是( )A .235235x x x +=B .22(2)4x x +=+ [ C .23633x x x ⋅= D .633x x x ÷=5.计算132482-+的结果是( ) [来源:Z,xx,] A . 42 B .52C .22D .326.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中 小正方形顶点A ,B 在围成的正方体上的距离是( ) A .0B .1C .D .7.已知 2是关于 x 的方程 x 2﹣2mx +3m =0 的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形 A BC 的周长为( ) A .10B .14C .10 或 14D .8 或 108.在同一平面直角坐标系中,反比例函数(b ≠0)与二次函数 (a ≠0)的图象大致是( )第3题图9.“服务他人,提升自我”,学校积极开展志愿者服务活动,来自九年级的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是()A.1 6B.15C.25D.3510.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.311.超市有一种“喜之郎”果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,横截面可以近似地看作一个抛物线,为了节省成本,包装应尽可的小,那么要制作这样一个包装盒至少纸板()cm2.(不计重合部分)A. 253B.288C.206D.24512.如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,过点C作CD⊥AB,取AC的中点E,连接DE,则△DEC的周长是()A. 2.4B. 4.4C. 6.4D. 713.对于数据3,3,2,6,3,10,3,6,3,2.①众数是3;②众数与中位数的数值不等; ③中位数与平均数的数值相等; ④平均数与众数相等,其中正确的结论是()A.①B.①③C.①②D.①②④14.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动(不与点C重合),点Q从C点出发沿CB边向点B以2cm/s的速度移动(不与点B重合).如果P、Q同时出发,x秒钟后,四边形APQB的面积为y cm2,第11题图第12题图第10题图第14题图y 与x 的函数图象大致是( )二、填空题(本大题共5小题,每小题3分,共15分) 15.分解因式:2363m m -+ = 16.如果实数 x ,y 满足方程组30233x y x y +=⎧⎨+=⎩,则1(2)xy x y x y +÷++的值为 17.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在 格点处,AB 与CD 相交于O ,则sin ∠BOD 的值等于 .18.已知,如图,正方形 ABCD 的边长是 8,M 在DC 上,且DM =2,N 是AC 边上的一动点,则 DN +MN 的最小值是 .19.对于实数a ,b ,定义运算“﹡”:a ﹡b =22(),).a ab a b ab ba b ⎧-≥⎪⎨-<⎪⎩(例如4﹡2,∵4>2,∴4﹡224428=-⨯=.若12,x x 是一元二次方程2560x x -+=的两个根,则1x ﹡2x = 三、开动脑筋,你一定能做对!(本大题共3小题,共21分)20.(本小题满分7分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 489.5——104.5bc5 104.5——119.5 60.15合计40 1.00(1)频数分布表中的a = ,b= ,c = ;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?21.(本小题满分7分)西湖旅行社为吸引市民组团去桂林风景区旅游,推出了如图对话中收费标准.某单位组织员工去桂林风景区旅游,共支付给西湖旅行社旅游费用27000元.请问该单位这次共有多少员工去桂林风景区旅游?22.(本小题满分7分)如图,平行四边形ABCD中,EF过对角线AC的中点O,且EF⊥AC交CD于E,交AB于F,分别交AD、CB的延长线于M、N.(1)证明:DM=BN;(2)连接AE、CF,判断四边形AECF的形状,并说明理由.四、认真思考,你一定能成功!(本大题共2小题,共18分)NMFED CBAO如果人数不超过25人,人均旅游费用为1000元如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不低于700元第20题图23.(9分) 如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为弧BC 的中点,作DE ⊥AC ,交AB 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线;(2)若DA=DF =63,求阴影区域的面积.(结果保留根号和π)24.(本小题满分9分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y (千克)与销售时间x (天)之间的函数关系如图甲所示,销售单价p (元/千克)与销售时间x (天)之间的函数关系如图乙所示.(1)直接写出y 与x 之间的函数关系式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?五、相信自己,加油呀!(本大题共2小题,共24分) 25.(本小题满分11分)在正方形ABCD 中,点P 是CD 边上一动点,连接P A ,分别过点B 、D 作BE ⊥P A 、DF ⊥P A ,垂足分别为E 、F .(1) 如图①请探究BE 、DF 、EF 这三条线段的长度具有怎样的数量关系?并证明. (2) 如图②,若点P 在DC 的延长线上,那么这三条线段的长度之间又具有怎样的数 量关系?并注明;3020150y (千克)x (天)图甲8102010y (千克)x (天)图乙p (元/千克) 第23题图(3) 如图③,若点P 在CD 的延长线上呢? 直接写出结论不需证明.26. (13分) 如图,抛物线2y ax bx c =++经过平行四边形ABCD 的顶点A (0,3)、B (﹣1,0)、D (2,3),抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等两部分,与抛物线交于另一点F .点P 在直线l 上方抛物线上一动点,设点P 的横坐标为t (1)求抛物线的解析式;(2)当t 何值时,△PFE 的面积最大?并求最大值的立方根;(3)是否存在点P 使△P AE 为直角三角形?若存在,求出t 的值;若不存在,说明理由.ABCD PE FADBC PE F APF EBD图①图②图③第25题图第26题图综合模拟(二)参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案DDCDABBDDCABAA二、填空题(每小题3分,共15分)15.3(m ﹣1)2 16. 1 17. 31018. 10. 19.3或-3三、开动脑筋,你一定能做对!(共21分)20.解:(1)a =8,b =12,c =0.3…………………(3分)(2)………………(5分)(3)算出样本中噪声声级小于75dB 的测量点的频率是0.30.3×200=60 ,∴在这一时噪声声级小于75dB 的测量点约有60个……(7分) 21.解: 设该单位这次共有x 名员工去桂林风景区旅游. 因为1000×25=25000<27000,所以员工人数一定超过25人……………………(1分). 则根据题意,得[1000-20(x -25)]x =27000. …………………………………(3分) 整理,得x 2-75x +1350=0,解这个方程,得x 1=45,x 2=30. …………………(4分) 当x =45时,1000-20(x -25)=600<700,故舍去x 1;………………………(5分) 当x =30时,1000-20(x -25)=900>700,符合题意. ……………………(6分) 答:该单位这次共有30名员工去桂林风景区旅游. …………………………(7分)[来 22.证明:(1)在□ABCD 中,AD =CB ,AM ∥CN ,∴∠M =∠N ,∵EF 垂直平分AC ,∴∠AOM =∠CON =90°,AO =CO ,8 12∴△AOM ≌△CON ,∴AM =CN ,∵AM -AD =CN -CB , ∴DM =BN ……………(3分) (2)四边形AECF 是菱形……………………………………………………(4分) 在□ABCD 中,CD ∥AB , ∴∠ACD =∠CAF , ∵EF 垂直平分AC , ∴∠COE =∠AOF =90°,AO =CO , ∴△AOF ≌△COE ,∴AF=CE , ∵AF ∥CE , ∴四边形AECF 是平行四边形,∵EF 垂直平分AC , ∴ 四边形AECF 是菱形…………(7分) 四、认真思考,你一定能成功!(共18分) 23.(1)证明:连接OD ,∵D 为的中点,∴∠CAD =∠BAD ,∵OA=OD ,∴∠BAD =∠ADO ,∴∠CAD =∠ADO ,……………2分 ∵DE ⊥AC ,∴∠E =90°,∴∠CAD +∠EDA =90°,即∠ADO +∠EDA =90°, ∴OD ⊥EF ,∴EF 为半圆O 的切线;……………4分(2)解:连接OC 与CD ,∵DA=DF ,∴∠BAD =∠F ,∴∠BAD =∠F =∠CAD , 又∵∠BAD +∠CAD +∠F =90°,∴∠F =30°,∠BAC =60°, ∵OC=OA ,∴△AOC 为等边三角形,∴∠AOC =60°,∠COB =120°, ∵OD ⊥EF ,∠F =30°,∴∠DOF =60°,在Rt △ODF 中,DF =63,∴OD =DF •tan30°=6, 在Rt △AED 中,DA =63,∠CAD =30°,∴DE=DA •sin30°3,EA=DA •cos30°=9, ∵∠COD =180°﹣∠AOC ﹣∠DOF =60°,∴CD ∥AB ,故S △ACD =S △COD , ∴S 阴影=S △AED ﹣S 扇形COD =12×9×33﹣60360π×62=2732﹣6π.……………9分24.解:(1)分两种情况:①当0≤x ≤15时,设日销售量y 与销售时间x 的函数解析式为y =k 1x , ∵直线y =k 1x 过点(15,30),∴15k 1=30,解得k 1=2,∴y =2x (0≤x ≤15);………(1分) ②当15<x ≤20时,设日销售量y 与销售时间x 的函数解析式为y =k 2x +b , ∵点(15,30),(20,0)在y =k 2x +b 的图象上, ∴221530200k b k b +=⎧⎨+=⎩,解得:26120k b =-⎧⎨=⎩,∴y =﹣6x +120(15<x ≤20);…………(2分)综上,可知y 与x 之间的函数关系式为:y =2(015)6120(1520)x x x x ≤≤⎧⎨-+<≤⎩; (3)分(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,∵点(10,10),(20,8)在p=mx+n的图象上,∴1010208m nm n+=⎧⎨+=⎩,解得:1512mn⎧=-⎪⎨⎪=⎩,∴p=-15x+12(10≤x≤20),………………(4分)当x=10时,p=10,y=2×10=20,销售金额为:10×20=200(元),当x=15时,p=﹣15×15+12=9,y=30,销售金额为:9×30=270(元).故第10天和第15天的销售金额分别为200元,270元;……………………(5分)(3)若日销售量不低于24千克,则y≥24.当0≤x≤15时,y=2x,解不等式2x≥24,得x≥12;……………………………………………………(6分)当15<x≤20时,y=﹣6x+120,解不等式﹣6x+120≥24,得x≤16,∴12≤x≤16,……………………………………………………………………(7分)∴“最佳销售期”共有:16﹣12+1=5(天);………………………………(8分)∵p=﹣15x+12(10≤x≤20),﹣15<0,∴p随x的增大而减小,∴当12≤x≤16时,x取12时,p有最大值,此时p=﹣15×12+12=9.6(元/千克).……(9分)五、相信自己,加油呀!(共24分)25.解:(1)DE+EF=BE,理由如下:…………………………………………(1分) 在正方形ABCD中,AB=AD,∠BAD=90°,即∠BAE+∠EAD=90°,∵BE⊥P A,∴∠BAE+∠ABE=90°,[来]∴∠ABE=∠EAD,∵BE⊥P A,DF⊥P A∴△DAF≌△ABE ,∴AE=DF,BE=AF∴DF+EF=AE+EF=AF=BE,即DE+EF=BE. …………………………………(4分) (2)DE-EF=BE,理由如下:………………………………………………(5分)在正方形ABCD中AB=AD,∠BAD=90°,即∠BAE+∠EAD=90°∵BE⊥P A,∴∠BAE+∠ABE=90°,∴∠ABE=∠EAD,∵BE⊥P A, DF⊥P A∴△DAF≌△ABE, ∴AE=DF,BE=AF,∵AE-EF=AF,即DE-EF=BE,………………………………………………(8分) (3)EF=BE+DF。
2020年山东省临沂市中考数学全真模拟试卷五套

题号中考数学模拟试卷一二三四总分得分一、选择题(本大题共14小题,共42.0分)1.下列各数中,比1大的是()A.2B.0C.-1D.-22.一种液体每升含有36000000个有害细菌,把36000000用科学记数法表示应该是()A.3.6×107 C.36×106B.3.6×106 D.0.36×1083.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°4.下列计算正确的是()A.a2+a3=a5 C.4x2-3x2=1B.a6÷a3=a2D.(-2x2y)3=-8x6y35.如图,是某几何体的三视图及相关数据,则下面判断正确的是()A.a>cB.b>cC.a2+4b2=c2D.a2+b2=c26.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)户数526672则关于这10户家庭的月用水量,下列说法错误的是()A.众数是67.计算(B.极差是2-2)的结果是()C.平均数是6D.方差是4A. B. C. D.-8.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为(): 3A.9. 若不等式组B. C.有解,则 a 的取值范围是( )D. 6A. a >-1B. a≥-1C. a≤1D. a <110. 四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张, 则抽出的卡片正面图案是中心对称图形的概率为( )A.B. C. D. 111. 如图,在 △Rt ABC 中,∠ACB =90°,∠A =30°,BC =2△.将 ABC 绕点 C 按顺时针方向旋转 n 度后得到△EDC ,此时点 D 在 AB 边上,斜边 D E 交 AC 边于点 F ,则 n 的大 小和图中阴影部分的面积分别为( )A. 30,2B. 60,2C. 60,D. 60,12. 二次函数 y =ax 2+bx +c 的图象如图所示,反比例函数 与正比例函数 y =bx 在同一坐标系内的大致图象是()A. B. C. D.13. 如图,正五边形FGHMN 是由正五边形 ABCDE 经过位似变换得到的,若AB FG =2:,则下列结论正确的是( )A. 2DE=3MNB. 3DE=2MNC. 3∠A=2∠FD. 2∠A=3∠F14. 如图,已知点A 是直线 y =x 与反比例函数 y = (k >0,x >0)的交点,B 是 y = 图象上的另一点,BC ∥x 轴,交y 轴于点 C .动点 P 从坐标原点 O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终 点为 C ,过点 P 作 PM ⊥x 轴,PN ⊥y 轴,垂足分别为M ,N .设四边形 OMPN 的面积为 S ,P 点运动时间为 t ,则 S 关于 t 的函数图象大 致为( )则方程 a (x +m +2)2+b =0 的解是______.当 x 1=-x 2 时,都有 y 1 =y 2 ,称该函数为偶函数,根据以上定义,可以判断下面所给A.B.C. D.二、填空题(本大题共 5 小题,共 15.0 分) 15. 分解因式:a 3-4a 2b +4ab 2=______.16. 关于 x 的方程 a (x +m )2+b =0 的解是 x =-2,x =1,(a ,m ,b 均为常数,a ≠0),1 217. 有一直径为 4 的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形 ABC ,用此剪下的扇形铁皮围成一个圆锥,该圆 锥的底面圆的半径 r =______.18. 如图,菱形 ABCD 的对角线 AC 、BD 相交于点 O ,且 AC =8,BD =6,过点 O 作 OH丄 AB ,垂足为 H ,则点 0 到边 AB 的距离 OH =______.19. 定义:给定关于 x 的函数 y ,对于该函数图象上任意两点(x ,y ),(x ,y ),1 12 2的函数中,是偶函数的有______(填上所有正确答案的序号)①y =2x ;②y =-x +1;③y =x 2;④y =- ;三、计算题(本大题共 3 小题,共 25.0 分)20. 计算:( )-2-(π-3.14)0+-|2- |.21. 某企业为了增收节支,设计了一款成本为 20 元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元∕件)每天销售量y(件)……30500404005030060200……(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,根据所描出的点猜想y是x的什么函数,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?22.如图,已知△ABC内接于⊙O,过点B作直线EF∥AC,又知∠ACB=∠BDC=60°,AC=cm.(1)请探究EF与⊙O的位置关系,并说明理由;(2)求⊙O的周长.四、解答题(本大题共3小题,共31.0分)23.贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分请你根据图中所给信息解答下列问题:(1)一等奖所占的百分比是______.(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;(3)各奖项获奖学生分别有多少人?24.如图1△,在ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.25.如图,设抛物线y=ax2+bx+c与x轴交于两个不同的点A(-1,0),B(m,0),(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E,求点D和点E的坐标;(3)在x轴上是否存在点P,使以点P,B,D为顶点的三角形与三角形AEB相似?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵2>1,∴选项A符合题意;∵0<1,∴选项B不符合题意;∵-1<1,∴选项C符合题意;∵-2<1,∴选项D不符合题意.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此类题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【答案】A【解析】解:把36000000用科学记数法表示应该是3.6×107.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:如图,∵a∥b,∴∠1=∠C=50°,又180°-∠1=180°-∠A-∠B,∴∠A=∠1-∠B=50°-22°=28°,故选:B.如图,由平行线的性质可求得∠1=∠C,再根据领补角与三角形内角和可求得∠A.本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同们角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.4.【答案】D【解析】解:A、a2+a3=a5不是同类项,不能合并,故A选项错误;B、a6÷a3=a3,故B选项错误;C、4x2-3x2=x2,故C选项错误;D、(-2x2y)3=-8x6y3,故D选项正确.1 2 n1 2 n故选 D .根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相 减;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.分别计算即可.本题考查了合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质和法则 是解题的关键. 5.【答案】D【解析】解:根据勾股定理,a 2+b 2=c 2. 故选:D .由三视图知道这个几何体是圆锥,圆锥的高是 a ,母线长是 c ,底面圆的半径是 b ,刚 好组成一个以 c 为斜边的直角三角形.本题由物体的三种视图推出原来几何体的形状,考查了圆锥的高,母线和底面半径的关 系.6.【答案】D【解析】解:A 、6 出现的次数最多,出现了 6 次,则众数是 6,故本选项正确; B 、最大数是 7,最小数是 5,极差=7-5=2,故本选项正确; C 、平均数是(5×2+6×6+7×2)÷10=6,故本选项正确;D 、方差是: [2×(5-6)2+6×(6-6)2+2×(7-6)2]=0.25,故本选项错误;故选:D .根据众数、极差、平均数和方差的定义及公式分别进行解答,即可得出答案.此题考查了众数、极差、平均数和方差,一般地设n 个数据,x ,x ,…x 的平均数为,则方差 S 2= [(x - )2+(x - )2+…+(x - )2],众数是一组数据中出现次数最多的数,极差是最大数减去最小数.7.【答案】D【解析】解:( -2)===-,故选:D .根据分式的减法和乘法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 8.【答案】A【解析】△解:∵ CEO △是 CEB 翻折而成, ∴BC =OC ,BE =OE ,∠B =∠COE =90°, ∴EO ⊥AC ,∵O 是矩形 ABCD 的中心,∴OE 是 AC 的垂直平分线,AC =2BC =2×3=6, ∴AE =CE ,在△Rt ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在△Rt AOE中,设OE=x,则AE=3-x,AE2=AO2+OE2,即(3-x)2=32+x2,解得x=,∴AE=EC=3-=2.故选:A.先根据图形翻折变换的性质求出AC的长,AE=CE,再由勾股定理即可得出结论.本题考查的是翻折变换,勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.9.【答案】A【解析】解:由(1)得x≥-a,由(2)得x<1,∴其解集为-a≤x<1,∴-a<1,即a>-1,∴a的取值范围是a>-1,故选:A.先解出不等式组的解集,根据已知不等式组有解,即可求出a的取值范围.求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知数处理,求出不等式组的解集并与已知解集比较,进而求得另一个未知数的取值范围.10.【答案】B【解析】解:圆、矩形、等边三角形、等腰梯形中,中心对称图形有圆,矩形2个;则P(中心对称图形)==.故选B.先判断出圆、矩形、等边三角形、等腰梯形中的中心对称图形,再根据概率公式解答即可.此题考查了概率公式和中心对称图形的定义,要弄清概率公式适用的条件方可解题:(1)试验中所有可能出现的基本事件有有限个;(2)每个基本事件出现的可能性相等.11.【答案】C【解析】△解:∵ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×=2,AB=2BC=4,∵△EDC△是ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴S 阴影 DF ×CF = × = .∠∴DE ∥BC ,∵BD = AB =2,∴DF △是 ABC 的中位线,∴DF = BC = ×2=1,CF = AC = ×2 = ,=故选:C .先根据已知条件求出 AC 的长及∠B 的度数,再根据图形旋转的性质及等边三角形的判 定定理判断出△BCD 的形状,进而得出 DCF 的度数,由直角三角形的性质可判断出DF △是 ABC 的中位线,由三角形的面积公式即可得出结论.本题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积 公式,熟知图形旋转的性质是解答此题的关键,即: ①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角; ③旋转前、后的图形全等.12.【答案】B【解析】解:∵二次函数 y =ax 2+bx +c 的图象开口方向向下, ∴a <0,对称轴在 y 轴的左边,∴x =- <0,∴b <0,∴反比例函数的图象在第二四象限,正比例函数 y =bx 的图象在第二四象限. 故选:B .由已知二次函数 y =ax 2+bx +c 的图象开口方向可以知道 a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数 与正比例函数 y =bx 在同一坐标系内的大致图象.此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象 最少能反映出 2 个条件:开口向下 a <0;对称轴的位置即可确定 b 的值. 13.【答案】B【解析】【分析】本题考查的是位似变换.位似变换的两个图形相似.位似是特殊的相似,相似图形对应 边的比相等.根据相似多边形对应边成比例得 DE :MN =2:3. 【解答】解:∵正五边形 FGHMN 和正五边形 ABCDE 位似, ∴DE :MN =AB :FG =2:3, ∴3DE =2MN . 故选 B .14.【答案】B3 424【解析】解:设点 P 的运动速度为 v ,①由于点 A 在直线 y =x 上,故点 P 在 OA 上时,四边形 OMPN 为正方形,四边形 OMPN 的面积 S = (vt )2,②点 P 在反比例函数图象 AB 时,由反比例函数系数几何意义,四边形 OMPN 的面积 S =k ;③点 P 在 BC 段时,设点 P 运动到点 C 的总路程为 a ,则四边形 OMPN 的面积=OC •(a -vt )=-OC •vt +OC •a ,纵观各选项,只有 B 选项图形符合.故选:B .根据点 P 的位置,分①点 P 在 OA 上时,四边形 OMPN 为正方形;②点 P 在反比例函 数图象 AB 段时,根据反比例函数系数的几何意义,四边形 OMPN 的面积不变;③点 P 在 BC 段,设点 P 运动到点 C 的总路程为 a ,然后表示出四边形OMPN 的面积,最后判 断出函数图象即可得解.本题考查了动点问题函数图象,读懂题目信息,根据点P 的运动位置的不同,分三段表 示出函数解析式是解题的关键.15.【答案】a (a-2b )2【解析】解:原式=a (a 2-4ab +4b 2)=a (a -2b )2.故答案是:a (a -2b )2.首先提公因式 a ,然后利用完全平方公式即可分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式 ,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.16.【答案】x =-4,x =-1【解析】解:∵关于 x 的方程 a (x +m )2+b =0 的解是1x =-2,x =1,(a ,m ,b 均为常数 ,a ≠0),∴方程 a (x +m +2)2+b =0 变形为 a [(x +2)+m ]2+b =0,即此方程中 x +2=-2 或 x +2=1, 解得 x =-4 或 x =-1.故答案为:x 3=-4,x =-1. 把后面一个方程中的 x +2 看作整体,相当于前面一个方程中的 x 求解.此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算.17.【答案】【解析】解:连接 OA ,作 OD ⊥AB 于点 D .则∠DAO = ×60°=30°,OD =1,则 AD = OD = ,∴AB =2.则扇形的弧长是:= ,根据题意得:2πr =解得:r = .,1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 22 1 2故答案是: .连接 OA ,作 OD ⊥AB 于点 D ,利用含 30°角的直角三角形的性质以及垂径定理即可求得 AB 的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半 径.本题考查了扇形的弧长公式,垂径定理,正确求得 AB 的长是关键.18.【答案】【解析】解:∵AC =8,BD =6,∴BO =3,AO =4,∴AB =5.AO •BO = AB •OH ,OH = .故答案为: .因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出 O H 的长. 本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相 等,可求出 AB 边上的高 OH .19.【答案】③【解析】解:在①中,y 1=2x ,y =2x =-2x ,此时 y ≠y ,∴y =2x 不是偶函数, 在②中,y 1=-x 1 +1,y =-x +1=x +1,此时 y ≠y,∴y =-x +1 不是偶函数, 在③中,y 1=x 1 2,y =x 2=(-x )2=x 2,此时 y =y ,∴y =x 2 是偶函数,在④中,y 1=- ,y =- =- = ,此时 y ≠y,∴y =- 不是偶函数, ∴是偶函数的为③,故答案为:③.根据所给的定义,把 x 1 和 x 2 分别代入函数解析式进行判断即可.本题考查一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,反比例函数图 象上点的坐标特征,理解题目中偶函数的定义是解题的关键.20.【答案】解:原式=4-1+2 - +2= +5.【解析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三 项化为最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果. 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)由图可猜想 y 与 x 是一次函数关系,设这个一次函数为 y =kx +b (k ≠0),∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴,∴函数关系式是:y=-10x+800.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+800)=-10x2+1000x-16000=-10(x-50)2+9000,(20<x<80)当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)函数W=-10(x-50)2+9000的对称轴为x=50故当x≤45时,W的值随着x值的增大而增大,当x=45时利润最大,最大利润为8750元.∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润为8750元.【解析】(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)利润=销售总价-成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数的取值范围内的增减性,可得出函数的最值.此题主要考查了二次函数的应用,根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.22.【答案】解:(1)EF与⊙O相切.理由如下:延长BO交AC于H,如图,∵∠BAC=∠BDC=60°,而∠ACB=60°,∴△ABC为等边三角形,∵点O△为ABC的外心,∴BH⊥AC,∵AC∥EF,∴BH⊥EF,∴EF为⊙O的切线;(2)连结OA,如图,∵△ABC为等边三角形,∴OA平分∠ABC,∴∠OAH=30°,∵OH⊥AC,∴AH=CH=AC=,在△Rt AOH中,∵cos∠OAH=,∴OA==1,∴⊙O的周长=2π×1=2π(cm).【解析】(1)延长BO交AC于H,如图,先证明△ABC为等边三角形,利用点O为△ABC的外心得到BH⊥AC,由于AC∥EF,所以BH⊥EF,于是根据切线的判定定理即可得到EF为⊙O的切线;(2)连结OA,如图,根据等边三角形的性质得∠OAH=30°,AH=CH=AC=,再在△Rt AOH中,利用三角函数和计算出OA=1,然后根据圆的周长公式计算.本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的判定与性质.23.【答案】(1)10%(2)200份;图见解析。
2020年山东省临沂市中考数学模拟试卷含答案(2套)

2020年山东省临沂市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共14小题,共42.0分)1. I-3| =()A. —3B. —2C. 32. 如图,乙1 = 110。
,则匕2的度数是()A. 68°B. 70°C. 105°D. 110°3. 不等式2% + 9 > 3(%+ 2)的解集是()A. % < 3B. % < —3C. x >3D. % > —34. 如图,三棱柱ABC-A^B^是正三棱柱,其主视图是边长为2的正方形,则此三棱 柱的左视图的面积为()A. V3B. 2V3C. 2V2D. 45, 把a 3 - ab 2进行因式分解,结果正确的是()A. (a + ab)(a — ab)B. a(a 2 — b 2)C. a(a — byD. a(a — h)(a + h)6. 如图所示,在 4ABC 和△DEF 中,BC〃EF m BAC = ZD,且A B =DE = 4, BC = 5, AC = 6,则时的长为()7. A. 4 C. 6B. x 3 + x 4 = x 7D. 2a -1 ■ a 2 = 2a 8. B.5D.不能确定下列计算中,正确的是()A. (-5)° = 0C. (一。
2胪)2 = 一“服务社会,提升自我. ”尤溪县某中学积极开展志愿者服务活动,来自九年级的 4名同学(二男二女)成立了 “交通秩序维护”小分队,若从该小分队中任选两名同 学进行交通秩序维护,则恰是一男一女的概率是()A. |B. |C. |D・i 9.计算:岂一片+加结果为()A X A・右 B.—X D -嘉c.—X 10.某校调查了 20名同学某一周玩手机游戏的次数,调查结果如下表所示,那么这20名同学玩手机游戏次数的平均数为()次数2458人数2210611. A. 5B. 5.5C. 6D.如图,A,B, C,Q 是。
2020年山东省临沂市中考数学一模试卷 (含解析)

2020年山东省临沂市中考数学一模试卷一、选择题(本大题共14小题,共42.0分)1.在下列各数中,比−1小的数是()A. 1B. −1C. −2D. 02.下列图形中,是中心对称图形的是()A. B. C. D.3.点A为数轴上表示−3的点,当点A沿数轴移动4个单位长度时,它所表示的数是()A. 1B. −7C. 1或−7D. 以上都不对4.一几何体的三视图如图所示,这个几何体是()A. 四棱锥B. 圆锥C. 三棱柱D. 四棱柱5.如图,已知OA=OB=OC,BC//AO,若∠A=36°,则∠B等于()A. 54°B. 60°C. 72°D. 76°6.计算(2x2y2)3÷2x2y3的结果为()A. 4x2y2B. 8x2y3C. 4x4y3D. 2x2y37.我们知道√20是一个无理数,那么√20−1的大小在哪两个数之间()A. 3和4B. 4和5C. 19和20D. 20和218.把一元二次方程x2−4x+1=0,配成(x+p)2=q的形式,则p、q的值是()A. p=−2,q=5B. p=−2,q=3C. p=2,q=5D. p=2,q=39.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A. 13B. 14C. 16D. 18 10. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A. {x +y =352x +2y =94B. {x +y =354x +2y =94 C. {x +y =354x +4y =94 D. {x +y =352x +4y =94 11. 甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如图所示.则下列对甲、乙数据描述正确的是( )A. 甲的方差比乙的方差小B. 甲的方差比乙的方差大C. 甲的平均数比乙的平均数小D. 甲的平均数比乙的平均数大12. 如图,△ABC 的面积为16,点D 是BC 边上一点,且BD =14BC ,点G 是AB 上一点,点H 在△ABC内部,且四边形BDHG 是平行四边形,则图中阴影部分的面积是( )A. 3B. 4C. 5D. 6 13. 计算2a−2−a a−2的结果是( )A. 1B. −1C. 2D. −214. 如图,在△ABC 中,AB =AC ,以BC 为直径画半圆交AB 于E ,交AC 于D ,CD⏜的度数为40°,则∠A 的度数是( )A. 40°B. 70°C. 50°D. 20°二、填空题(本大题共5小题,共15.0分)15.不等式5−2x>−3的解集是______.16.已知m+n=12,m−n=2,则m2−n2=______.17.已知点A(a,–2),B(b,–4)在直线y=–x+6上,则a、b的大小关系是a____b.18.如图,在△ABC中,MN//BC,若AM=1,MB=3,MN=1,则BC的长为______.19.在数学课上,老师提出如下问题:如图1,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小军同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B−A−C为所求.老师说:小军同学的方案是正确的.请回答:该方案最节省材料的依据是______.三、计算题(本大题共1小题,共9.0分)20.如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;⏜,AM,AF围成的阴影部分面积.(2)当BC=6,OB:OA=1:2 时,求FM四、解答题(本大题共6小题,共54.0分)21.计算:√27−4√1−(√6−√3)2+6tan30°222.为弘扬中华传统文化,了解学生整体数学阅读能力,某校组织全校1000名学生进行一次阅读理解大赛的初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<70a0.2870≤x<80160.3280≤x<90100.2090≤x≤10040.08(1)表中的a=____________;(2)把上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,那么请你估计该校进入决赛的学生大约有多少人.23.如图所示的是常见的工具“人字梯”,量得“人字梯”的一侧OC=OD=2.5米.(1)若CD=1.4米,求梯子顶端O离地面的高度.(2)《建筑施工高处作业安全技术规范》规定:使用“人字梯”时,上部夹角(∠AOB)以35°~45°为宜,铰链必需牢固,并应有可靠的拉撑措施,如图,小明在人字梯的一侧A、B处系上一根绳子确保用梯安全,他测得OA=OB=2米,在A、B处打结各需要0.4米的绳子,请你帮小明计算一下,他需要的绳子的长度应该在什么范围内.(结果精确到0.1米,参考数据:sin17.5°≈0.30,cos17.5°≈0.95,tan17.5°≈0.32,sin22.5°≈0.38,cos22.5°≈0.92,tan22.5°≈0.41)24.蓄电池的电压为定值.使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当R=10Ω时,电流量是4A吗?为什么?25.已知抛物线y=ax2经过点A(−2,−8).(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点B(−1,−4)是否在此抛物线上;(4)求出此抛物线上纵坐标为−6的点的坐标.26.四边形ABCD是菱形,点N是射线BA上一动点,点P,Q是直线BC上的两个动点,点Q在点P的右侧,且PQ=BN.作线段BQ的垂直平分线,分别交直线BD,BC于点E,M,连接EN,EP图(3)(1)发现如图(1),当P,Q两点都在线段BC上时EN与EP的数量关系为_________.(2)拓展如图(2),当P,Q两点都在线段CB的延长线上时,(1)中结论是否仍然成立⋅若成立,请加以证明;若不成立,请说明理由;(3)应用如图(3),当点P,Q都在射线BC上,且点Q的位置固定时,连接NP,若∠ABC=60°,BQ=6,请直接写出NP的最小值【答案与解析】1.答案:C解析:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:根据有理数比较大小的方法,可得−2<−1<0<1,所以各数中,比−1小的数是−2.故选:C.2.答案:D解析:本题考查中心对称图形的概念.一个图形绕着一点旋转180°能够与原来的图形完全重合的图形由叫中心对称图形.根据中心对称图形的概念逐个判定即可.解:A.不是中心对称图形,故A错误;B.不是中心对称图形,故B错误;C.不是中心对称图形,故C错误;D.是中心对称图形,故D正确.故选D.3.答案:C解析:此题主要考查了数轴的特征和应用,要熟练掌握,注意分两种情况讨论.根据题意,分两种情况:(1)当点A沿数轴向左移动4个单位长度时;(2)当点A沿数轴向右移动4个单位长度时;求出它所表示的数是多少即可.解:(1)当点A沿数轴向左移动4个单位长度时,它所表示的数是:−3−4=−7.(2)当点A沿数轴向右移动4个单位长度时,它所表示的数是:−3+4=1.∴当点A沿数轴移动4个单位长度时,它所表示的数是1或−7.故选C.4.答案:A解析:本题考查由三视图确定几何体的形状,关键是利用学生空间想象能力及对立体图形的认识解答.如图所示,根据三视图的知识可使用排除法来解答.解:根据主视图和左视图都为三角形,俯视图是矩形,可得这个几何体为四棱锥.故选A.5.答案:C解析:本题主要考查等腰三角形的性质,平行线的性质等知识.由OA=OC,可得∠A=∠ACO=36°,由平行线的性质可得∠A=∠BCA=36°,得出∠BCO的度数,再由等腰三角形的性质可得答案.解:∵OA=OC,∴∠A=∠ACO=36°,∵BC//AO,∴∠A=∠BCA=36°,∴∠BCO=∠BCA+ACO=72°,∵OB=OC,∴∠B=∠BCO=72°.故选C.6.答案:C解析:[分析]根据幂的乘方和积的乘方的运算法则,先去括号,然后根据整式的除法法则计算即可求出答案.[详解]解:(2x2y2)3÷2x2y3=8x6y6÷2x2y3=4x4y3故选C.[点评]本题考查了幂的乘方和积的乘方以及整式的除法.解题的关键是熟练运用整式的除法法则,本题属于基础题型.7.答案:A解析:此题主要考查了估算无理数的大小,正确得出√20的取值范围是解题关键.直接得出√20的取值范围进而得出答案.解:∵4<√20<5,∴3<√20−1<4.故选A.8.答案:B解析:本题主要考查配方法解一元二次方程,可根据配方法的步骤先移项,再将方程两边加上一次项系数一半的平方即可求解.解:x2−4x=−1,x2−4x+4=−1+4,(x −2)2=3,∴p =−2,q =3,故选B .9.答案:C解析:解:根据题意画图如下:共用12种等情况数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是212=16;故选:C .根据题意画出树状图得出所有等情况数和恰好选中甲、乙两位选手的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 10.答案:D解析:本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 根据题意可以列出相应的方程组,从而可以解答本题.解:由题意可得,{x +y =352x +4y =94, 故选:D .解析:本题考查了折线统计图、方差及算术平均数的知识,解题的关键是了解方差的意义,方差越大波动越大,反之越小,根据折线统计图可以发现两人的波动的大小,然后根据方差的意义直接确定答案即可.解:观察折线统计图知:甲的波动较大,故甲的方差比乙的方差大.甲的平均数是:(7+6+9+2+5)÷5=5.8;乙的平均数是:(5+5+7+5+7)÷5=5.8所以甲和乙的平均数相等.故选B.12.答案:B解析:本题考查了三角形的面积公式以及平行四边形的性质,解题的关键是找出S阴影=14S△ABC.解决该题型题目时,根据三角形的面积公式找出阴影部分的面积与△ABC的面积之间的关系是关键.设△ABC底边BC上的高为h,△AGH底边GH上的高为ℎ1,△CGH底边GH上的高为ℎ2,根据图形可知ℎ=ℎ1+ℎ2.利用三角形的面积公式结合平行四边形的性质即可得出S阴影=14S△ABC,由此即可得出结论.解:设△ABC底边BC上的高为h,△AGH底边GH上的高为ℎ1,△CGH底边GH上的高为ℎ2,则有ℎ=ℎ1+ℎ2.S△ABC=12BC⋅ℎ=16,S阴影=S△AGH+S△CGH=12GH⋅ℎ1+12GH⋅ℎ2=12GH⋅(ℎ1+ℎ2)=12GH⋅ℎ.∵四边形BDHG是平行四边形,且BD=14BC,∴GH=BD=14BC,∴S阴影=14×(12BC⋅ℎ)=14S△ABC=4.13.答案:B解析:解:原式=2−aa−2=−a−2a−2=−1.故选:B.原式利用同分母分式的减法法则计算,约分即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.答案:A解析:本题考查了圆周角定理,等腰三角形的性质,以及圆心角、弧、弦的关系,熟练掌握圆周角定理是解本题的关键.由BC为直径,利用直径所对的圆周角为直角得到∠BDC为直角,再由CD⏜的度数求出圆周角∠DBC的度数,进而求出∠C与∠ABC的度数,确定出∠A的度数.解:∵BC为圆的直径,∴∠BDC=90°,∵CD⏜的度数为40°,∴∠DBC=20°,∴∠C=70°,∵AB=AC,∴∠ABC=∠C=70°,∴∠A=40°,故选A.15.答案:x<4解析:解:−2x>−3−5,−2x>−8,x<4,故答案为:x<4.根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.答案:24解析:解:∵m+n=12,m−n=2,∴m2−n2=(m+n)(m−n)=2×12=24,故答案为:24根据平方差公式解答即可.此题考查平方差公式,关键是根据平方差公式的形式解答.17.答案:<解析:本题考查了一次函数的性质,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.由函数解析式y=−x+6可知,该函数为减函数,函数值越大,自变量的值就越小.解:因为k=−1<0,一次函数y随x的增大而减小,又−2>−4,所以a<b.故答案为<.18.答案:4解析:解析:本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.解:∵AM=1,MB=3,∴AB=4,∵MN//BC,∴△AMN∽△ABC,∴MNBC =AMAB,即1BC=14,解得,BC=4,故答案为:4.根据MN//BC,得到△AMN∽△ABC,根据相似三角形的性质列出比例式,计算即可.19.答案:两点之间,线段最短;垂线段最短解析:本题考查线段与垂线段的性质.解题的关键是正确理解两点之间线段最短以及垂线段最短,本题属于基础题.根据两点之间线段最短以及垂线段最短即可判断.解:由于两点之间线段最短,故连接AB,由垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,故答案为:两点之间,线段最短;垂线段最短.20.答案:解:(1)连结OM,∵AB=AC,E是BC中点,∴BC⊥AE,∵OB=OM,∴∠OMB=∠MBO,∵∠FBM=∠CBM,∴∠OMB=∠CBM,∴OM//BC,∴OM⊥AE,∴AM是⊙O的切线;(2)∵E是BC中点,∴BE=12BC=3,∵OB:OA=1:2,OB=OM,∴OM:OA=1:2,∵OM⊥AE,∴∠MAB=30°,∠MOA=60°,OA:BA=2:3,∵OM//BC,∴OMBE =OAAB=23,∴OM=2,∴AM=√OA2−OM2=2√3,∴S阴影=12×2√3×2−60π×22360=2√3−23π.解析:(1)连接OM,由AB=AC,且E为BC中点,利用三线合一得到AE垂直于BC,再由OB=OM,利用等边对等角得到一对角相等,由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OM与BC平行,可得出OM垂直于AE,即可得证;(2)由E为BC中点,求出BE的长,再由OB与OA的比值,以及OB=OM,得到OM与OA的比值,由OM垂直于AE,利用直角三角形中一直角边等于斜边的一半,得到此直角边所对的角为30度得到∠MAB=30°,∠MOA=60°,阴影部分的面积=三角形AOM面积−扇形MOF面积,求出即可.此题考查了切线的判定,涉及的知识有:圆周角定理,弧,弦及圆心角之间的关系,平行线的性质,扇形面积求法,以及勾股定理,熟练掌握切线的判定方法是解本题的关键.21.答案:解:原式=3√3−4×√22−(9−6√2)+6×√33=5√3+4√2−9.解析:此题主要考查了二次根式的混合运算,正确化简各数是解题关键.直接利用特殊角的三角函数值、二次根式的性质分别化简得出答案.22.答案:解:(1)14;(2)补全频数分布直方图如下:(3)根据题意得:1000×0.08=80(人),则估计该校进入决赛的学生大约有80人.解析:此题考查了频数分布直方图,用样本估计总体,频数(率)分布表,弄清题中的数据是解本题的关键.(1)根据频率分布表确定出总人数,进而求出a的值即可;(2)把上面的频数分布直方图补充完整即可;(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.解:(1)根据题意得:a=6÷0.12×0.28=14;故答案为14;(2)见答案:(3)见答案.23.答案:解:(1)如图1,作OE⊥CD于点E,在△OCD中,∵OC=OD,OE⊥OD,∴CE=1CD=0.7米,2∴OE=√2.52−0.72=2.4米;(2)如图2,作OF⊥AB于点F,在△AOB中,OA=OB,OF⊥AB,∴∠AOF=∠BOF=1∠AOB,2AB,AF=FB=12,在Rt△OAF中,sin∠AOF=AFOA∴AF=OA⋅sin∠AOF,由题意知35°≤∠AOB∠45°,当∠AOF=17.5°时,AF=OA⋅sin∠AOF=2×sin17.5°≈0.60米,此时,AB≈1.20米,所需的绳子约为2.0米,当∠AOF=22.5°时,AF=OA⋅sin∠AOF=2×sin22.5°≈0.76米,此时,AB≈1.52米,所需的绳子约为2.3米,所以他所需的绳子的长度应该在2.0米到2.3米之间.解析:(1)直接根据等腰三角形的性质即可得出结论;(2)过点O作OF⊥AB于点F,由锐角三角函数的定义求出AF及AB的长,进而可得出结论.本题考查的是解直角三角形的应用−坡度坡角问题,熟记锐角三角函数的定义是解答此题的关键.24.答案:解:(1)∵电流I(A)是电阻R(Ω)的反比例函数,(k≠0),∴设I=KR把(4,9)代入得:k=4×9=36,∴这个反比例函数的表达式I=36;R(2)∵当R=10Ω时,I=3.6≠4,∴电流不可能是4A.解析:此题考查的是反比例函数的应用以及求反比例函数解析式.读懂题意,明确图象中的点的横纵坐标代表的实际意义是关键.(k≠0)后把(4,9)代入求得k值即可;(1)根据)电流I(A)是电阻R(Ω)的反比例函数,设出I=KR(2)将R=10Ω代入上题求得的函数关系式后求得电流的值与4比较即可.25.答案:解:(1)∵抛物线y=ax2经过点A(−2,−8),∴a⋅(−2)2=−8,∴a=−2,∴此抛物线对应的函数解析式为y=−2x2.(2)由题可得,抛物线的顶点坐标为(0,0),对称轴为y轴;(3)把x=−1代入得,y=−2×(−1)2=−2≠−4,∴点B(−1,−4)不在此抛物线上;(4)把y=−6代入y=−2x2得,−6=−2x2,解得x=±√3,∴抛物线上纵坐标为−6的点的坐标为(√3,−6)或(−√3,−6).解析:(1)根据二次函数图象上点的坐标满足其解析式,把A点坐标代入解析式得到a的值,即可得出抛物线的函数解析式;(2)根据图象和性质直接写出顶点坐标、对称轴;(3)把点B(−1,−4)代入解析式,即可判断点B(−1,−4)是否在此抛物线上;(4)把y=−6代入解析式,即可求得纵坐标为−6的点的坐标.本题主要考查了待定系数法求解析式,二次函数的性质以及二次函数图象上点的坐标特征,解题时注意:点在图象上,则点的坐标满足函数解析式.26.答案:解:(1)EN=EP;(2)成立.证明:连接EQ,∵四边形ABCD是菱形,∴∠ABD=∠CBD,又∵∠EBP=∠CBD,∴∠ABD=∠EBP.∵直线EM垂直平分线段BQ,∴EB=EQ,∴∠EBP=∠EQB,∴∠ABD=∠EQB,∴∠EQP=∠EBN.又∵BN=PQ,∴△ENB≌△EPQ,∴EN=EP;(3)NP的最小值为3;如图:连接EQ,∵BQ=6∴BM=MQ=3∴BE=BMcos∠EBM=3cos30°=2√3同(2)中的方法,可得△ENB≌△EPQ∴EN=EP,∠NEP=∠PEQ,∴∠NEP=∠BEQ,∵EB=EQ,∴EN:EB=EP:EQ,∴△ENP∽△EBQ,∴NP:BQ=EN:EB,即NP:6=EN:2√3,∴NP=√3EN,过点E作EG⊥AB,垂足为G,则EG=12BE=√3,当N和G重合时,EN的值最小,此时NP=√3EN=3,则最小值为3.解析:本题考查全等三角形的判定和性质、菱形的性质、垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.(1)连接EQ,通过证明△EBN≌△EQP即可;(2)利用菱形性质和垂直平分线的性质得到△ENB≌△EPQ即可;(3)根据全等得到PN=QE,当QE⊥BD时,QE最小,此时QE=12QB=3,即最小值为3.解:(1)连接EQ,如图,∵EM垂直平分BQ,∴EQ=EB,∴∠EBQ=∠EQB,∵菱形ABCD,∴∠EBQ=∠EBN,在△EBN与△EQP中,{BN=PQ∠EBN=∠EQP EB=EQ,∴△EBN≌△EQP(SAS),∴EN=EP;故答案为EN=EP;(2)(3)见答案.。
2020年临沂市中考数学一模试题附答案

2020年临沂市中考数学一模试题附答案一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1072.已知反比例函数 y=的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.3.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4B.3C.2D.14.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°5.下列命题中,真命题的是()A.对角线互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线相等的四边形是矩形D.对角线互相平分的四边形是平行四边形⊥于点D,连接BD,BC,且6.如图,AB,AC分别是⊙O的直径和弦,OD ACAC=,则BD的长为()10AB=,8A.5B.4C.213D.4.87.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:28.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°9.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5B.15.5,15C.15,15.5D.15,1510.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 11.如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .312.均匀的向一个容器内注水,在注水过程中,水面高度h 与时间t 的函数关系如图所示,则该容器是下列中的( )A .B .C .D .二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 15.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .16.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)18.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .19.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省临沂市中考数学模拟试题
含答案
一、选择题(每小题3分,共36分)
1、下列运算中,正确的是( )
A 、
B 、
C 、
D 、
2、 如图,把一张长方形纸片沿EF 折叠后,点D ,C 分别落在D',C'的位置,若∠EFB=650,则∠AED'等于( )
A 、500
B 、550
C 、600
D 、650
3、若代数式()
231-+x x 有意义,则实数x 的取值应满足( ) A 、1-≥x B 、31≠-≥x x 且 C 、x>-1 D 、31≠->x x 且
4、一个几何体的三视图如图所示:其中主视图和左视图都是腰长为4、底边长为2的等腰三角形,则这个几何体的侧面积展开图的面积为( )
A 、π2
B 、
π2
1 C 、π4 D 、π8
5、若不等式⎩
⎨⎧->-≥+2210x x a x 无解,则实数a 的取值范围是( ) A 、1-≥a B 、1-<a C 、1≤a D 、1-≤a
6、如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( )
A 、34米
B 、56米
C 、512米
D 、24米
C D E C'
主视图
左视图
俯视图 A B C D
E
7、下列事件:①在足球赛中,弱队战胜强队;②抛掷1枚硬币,硬币落地时正面朝上;③任取两个正整数,其和大于1;④长为3cm ,5cm ,9cm 的三条线段能围成一个三角形。
其中确定的事件有( )
A 、1个
B 、2个
C 、3个
D 、4个
8、方程()0622=++-m x m x 有两个相等的实数根,且满足2121x x x x =+,则m 的值是( )
A 、—2或3
B 、3
C 、—2
D 、—3或2
9、如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM=CN ,MN 与AC 交于点O 。
若∠DAC=280,则∠OBC 的度数为( )
A 、280
B 、520
C 、620
D 、72
10、已知⊙O 的半径为2,点P 是⊙O 内一点,且OP=3,过P 作互相垂直的两条弦AC 、BD ,则四边形ABCD 的面积的最大值为( )
A 、4
B 、5
C 、6
D 、7
11、如图,一次函数y 1=x 与二次函数c bx ax y ++=2
2的图象相交于P 、Q 两点,则函数()c x b ax y +-+=12的图象可能为( )
12、如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与⊙
O 过A 点的切线交于点B ,且∠APB=600
,设OP=x ,则ΔPAB 的面积y 关于x 的函数图象大致是( )
x
y o A x y o B x y o C o x y D
二、填空题(每小题4分,共20分)
13、用科学计数法表示0.000000645这个数为___________。
14、定义运算⎩⎨⎧<-≥-=⊗时,
,当时,,当11n m n n m m n m 则()()=⊗5-6-____。
15、如图,反比例函数x y 8=的图象经过直角三角形OAB 的顶点A ,D 为斜边OA 的中点,则过点D 的反比例函数的解析式为______。
16、如图,四边形ABCD 是等腰梯形,∠ABC=600,若其四边满足长度的众数为5,平均数为425,上、下底之比为1:2,则BD=______________。
17、如图,⊙O 的半径为6cm ,AB 是⊙O 的切线,切点为点B ,弦BC ∥AO 。
若∠A=300,则劣弧BC 的长为___________。
三、解答题(7个题,共64分)
A
B C 32
x y o 2 D x y
o A B
D A
B
C
D
18、(6分)先化简,再求值:x x x x x x -+-÷⎪⎪⎭
⎫ ⎝⎛+--11441122,其中x 满足022=-+x x 。
19、(7分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表。
请结合图表所给出的信息解答下列问题:
(1)该校初三学生共有多少人?
(2)求表中a ,b ,c 的值,并补全条形统计图;
(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率。
20、(9分)如图,在平面直角坐标系xoy 中,已知一次函数y=kx+b 的图象经过点 A(1,0),与反比例函数
的图象相交于点B (2,1)。
(1)求m 的值和一次函数的解析式; (2)结合图象直接写出:当x>0时,不等式
的解集。
(3)求△AOB 的面积。
成绩
频数 频率 优秀 45 b 良好 a 0.3 合格
105 0.35 不合格
60 c 45 105
60
人数
x y o A B
21、(10分)如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交BC 于点D ,交AB 于点E 。
过点D 作DF ⊥AB ,垂足为F ,连接DE 。
(1)求证:直线DF 与⊙O 相切;
(2)若AE=7,BC=6,求AC 的长。
22、(10分)正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF=45O 。
将△DAE 绕点D 逆时针旋转900得到△DCM 。
(1)求证:EF=FM.
(2)当AE=1时,求EF 的长。
23、(10分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元。
(毛利润=(售价-进价)╳销售量)
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量。
已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元。
该商场怎样进货,使全部销售后后的的毛利润最大?并求出最大毛利润。
24、(12分)如图,已知抛物线()
02
≠++=a c bx ax y 经过一点A (-3,2),B (0,-2),其对称轴为直线25=x ,C ⎪⎭
⎫ ⎝⎛210,为y 轴上一点,直线AC 与抛物线交于另一点D 。
C A B C D E F M
(1)求抛物线的函数表达式;
(2)试在线段AD 下方的抛物线上求一点,使得ΔADE 的面积最大,并求出最大面积;
(3)在抛物线的对称轴上是否存在一点F ,使得ΔADF 是直角三角形?如果存在,求出点F 的坐标;如果不存在,请说明理由。
x
y
A
B D
C o x y A B D
C o。