2015.12江西育华学校八年级数学月考试卷部分试题

合集下载

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、单选题1.下面各条件中,能判定四边形是平行四边形的是()A.对角线互相垂直B.两组对边分别相等C.一组对角相等D.一组对边相等,另一组对边平行2.在平行四边形ABCD中,∠A+∠C=100°,则∠D= ( )A.130°B.120°C.70°D.80°3.若y=kx+2的函数值y随着x的增大而增大,则k的值可能是()A.0B.1C.-30D.-24.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间x(分钟)之间关系的大致图象是()A.B.C.D.5.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、平行四边形、菱形等四种图案,你认为符合条件的是().A.等腰三角形B.正三角形C.平行四边形D.菱形6.如图,正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A.8B.C.10D.二、填空题1.函数的自变量的取值范围是____2.若菱形的一条对角线长为6,周长为20,则该菱形的面积是________3.已知经过点(-1,)(3,),则____4..函数y=x-2的图象不经过第_____象限。

5.如图所示,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若△ABC的周长为10cm,则△OEC的周长为_____.6.某油箱容量为50L的汽车,加满汽油后开了200km时,油箱中的汽油大约消耗了如果加满汽油后汽车行驶的路程为x km,油箱中的剩油量为y L,则y与x之间的函数关系式和自变量取值范围分别是_____.三、解答题1.已知一条直线经过点(-1,3)和(0,6)(1)求这条直线的解析式(2)在直角坐标系中画出该函数图像。

2023-2024学年江西省南昌市育华学校八年级(上)月考数学试卷(含解析)

2023-2024学年江西省南昌市育华学校八年级(上)月考数学试卷(含解析)

2023-2024学年江西省南昌市育华学校八年级(上)月考数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)如图图形是轴对称图形的个数是( )A.4个B.3个C.2个D.1个2.(3分)一个多边形的内角和比它的外角和的3倍少180°,这个多边形的对角线共有( )A.9条B.14条C.20条D.27条3.(3分)下列长度的三条线段中,能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,5cmC.3cm,4cm,7cm D.4cm,5cm,8cm4.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,将△ABC沿直线BC方向平移2.5个单位得到△DEF,AC与DE相交于G点,连接AD,AE,则下列结论:①△AGD≌△CGE:②△ADE是以AE为底的等腰三角形;③AC平分∠EAD;④四边形AEFD的面积为9.其中正确的结论有( )A.4个B.3个C.2个D.1个5.(3分)如图,作BC边上的高,以下作法正确的是( )A.B.C.D.6.(3分)如图所示,AP平分∠BAC,点M,N分别在边AB,AC上,如果添加一个条件,即可推出AM=AN,那么下面条件不正确的是( )A.PM=PN B.∠APM=∠APN C.MN⊥AP D.∠AMP=∠ANP 7.(3分)如图,以正五边形ABCDE的对角线BE为边,作正方形BEFG,使点A落在正方形BEFG内,则∠ABG的度数为( )A.18°B.36°C.54°D.72°8.(3分)如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③DB平分∠ADC;④∠ADC=90°﹣∠ABD;⑤∠BDC=∠BAC.其中正确的结论有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)9.(4分)已知点A(a,﹣2)与点B(﹣3,b)关于y轴对称,点B与点C关于x轴对称,则点C的坐标是 .10.(4分)如图,盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,使其不变形,能解释这一实际应用的数学知识是 .11.(4分)如图,已知△AOB≌△COD,A(1,0),B(0,2),则C点坐标是 ,点D的坐标为 .12.(4分)如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是 °.13.(4分)若△ABC的周长为41cm,边BC=17cm,且AB<AC,角平分线AD将△ABC 的面积分3:5的两部分,则AB= cm.14.(4分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是 .15.(4分)如图,DC平分∠ADB,EC平分∠AEB,已知∠DAE=50°,∠DBE=110°,则∠DCE= .16.(4分)当三角形中一个内角α是另一个内角的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的一个内角为42°,那么这个“特征角”α的度数为 .三.解答题(共7小题,满分64分)17.(8分)如图,已知正五边形ABCDE,过点A的直线交DB的延长线于点F,交DE的延长线于点G,若∠F=38°,求∠G的度数.18.(8分)如图,已知∠1=∠2,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,求证:OC=OB.19.(8分)如图,△ABC三个顶点坐标分别为A(﹣4,4)、B(﹣3,1)、C(﹣1,2).(1)画出将△ABC向右平移5个单位长度得到的图形△A1B1C1;(2)画出△A1B1C1关于x轴的对称图形△A2B2C2,并写出B2的坐标.20.(9分)图1、图2、图3都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B 两点均为格点,按下列要求画图:(1)在图1中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N均为格点;(2)在图2中,画以AB为底边的等腰△ABC,且C为格点;(3)在图3中,画一个四边形ABDE,使其为轴对称图形,且D,E均为格点.21.(9分)如图,在正△ABC中,D为边AC上一点,延长BD至F使得AF=AC,过A 作AH⊥BF于H,AH与FC的延长线交于点G.(1)若∠CAF为2α,直接写出∠AFC的度数;(用含α的代数式表示)(2)求∠GFH的度数;(3)已知GH=CF,求出.22.(11分)在△ABC中,∠A=90°,AB=AC=+1.且AD=AE=1.(1)如图1,点D,E分别在边AB,AC上,连接DE.直接写出DE的值 ,BC的值 ;(2)现将△ADE如图2放置,连接CE,BE,CD,求证:CD=BE;(3)现将△ADE如图3放置,使C,A,E三点共线,延长CD交BE于点F,求证:CF垂直平分BE.23.(11分)如图,平面直角坐标系xOy中,B(﹣6,0)、C(6,0),点A在y轴上,(AB >8),已点D为AB上一点,且BD=8,点P在线段BC上以2个单位/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含t的式子表示点P的坐标为 ;(2)若点Q的运动速度与点P的运动速度相等,当t=2时,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使△BPD与△CQP全等?2023-2024学年江西省南昌市育华学校八年级(上)月考数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:第1个是轴对称图形,故本选项符合题意;第2个是不轴对称图形,故本选项不符合题意;第3个是不轴对称图形,故本选项不符合题意;第4个是轴对称图形,故本选项符合题意;第5个是不轴对称图形,故本选项不符合题意.故选:C.2.解:设这个多边形的边数为x.由题意得:180°(x﹣2)=360°×3﹣180°.∴x=7.∴这个多边形的边数为7.∴从这个多边形的一个顶点出发引出的对角线条数为7﹣3=4.∴这个多边形的对角线的条数为7×4÷2=14(条).故选:B.3.解:根据三角形的三边关系,A、1+2=3,不能组成三角形,不符合题意;B、2+3=5,不能够组成三角形,不符合题意;C、4+3=7,不能组成三角形,不符合题意;D、4+5=9>8,能组成三角形,符合题意.故选:D.4.解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵△ABC沿直线BC方向平移2.5个单位得到△DEF,∴AD=BE=CF=2.5,AD∥BC,∴CE=BC﹣BE=5﹣2.5=2.5,∴AD=CE,∵AD∥CE,∴∠ADG=∠CEG,在△AGD和△CGE中,,∴△AGD≌△CGE(AAS),所以①正确;∵∠BAC=90°,BE=CE,∴AE=BE=CE=2.5,∴AE=AD,∴△ADE是以DE为底的等腰三角形,所以②错误;∵△AGD≌△CGE,∴DG=EG,而AE=AD,∴AG平分∠EAD,所以③正确,过A点作AH⊥BC于H,如图,∵AH•BC=AB•AC,∴AH==,∴四边形AEFD的面积=×(2.5+2.5+2.5)×=9,所以④正确.故选:B.5.解:作BC边上的高,则过A点作BC边的垂线,垂线段为BC边上的高,作法为:故选:A.6.解:∵AP平分∠BAC,∴∠BAP=∠CAP,A、由∠BAP=∠CAP,PM=PN,AP=AP,不能判定△APM≌△APN,∴不推出AM=AN,故选项A符合题意;B、由∠BAP=∠CAP,AP=AP,∠APM=∠APN,能判定△APM≌△APN(ASA),∴AM=AN,故选项B不符合题意;C、∵MN⊥AP,∴∠APM=∠APN=90°,又由∠BAP=∠CAP,AP=AP,能判定△APM≌△APN(ASA),∴AM=AN,故选项C不符合题意;D、由∠BAP=∠CAP,AP=AP,∠AMP=∠ANP,能判定△APM≌△APN(AAS),∴AM=AN,故选项D不符合题意;故选:A.7.解:根据题意得∠A==108°,∴∠ABE==36°,∵∠EBG=90°,∴∠ABG=∠EBG﹣∠ABE=54°.故选:C.8.解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°﹣∠ABC,∴∠ADB不等于∠CDB,∴③错误;∵AD平分∠EAC,CD平分∠ACF,∴∠DAC=∠EAC,∠DCA=∠ACF,∵∠EAC=∠ACB+∠ACB,∠ACF=∠ABC+∠BAC,∠ABC+∠ACB+∠BAC=180°,∴∠ADC=180°﹣(∠DAC+∠ACD)=180°﹣(∠EAC+∠ACF)=180°﹣(∠ABC+∠ACB+∠ABC+∠BAC)=180°﹣(180°+∠ABC)=90°﹣∠ABC=90°﹣∠ABD,∴④正确;∠BDC=∠DCF﹣∠DBF=∠ACF﹣∠ABC=∠BAC,∴⑤正确,故选:D.二.填空题(共8小题,满分32分,每小题4分)9.解:∵点A(a,﹣2)与点B(﹣3,b)关于y轴对称,∴b=﹣2,a=3,∴B(﹣3,﹣2),∵点B与点C关于x轴对称,∴C(﹣3,2),故答案为:(﹣3,2).10.解:在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,则分成了两个三角形,利用了三角形的稳定性.故答案为:三角形的稳定性.11.解:∵△AOB≌△COD,∴DO=BO,CO=OA.∵A(1,0),B(0,2),∴CO=OA=1,DO=BO=2,∴点C(0,1),D(﹣2,0).故答案为:(0,1),(﹣2,0).12.解:在△BAD和△CAD中,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∴AC是∠BAD的平分线,∴∠BAD=∠BAC=18°,故答案为:18.13.解:作DE⊥AB于E,DF⊥AC于F,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵AD将△ABC分为面积比为3:5的两部分,∴AB:AC=3:5,∵△ABC的周长为41cm,边BC=17cm,∴AB+AC=24cm,设AB=3xcm,则AC=5xcm,则3x+5x=24,解得,x=3,则AB=3x=9cm,故答案为:9.14.解:建立平面直角坐标系如图,小莹放的位置是(﹣1,1).故答案为:(﹣1,1).15.解:连接AB并延长到F点,∵∠DBF=∠DAF+∠ADB,∠EBF=∠EAC+∠AEB,∴∠BDF+∠EBF=∠BAE+∠BAD+∠ADB+∠AEB,∴∠BDE=∠BAC+∠ADB+∠AEB,∵∠DAE=50°,∠DBE=110°,∴∠ADB+∠AEB=∠DBE﹣∠DAE=110°﹣50°=60°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=ADB,∠AEC=∠AEB,∴∠ADC+∠AEC=(∠ADB+∠AEB)=30°,同理∠DCE=∠ADC+∠AEC+∠DAE=30°+50°=80°,故答案为:80°.16.解:当内角α是42°时,三角形的一个内角为42°÷2=21°,∵42°+21°<180°,∴∠α=42°符合题意;当内角α是42°的两倍时,∠α=42°×2=84°,∵42°+84°=126°<180°,∴∠α=84°符合题意;当内角α是第三个角的两倍时,设∠α=x°,则第三个角的速度为x°,依题意得:42+x+x=180,解得:x=92,∴∠α=92°.综上所述,∠α的度数为42°或84°或92°.故答案为:42°或84°或92°.三.解答题(共7小题,满分64分)17.解:∵ABCDE是正五边形,∴∠C=∠CDE=108°、CD=CB,∴∠CDB=36°,∴∠FDG=108°﹣36°=72°∵∠F=38°,∴∠G=180°﹣∠FDG﹣∠F=70°18.证明:∵∠1=∠2,CD⊥AB于点D,BE⊥AC于点E,∴OE=OD,在△OEC与△ODB中,∴△OEC≌△ODB(ASA),∴OC=OB.19.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,B2的坐标为(2,﹣1).20.解:(1)如图1中,线段MN即为所求;(2)如图2中,△ABC即为所求;(3)如图3中,四边形ABDE即为所求.21.解:(1)∵AF=AC,∠CAF=2α,∴∠AFC=∠ACF===90°﹣a;∴∠AFC的度数为90°﹣α;(2)∵△ABC是等边三角形,∴∠BAC=60°,AB=AC=BC=AF,∴∠AFB=∠ABF===60°﹣α,∴∠GFH=∠AFC﹣∠AFB=90°﹣α﹣(60°﹣α)=30°,∴∠GFH=30°;(3)如图,连接BG,CH,过点C作CM⊥BF于M,∵AG⊥BF,∠GFH=30°,∴FG=2GH,∠FGH=60°,∵GH=CF,FG=CF+CG,∴CF=CG,∴CH=,∴△CGH是等边三角形,∴∠GCH=∠ACB=60°,∴∠GCH﹣∠BCH=∠ACB﹣∠BCH,在△GCB和△HCA中,,∴△GCB≌△HCA(SAS),∴AH=BG,设GH=a,则CH=CG=CF=a,FG=2a,∴HF=a,CM=a,∵AB=AF,AH⊥BF,∴AG垂直平分BF,∴BG=FG=2a,∴AH=2a,∴====4,∴=4.22.(1)解:在Rt△ADE中,∠A=90°,AD=AE=1,∴DE===,同理,BC==2+,故答案为:;2+;(2)证明:∵∠CAB=∠DAE=90°,∴∠CAB﹣∠DAB=∠DAE﹣∠DAB,即∠CAD=∠BAE,在△CAD和△BAE中,,∴△CAD≌△BAE(SAS),∴CD=BE;(3)证明:∵C,A,E三点共线,∴CE=CA+AE=+2,∴CE=CB,∴点C在线段BE的垂直平分线上,∵BD=AB﹣AD=,DE=,∴BD=DE,∴点D在线段BE的垂直平分线上,∴CF垂直平分BE.23.解:(1)∵B(﹣6,0)、C(﹣6,0),∴OB=OC=6,由题意得:BP=2t,则PO=OB﹣BP=6﹣2t,∴点P的坐标为(2t﹣6,0);故答案为:(2t﹣6,0);(2)△BPD≌△CQP,理由如下:当t=2时,BP=CQ=2×2=4,∵BD=8.又∵PC=BC﹣BP,BC=12,∴PC=12﹣4=8,∴PC=BD,∵OB=OC,OA⊥BC,∴AB=AC,∴∠B=∠C,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(3)∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=6,CQ=BD=8,∴点P,点Q运动的时间t==3,∴V Q=,即点Q的运动速度是时,能够使△BPD与△CQP全等.。

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.图中的图形中是常见的安全标记,其中是轴对称图形的是()2.(x4)2等于()A.x6B.x8C.x16D.2x43.下列计算正确的是A.(a+1)2=a2+1B.a2+ a3= a5C.a8÷ a2= a6D.3a2-2 a2= 14.若三角形的两边长是9和4,且周长是偶数,则第三边长可能是()A.5B.7C.8D.135.如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在一条直线上,可以证明△EDC≌△ABC,得到ED=AB,因此测得ED的长就是AB的长(如图),判定△EDC≌△ABC的理由是()A.SAS B.ASA; C.SSS D.HL6.如图,从边长为(a+1)cm的正方形纸片中剪去一个边长为(a﹣1)cm的正方形(a>1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是()A.2cm2B.2acm2C.4acm2D.(a2﹣1)cm2二、填空题1.根据你学习的数学知识,写出一个运算结果为a6的算式.2.一个多边形的每一个外角都等于45°,那么这个多边形的内角和等于________.3.若,,则的值为 .4.已知点M(x,3)与点N(-2,y)关于x轴对称,则3x+2y= 。

5.如图,修建抽水站时,沿着倾斜角为300的斜坡铺设管道,若量得水管AB的长度为80米,那么点B离水平面的高度BC的长为米.6.如图:AB⊥BC,CD⊥BC,垂足分别为B,C,AB=BC,E为BC的中点,且AE⊥BD于F,若CD=4cm,则AB的长度为__________。

7.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.8.[问题提出]学习了三角形全等的判定方法(即“SAS”,“ASA”,“AAS”,“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.[初步思考]我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E.然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.[深入探究]第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据________,可以知道Rt△ABC≌Rt△DEF.(2分)第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角.求证:△ABC≌△DEF.(6分)第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹).(3分)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接填写结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,若________,则△ABC≌△DEF.(2分)三、解答题1.如图,阴影部分是由5个大小相同的小正方形组成的图形,请分别在图中方格内涂两个小正方形,使涂后所得阴影部分图形是轴对称图形。

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.(9分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?2.(9分)如图,△ABC是等腰直角三角形,延长BC至E使BE=BA,过点B作BD⊥AE于点D,BD与AC交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.3.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.4.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.5.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.6.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.7.解不等式组,并把解集在数轴上表示出来8.解方程:.9.先化简,再求值:,其中从1,2,3中选取一个合适的数.10.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.11.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明△PCM≌△QDM.(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.二、填空题1.如图:在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12㎝,则AB= ㎝.2.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .3.当分式有意义时,则x满足的条件是 ______.4.因式分解:16a2-16a+4= ______5.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为 ______.6.如图3,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=时,才能使△ABC和△APQ全等.、三、单选题1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.2.在,,,,,a +,中分式的个数有( ) A .2个B .3个C .4个D .5个3.根据下列条件,得不到平行四边形的是( )A .AB=CD ,AD=BCB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BC D .AB ∥CD ,AD ∥BC4.若分式方程有增根,则增根可能是( ) A .1B .-1C .1或-1D .05.如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是( )A .12°B .13°C .14°D .15°江西初二初中数学月考试卷答案及解析一、解答题1.(9分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?【答案】(1)4元(2)7元【解析】(1)设第一次每个笔记本的进价为x 元,然后根据第二次又用400元购进该种型号的笔记本数量比第一次少20个列方程求解即可;(2)设每个笔记本售价为y 元,然后根据全部销售完毕后后获利不低于460元列不等式求解即可.试题解析:解:(1)设第一次每个笔记本的进价为x 元.依据题可得,解这个方程得:x=4.经检验,x=4是原方程的解.故第一次每个笔记本的进价为4元.(2)设每个笔记本售价为y 元.根据题意得:,解得:y≥7.所以每个笔记本得最低售价是7元.【考点】分式方程的应用;一元一次不等式的应用2.(9分)如图,△ABC 是等腰直角三角形,延长BC 至E 使BE=BA ,过点B 作BD ⊥AE 于点D ,BD 与AC 交于点F,连接EF.(1)求证:BF=2AD;(2)若CE=,求AC的长.【答案】(1)见解析;(2)2+【解析】(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根据垂直的定义得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,证得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到结论;(2)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是结论即可.试题解析:(1)证明:∵△ABC是等腰直角三角形,∴AC=BC,∠FCB=∠ECA=90°,∵AC⊥BE,BD⊥AE,∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,∵∠CFB=∠AFD,∴∠CBF=∠CAE,在△BCF与△ACE中,,∴△BCF≌△ACE,∴AE=BF,∵BE=BA,BD⊥AE,∴AD=ED,即AE=2AD,∴BF=2AD;(2)由(1)知△BCF≌△ACE,∴CF=CE=,∴在Rt△CEF中,EF==2,∵BD⊥AE,AD=ED,∴AF=FE=2,∴AC=AF+CF=2+.【考点】全等三角形的判定与性质;勾股定理3.(10分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.【答案】(1)见解析;(2)BCEF是平行四边形;(3)成立【解析】(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;(2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;(3)易证AF=AD,AB=AC,∠FAD=∠BAC=60°,可得∠FAB=∠DAC,即可证明△AFB≌△ADC;根据△AFB≌△ADC可得∠ABF=∠ADC,进而求得∠AFB=∠EAF,求得BF∥AE,又BC∥EF,从而证得四边形BCEF是平行四边形.试题解析:证明:(1)∵△ABC和△ADF都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);(2)由①得△AFB≌△ADC,∴∠ABF=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABF=∠BAC,∴FB∥AC,又∵BC∥EF,∴四边形BCEF是平行四边形;(3)成立,理由如下:∵△ABC和△ADE都是等边三角形,∴AF=AD,AB=AC,∠FAD=∠BAC=60°,又∵∠FAB=∠FAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,∴∠FAB=∠DAC,在△AFB和△ADC中,,∴△AFB≌△ADC(SAS);∴∠AFB=∠ADC.又∵∠ADC+∠DAC=60°,∠EAF+∠DAC=60°,∴∠ADC=∠EAF,∴∠AFB=∠EAF,∴BF∥AE,又∵BC∥EF,∴四边形BCEF是平行四边形.【考点】全等三角形的判定与性质;平行四边形的判定4.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.【答案】详见解析.【解析】根据平行四边形的性质可得AB=CD,AB∥CD,再由平行线的性质证得∠ABE=∠CDF,根据AE⊥BD,CF⊥BD可得∠AEB=∠CFD=90°,由AAS证得△ABE≌△CDF,根据全等三角形的性质即可证得结论.试题解析:证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【考点】平行四边形的性质;全等三角形的判定及性质.5.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.【答案】121【解析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.点评:此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.6.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=BD.【答案】见解析【解析】由等腰三角形三线合一得FA=FD.又由E是中点,所以EF是中位线,即得结论.∵CD=CA, CF平分∠ACB,∴FA=FD(三线合一),∵FA=FD,AE=EB,∴EF=BD.【考点】本题考查的是等腰三角形的性质,三角形的中位线点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.7.解不等式组,并把解集在数轴上表示出来【答案】﹣2<x≤3,数轴表示见解析.【解析】试题分析: 解不等式3x-2≤x得x≤1,由得x>-3,进而确定不等式组的解集;根据含有“=”的用实心原点,不含“=”的用空心圆圈进而解答即可.试题解析:解①得:x≤1,解②得:x>﹣1,故不等式组的解集是:﹣2<x≤3.8.解方程:.【答案】x=3.【解析】试题分析: 分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:两边同乘(x-2),得1-3(x-2)=-(x-1),去括号,得1-3x+6="-" x+1移项,得 -3x+ x=1-6-1合并同类项得 -2 x=-6系数化为1,得 x=3.经检验,x=3是原方程的根.9.先化简,再求值:,其中从1,2,3中选取一个合适的数.【答案】,当x=2时,原式=.【解析】试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.试题解析:原式===当x=2时,原式=.10.如图所示,已知△ABC的三个顶点的坐标分别为A(﹣2,3),B(﹣6,0),C(﹣1,0).(1)请直接写出点B关于点A对称的点的坐标;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【答案】(1)画图见解析;(2)作图见解析;(3)D(-7,3)或(-5,-3)或(3,3).【解析】(1)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;(2)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.解:(1)所作图形如图所示:,(2)点B'的坐标为:(0,-6);当以AB为对角线时,点D坐标为(-7,3);当以AC为对角线时,点D坐标为(3,3);当以BC为对角线时,点D坐标为(-5,-3).“点睛”本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.11.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明△PCM≌△QDM.(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.【答案】(1)证明见解析;(2)PC=2,理由见解析.【解析】试题分析: (1)要证明△PCM≌△QDM,可以根据两个三角形全等四个定理,即AAS、ASA、SAS、SSS中的ASA.利用∠QDM=∠PCM,DM=CM,∠DMQ=∠CMP即可得出;(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出.试题解析:(1)∵AD∥BC,∴∠QDM=∠PCM.∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,在△PCM和△QDM中,∵,∴△PCM≌△QDM(ASA).(2)当四边形ABPQ是平行四边形时,PB=AQ,∵BC﹣CP=AD+QD,∴9﹣CP=5+CP,∴CP=(9﹣5)÷2=2.∴当PC=2时,四边形ABPQ是平行四边形.点睛:本题中和考查全等三角形、平行四边形的判定,熟练掌握平行四边形的性质和判定方法是解题的关键.二、填空题1.如图:在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12㎝,则AB= ㎝.【答案】8【解析】因为在Rt△ABC中,∠C=90°,∠A=30°,所以AB=2BC,又AB+BC=12,所以3BC=12,所以BC=4,AB=8.【考点】直角三角形的性质.2.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .【答案】6【解析】设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=8,∴此多边形的边数为6.故答案为:6.【考点】多边形内角与外角.3.当分式有意义时,则x满足的条件是 ______.【答案】x≠3【解析】由题意,得x−3≠0,解得x≠3,故填:x≠3.4.因式分解:16a2-16a+4= ______【答案】4(2a-1)2【解析】16a2-16a+4=4(4a²-4a+1)="4(2a-1)" ²故填:4(2a-1) ².5.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为 ______.【答案】4.【解析】∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=4,BC−BE=6−2=4,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=4,故答案为:4.点睛:本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.6.如图3,在直角三角形ABC中,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC和AC的垂线AX上移动,则当AP=时,才能使△ABC和△APQ全等.、【答案】或【解析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置;②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.解:∵PQ=AB,∴根据三角形全等的判定方法HL可知,①当P运动到AP=BC时,△ABC≌△QPA,即AP=BC=5cm;②当P 运动到与C 点重合时,△QAP ≌△BCA ,即AP=AC=10cm .【考点】全等三角形的判定.三、单选题1.下列所给图形是中心对称图形但不是轴对称图形的是( )A .B .C .D .【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A 选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B 选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D 选项错误。

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.已知:如图,在△ABC中,BC=2,,∠ABC=135°,求AC和AB的长.2.在Rt△ABC中∠BAC=90º,E,F分别是BC,AC的中点,延长BA到点D,使AD=AB,连接DE,DF。

(1)试说明AF与DE互相平分;(2)若BC=4,求DF的长。

二、单选题1.下列各式计算正确的是()A.+=B.4-3=1C.2×3=6D.÷=32.下列各组长度中,能构成直角三角形的是()A.1,2,3B.,,5C.5,6,7D.0.3,0.4,0.53.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A. B. C. D.4.如图,若▱ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD的面积为( )cmA.40B.32C.36D.505.下列四个说法:①一组对角相等,一组邻角互补的四边形是平行四边形;②一组对边平行,另一组对边相等的四边形是平行四边形;③一组对边平行,一组对角相等的四边形是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形;其中说法正确的个数是()A.1个B.2个C.3个D.4个三、填空题1.要使有意义,则x的取值范围是 ___________ .2.对于任意两个和为正数的实数a、b,定义运算※如下:a※b= ,例如3※1=.那么8※12=______ .3.如图,在平行四边形ABCD中,BE平分∠ABC交边AD于E.已知AB="8,BC=10,则DE="______ .4.将一组数,,3,2,,…,3,按下面的方法进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大数的位置记为 ______ .5.如图,一个圆柱形容器高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为 ______m(容器厚度忽略不计).四、判断题1.计算:(1);(2)2.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.3.已知,求的值.4.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度匀速前进,乙船沿南偏东某方向以每小时15海里速度匀速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?5.已知a、b、c是△ABC的三边,且满足(a+4):(b+3):(c+8)=3:2:4,且a+b+c=12,请你探索△ABC的形状.6.如图所示,在四边形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P从A向点D以1cm/s的速度运动,到点D即停止.点Q从点C向点B以2cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截得两个四边形,分别为四边形ABQP和四边形PQCD,则当P,Q两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?7.有这样一类题目:将化简,如果你能找到两个数m、n,使m2+n2=a且,则将将变成m2+n2±2mn,即变成(m±n)2开方,从而使得化简.例如,,∴.请仿照上例解下列问题:(1);(2) .8.已知在平行四边形ABCD中,AE⊥BC,垂足为E,CE=CD,F为CE的中点,G为CD上的一点,连接DF、EG、AG,并延长AG、BC交于点H,∠DFC=∠EGC.(1)若CF="2,AE=3,求BE的长;"(2)求证:点G为CD中点;(3)求证:∠AGE=2∠CEG.江西初二初中数学月考试卷答案及解析一、解答题1.已知:如图,在△ABC中,BC=2,,∠ABC=135°,求AC和AB的长.【答案】AC=,AB=.【解析】过点A作AD⊥BC,交CB的延长线于点D,由,BC=2,得到AD的长,由∠ABC=135°,得到∠ABD=45°从而得到AB、AD的长,在Rt△ADC中,由勾股定理得到AC的长.试题解析:过点A作AD⊥BC,交CB的延长线于点D,在△ABC中,,BC=2,∴AD==3,∠ABC=135°,∴∠ABD=45°,∴AB=AD=,BD=AD=3,在Rt△ADC中,CD=5,.【考点】解直角三角形.2.在Rt△ABC中∠BAC=90º,E,F分别是BC,AC的中点,延长BA到点D,使AD=AB,连接DE,DF。

人教版八年级第二学期 第一次 月考检测数学试题及解析

人教版八年级第二学期 第一次 月考检测数学试题及解析

人教版八年级第二学期 第一次 月考检测数学试题及解析一、选择题1.下列计算,正确的是( )A .=B .=C .0=D .10=2.下列各式计算正确的是( )A =B .2=C =D =3.下列计算正确的是( )A =B =C =D =4.下列计算正确的是( )A =B .12=C 3=D .14= 5.下列各式中,运算正确的是( )A .=-=.2=D 2=- 6.下列运算中,正确的是( )A =3B .=-1C D .37.已知m 、n m ,n )为( )A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是 8.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a = ③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( ) A .①B .①②C .①③D .①②③9.若2x -有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠210.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,那么化简代数式2b -|a +b |+|a -c |-222c bc b -+的结果为( )A .2c -bB .2c -2aC .-bD .b 11.要使等式230x x +-=成立的x 的值为( ) A .-2 B .3 C .-2或3 D .以上都不对12.如果实数x ,y 满足23x y xy y =-,那么点(),x y 在( )A .第一象限B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上 二、填空题13.比较实数的大小:(1)5?-______3- ;(2)51 4-_______12 14.若a ,b ,c 是实数,且21416210a b c a b c ++=-+-+--,则2b c +=________.15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 [2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.16.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.17.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.18.若2x ﹣3x 2﹣x=_____.19.实数a 、b ()222a b a b -_____.20.4x -x 的取值范围是_____三、解答题21.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =. 2.【分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭. 将21x =22= 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.已知m ,n 满足m 4mn 2m 4n 4n=3+m 2n 2m 2n 2018+-++. 【答案】12015 【解析】【分析】 由42m 443m mn n n +=m n 2﹣2m n )﹣3=0,将m n 2m n m n ,代入计算即可.【详解】 解:∵42m 44m mn n n +=3, m )2m?2n ()n 2﹣2m n )﹣3=0, m n )2﹣2m n 3=0, m n +1m n 3)=0, m n =﹣1m n 3, ∴原式=3-23+2012=12015. 【点睛】 本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.23.阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,231+这样的式子,其实我们还可以将其进一步化简:(一) 553533 333⨯==⨯;(二)2231)=31 31(31)(31)-=-++-(;(三)22231(3)1(31)(31)=31 31313131--+-===-++++.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=__________.②参照(三)式化简5+3=_____________(2)化简:++++315+37+599+97+.【答案】见解析.【分析】(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;②;(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.24.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.25.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.观察下列一组等式,然后解答后面的问题=,1)1=,1=,1=⋯⋯1(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019==-=;-==,(3<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.27.计算(1-(2)(()21;(2)24+【答案】(1)2【分析】(1)先将各二次根式化为最简二次根式,再进行合并即可得到答案;(2)原式运用平方差公式和完全平方公式把括号展开后,再合并同类二次根式即可得到答案.【详解】解:(1==-=2(2)(()21-=22(181)---=452181--+=24+.【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.28.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值;(2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4,(a-b )2=4,a-b=±2.(2)a ===b === 2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.29.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.30.计算:(1 (2)()()2221-【答案】2)1443【分析】(1)先化成最简二次根式,然后再进行加减运算即可;(2)套用平方差公式和完全平方式进行运算即可.【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】A、B、C、根据合并同类二次根式的法则即可判定;D、利用根式的运算法则计算即可判定.【详解】解:A、B、D不是同类二次根式,不能合并,故选项不符合题意;C=,故选项正确.故选:C.【点睛】此题主要考查二次根式的运算,应熟练掌握各种运算法则,且准确计算.2.C解析:C【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确【详解】A错误;∵2+B错误;=,故选项C正确;=,故选项D错误.2故选C.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.3.B解析:B【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案.【详解】=,=3∴A、C、D均错误,B正确,故选:B.【点睛】此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 4.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A不符合题意;∵12=,故选项B符合题意;C不符合题意;∵=D不符合题意;故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.A解析:A【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A、-=A正确;B=B错误;C、2不能合并,故C错误;D2=,故D错误;故选:A.【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.6.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】=+=,此项错误A314==-,此项错误B、23===⨯=,此项错误C2428D 、3=,此项正确故选:D .【点睛】 本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.7.C解析:C【分析】根据二次根式的性质分析即可得出答案.【详解】解:∵m 、n 是正整数, ∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m ,n )为(2,5)或(8,20),故选:C .【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.8.C解析:C【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a>-2,则a+2>0,∴12aa++=1222aa++-+=222+-=2≥0.∴若a>-2,则12aa++存在最小值且最小值为0.故③正确.综上,正确的有①③.故选:C.【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.9.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0,解得:x≥-1且x≠2.故选:D.【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.10.D解析:D【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴| c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c﹣b)=b.故选D.11.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键. 12.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为:,.解析:<<【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<12=∵3=0<< 12 故答案为:< ,<. 【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键. 14.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.15.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和 解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.16.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣=a ﹣b+[﹣(a+b)]=a﹣b﹣a﹣b=﹣2b.故答案为﹣2b.点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a.b都是数轴上的实数,注意符号的变换.17.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.=aa+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.18.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.19.﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a、b在数轴上的位置确定a、b的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a<0<b,|a|<|b|,.故答案为-2a.【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.9的平方根是()A.3B.C.D.2.如图,是等边三角形,D为BC边上的点,,经旋转后到达的位置,那么旋转了()A.B.C.D.3.下列各式不是二元一次方程的是()A.x﹣3y=0B.x+C.y=﹣2x D.4.下列说法中正确的是()A.绝对值最小的实数是零;B.两个无理数的和、差、积、商仍是无理数;C.实数a的倒数是;D.一个数平方根和它本身相等,这个数是0或15.已知是方程的一个解,那么m的值是()A.3B.1C.—3D.—16.如图,已知正方形ABCD的边长为2,如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D'处,那么AD'为()A.B.C.D.7.一次函数的大致图象是()8.已知一次函数y=x+m和y=x+n的图象都经过点A(-2,0),且与y轴分别交于B、C两点,那么△ABC的面积是 ( )A.2 B.3 C.4 D.69.在同一坐标系中,对于以下几个函数①y=-x-1 ②y=x+1③y=-x+1④y=-2(x+1)的图象有四种说法⑴过点(-1,0)的是①和③⑵②和④的交点在y轴上、⑶互相平行的是①和③、⑷关于x轴对称的是②和③。

那么正确说法的个数是( )A.4个B.3个C.2个D.1个10.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组()A.B.C.D.二、填空题1.已知一次函数y=kx+b的图象经过点(0,–5),且与直线y=x的图象平行,则一次函数表达式为。

2.拖拉机的油箱有油100升,每工作1小时耗油8升,则油箱的剩余油量y(升)与工作时间x(时)间的函数关系式为。

3.直线y=2x+8与坐标轴围成的三角形的面积为4.甲乙两人解方程组,由于甲看错了方程①中的,而得到方程组的解为乙看错了方程②中的,而得到的解为,=" ___" =___5.如图1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则当时,点应运动到矩形四个顶点中的()点。

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷带答案解析

江西初二初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BC C.△ABD是等腰三角形D.点D为线段AC的中点4.一个五边形有三个内角是直角,另两个内角都等于n,则n的值是()A.30°B.120°C.135°D.108°5.正三角形ABC中,BD=CE,AD与BE交于点P,∠APE的度数为()A.45°B.55°C.60°D.75°6.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为( )A.60°B.75°C.90°D.95°二、填空题1.若等腰三角形的两边的边长分别为10cm 和5cm ,则第三边的长是_________cm .2.如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点.将Rt △ABC 沿CD折叠,使B 点落在AC 边上的B′处,则∠ADB′等于____°3.如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE=1,∠E=30°,则BC= .4.如图,D ,E 分别是△ABC 边AB ,BC 上的点,AD=2BD ,BE=CE ,设△ADF 的面积为S 1,△FCE 的面积为S 2,若S △ABC =6,则S 1-S 2的值为_________.5.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…,∠A n-1BC 的平分线与∠A n-1CD 的平分线交于点A n ,设∠A=θ.则:∠A n = .6.如图:△ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD ,CE ⊥CD ,且CE=CD ,连接BD ,DE ,BE ,则下列结论:①∠ECA=165°,②BE=BC ;③AD ⊥BE ;其中正确的是_________7.如图所示,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为__.三、解答题1.如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.2.如图,△ABC 中,AB=AC ,∠A=40°,DE 是腰AB 的垂直平分线,求∠DBC 的度数.3.如图,AC=DC ,BC=EC ,∠ACD=∠BCE .求证:∠A=∠D .4.如图所示,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,求证:(1)AE=AF ;(2)DA 平分∠EDF .5.如图,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB=∠ABC .求证:CD=2CE .6.如图所示,已知AC ∥BD ,EA ,EB 分别平分∠CAB 和∠DBA ,CD 过E 点.求证:AB =AC +BD .7.如图,AD 为△ABC 中∠BAC 的平分线,且BD=DC,求证;AB=AC .8.如图,在△ABC 中,AB=BC ,AD ⊥BC 于点D ,点E 为AC 中点且BE 平分∠ABD ,连接BE 交AD 于点F ,且BF=AC ,过点D 作DG ∥AB ,交AC 于点G .求证:(1)∠BAD=2∠DAC(2)EF=EG .9.如图,在△ABC 中,∠ACB =90°,点D ,E 在AB 上,且AF 垂直平分CD ,BG 垂直平分CE .(1)求∠ECD 的度数;(2)若∠ACB为α,则∠ECD的度数能否用含α的式子来表示.10.如图1,P(2,2),点A在x轴正半轴上运动,点B在y轴上运动,且PA=PB.(1)求证:PA⊥PB;(2)若点A(8,0),求点B的坐标;(3)求OA – OB的值;(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.江西初二初中数学月考试卷答案及解析一、选择题1.下列图形中,不是轴对称图形的是()A.B.C.D.【答案】A【解析】由轴对称图形的定义“把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形”可知,选项B、C、D都是轴对称图形,只有A不是.故选A.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【答案】C【解析】根据全等三角形的判定定理可知:带③去,根据ASA可得到和原三角形全等的玻璃,故选:C.【考点】全等三角形的判定3.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,下列结论错误的是()A.∠C=2∠A B.BD=BC C.△ABD是等腰三角形D.点D为线段AC的中点【答案】D【解析】根据∠A=36°,AB=AC可得:∠ABC=∠C=72°,根据BD平分∠ABC可得:∠ABD=∠DBC=36°,∠BDC=72°,则∠C=2∠A,BD=BC,△ABD是等腰三角形.【考点】等腰三角形的性质4.一个五边形有三个内角是直角,另两个内角都等于n,则n的值是()A.30°B.120°C.135°D.108°【答案】C【解析】由题意可得:,解得.故选C.5.正三角形ABC中,BD=CE,AD与BE交于点P,∠APE的度数为()A.45°B.55°C.60°D.75°【答案】C.【解析】根据条件三角形ABC是正三角形可得:AB=BC,BD=CE,∠ABD=∠C可以判定△ABD≌△BCE,即可得到∠BAD=∠CBE,又知∠APE=∠ABP+∠BAP,故知∠APE=∠ABP+∠CBE=∠B.解:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠APE=∠ABP+∠BAP,∴∠APE=∠ABP+∠CBE=∠B=60°,故选C.【考点】全等三角形的判定与性质;等边三角形的性质.6.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD的度数为( )A.60°B.75°C.90°D.95°【答案】C【解析】根据折叠的性质得到∠ABC=∠A′BC,∠EBD=∠E′BD,再根据平角的定义有∠ABC+∠A′BC+∠EBD+∠E′BD=180°,易得A′BC+∠E′BD==90°,即可得到结果.∵一张长方形纸片沿BC、BD折叠,∴∠ABC=∠A′BC,∠EBD=∠E′BD,而∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠A′BC+∠E′BD==90°,即∠CBD=90°.故选C.【考点】本题考查了折叠的性质,平角的定义点评:解答本题的关键是熟练掌握折叠的性质:折叠前后两图形全等,即对应线段相等,对应角相等.二、填空题1.若等腰三角形的两边的边长分别为10cm和5cm,则第三边的长是_________cm.【答案】10cm.【解析】分两种情况,①当10cm为腰长,则第三边的长是10cm;②当5cm为腰长,因5+5=10,所以不能组成三角形,舍去;综上,若等腰三角形的两边的边长分别为10cm和5cm,则第三边的长是10cm.【考点】1.等腰三角形的性质;2.三角形三边关系.2.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于____°【答案】40°.【解析】试题解析:∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.【考点】翻折变换(折叠问题).3.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC= .【答案】2.【解析】∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2,故答案为2【考点】等边三角形的性质.4.如图,D ,E 分别是△ABC 边AB ,BC 上的点,AD=2BD ,BE=CE ,设△ADF 的面积为S 1,△FCE 的面积为S 2,若S △ABC =6,则S 1-S 2的值为_________.【答案】1.【解析】根据等底等高的三角形的面积相等求出△AEC 的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD 的面积,然后根据S1-S2=S △ACD-S △ACE 计算即可得解.试题解析:∵BE=CE ,∴S △ACE =S △ABC =×6=3,∵AD=2BD ,∴S △ACD =S △ABC =×6=4,∴S 1-S 2=S △ACD -S △ACE =4-3=1.【考点】三角形的面积.5.如图,∠ACD 是△ABC 的外角,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,…,∠A n-1BC 的平分线与∠A n-1CD 的平分线交于点A n ,设∠A=θ.则:∠A n = . 【答案】. 【解析】由三角形的外角性质得,∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1BC=∠ABC ,∠A 1CD=∠ACD ,∴∠A 1+∠A 1BC=(∠A+∠ABC )=∠A+∠A 1BC ,∴∠A 1=∠A ,同理可得∠A 2=∠A 1=,…,∠A n =.故答案为:. 【考点】1.三角形内角和定理;2.三角形的外角性质;3.规律型.6.如图:△ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD ,CE ⊥CD ,且CE=CD ,连接BD ,DE ,BE ,则下列结论:①∠ECA=165°,②BE=BC ;③AD ⊥BE ;其中正确的是_________【答案】①②③【解析】如图,(1)∵AC=AD ,∠CAD=30°,∴∠ACD=∠ADC=,∵CE ⊥DC ,∴∠DCE=90°,∴∠ACE=∠ACD+∠DCE=165°.故①正确;(2)由(1)可知:∠ACB=∠DCE=90°,∴∠ACE-∠DCB=∠DCE-∠DCB ,即∠ACD=∠BCE ,在△ACD 和△BCE 中, ,∴△ACD ≌△BCE ,∴BE=AD=BC.故②正确;(3)延长AD 交BE 于点F ,∵△ACD ≌△BCE ,∴∠2=∠CAD=30°,∵AC=BC ,∠ACB=90°,∴∠CAB=∠3=45°,∴∠1=∠CAB-∠CAD=15°, ∴∠AFB=180°-∠1-∠2-∠3=90°,∴AD ⊥BE.故③正确;综上所述:正确的结论是①②③.7.如图所示,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为__.【答案】15【解析】根据对称的性质可得:,, ∴△PMN 的周长=PM+MN+PN=15.【考点】轴对称的性质.三、解答题1.如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B 2C 2,写出顶点A 2,B 2,C 2的坐标.【答案】(1)答案见解析;(2)A 2(﹣3,﹣1),B 2(0,﹣2),C 2(﹣2,﹣4).【解析】(1)根据关于x 轴对称的点的横坐标互为相反数,纵坐标不变,得出对应点位置,进而可画出图形;(2)根据向左平3个单位移纵坐标不变,横坐标减3,可得出平移后对应点的位置,可解决此题.试题解析:(1)DA 1B 1C 1为所求作三角形;(2)DA 2B 2C 2为所求作三角形. A 2(-3,-1),B 2(0,-2),C 2(-2,-4).【考点】1轴对称变换;2平移变换.2.如图,△ABC中,AB=AC,∠A=40°,DE是腰AB的垂直平分线,求∠DBC的度数.【答案】30°【解析】已知∠A=40°,AB=AC可得∠ABC=∠ACB,再由线段垂直平分线的性质可求出∠ABC=∠A,易求∠DBC.解:∵∠A=40°,AB=AC,∴∠ABC=∠ACB=70°,又∵DE垂直平分AB,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.点评:此题主要考查了等腰三角形的性质以及线段垂直平分线的性质.主要了解线段垂直平分线的性质即可求解.3.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【答案】证明见试题解析.【解析】首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC≌△DEC ∴∠A=∠D【考点】三角形全等的证明4.如图所示,在△ABC中,AD是角平分线,DE⊥AB于点E,DF⊥AC于点F,求证:(1)AE=AF;(2)DA平分∠EDF.【答案】见解析【解析】由已知易得∠1=∠2,∠AED=∠AFD=90°,结合AD=AD可证△ADE≌△ADF,再由全等三角形的性质就可得到结论(1)和(2).试题解析:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴∠1=∠2,∠ AED=∠ AFD=90°,∴在△ADE和△ADF中,∴△ ADE≌△ ADF(AAS),∴ AE=AF.(2)由(1)知△ADE≌△ADF,∴∠ADE=∠ADF,∴ DA平分∠EDF.5.如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.【答案】见解析【解析】如图,考虑到CE是△ABC的中线,我们延长CE到F,使EF=CE,这样CF=2CE,结合已知条件可证△AEC≌△BEF,并可进一步证得△CFB≌△CDB,得到CF=CD,从而可得结论CD=2CE.试题解析:如图,延长CE到点F,使EF=CE,则CF=2CE,∵CE是△ABC的中线,∴ AE=BE,在△ACE和△BFE中,∴△ ACE≌△ BFE(AAS),∴ AC=BF,∠A=∠ABF,又∵∠ACB=∠ABC,CB是△ADC的中线,∴ AC=AB=BD=BF,∠DBC=∠A+∠ACB=∠ABF+∠ABC,即∠DBC=∠FBC,在△DBC和△FBC中,,∴△DBC≌△FBC(SAS),∴DC=CF=2CE.点睛:在这类有关三角形中线的问题中,延长中线一倍,构造全等三角形是我们在解题中常用的一种辅助线作法,需认真去体会.6.如图所示,已知AC∥BD,EA,EB分别平分∠CAB和∠DBA,CD过E点.求证:AB=AC+BD.【答案】证明见试题解析.【解析】在AB上取一点F,使AF=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.试题解析:证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,∵AC=AF,∠CAE=∠FAE,AE=AE,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,∵∠EFB=∠D,∠EBF=∠EBD,BE=BE,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【考点】1.全等三角形的判定与性质;2.和差倍分.7.如图,AD为△ABC中∠BAC的平分线,且BD=DC,求证;AB=AC.【答案】见解析【解析】本题直接证△ABD≌△ACD的条件不够,结合已知条件我们过点D作DE⊥AB于点E,DF⊥AC于点F,由角平分线的性质可得DE=DF ;而由D 为BC 的中点可得S △ABD =S △ACD ,从而可由“面积相等的两个三角形,若高相等,则对应的底相等”得到AB=AC.试题解析:过点D 分别作DE ⊥AB 于E ,DF ⊥AC 于F∵AD 是△ABC 的角平分线, ∵ DE=DF , ∵点D 是BC 边的中点,∴S △ABD =S △ACD ,即AB DE=AC DF ,∴AB=AC.点睛:本题解法很多,可以在本题辅助线的作法下证“两次全等”后“再由等角对等边”来证明;也可延长中线一倍,构造全等三角形来证明;但这里通过“角平分线的性质”得到DE=DF 后,借助于三角形的中线分三角形成两个面积相等的三角形这一特征来完成证明过程更简单,值得我们借鉴.8.如图,在△ABC 中,AB=BC ,AD ⊥BC 于点D ,点E 为AC 中点且BE 平分∠ABD ,连接BE 交AD 于点F ,且BF=AC ,过点D 作DG ∥AB ,交AC 于点G .求证:(1)∠BAD=2∠DAC(2)EF=EG .【答案】见解析【解析】(1)由AB=AC ,E 是AC 的中点,可得BE ⊥AC ,∠DBA=2∠DBF ;结合AD ⊥BC 可证得∠DBF=∠DAC ,从而可证△BDF ≌△ADC ,得到AD=BD ,∴∠DAB=∠DBA=2∠DBF=2∠DAC ;(2)如图,延长BE 、DG 交于点K ,①由DG ∥AB 和BE 平分∠ABC 可得∠K=∠DAK=∠DAC ,从而可得DK=DB=DA ;②由AB=BC ,DG ∥AB 可得∠DGC=∠C ,从而可得DG=DC=DF ,由①②可得AD-DF=DK-DG ,即AF=KG ,最后通过证△AEF ≌△KEG 可得EF=EG.试题解析:(1)∵AD ⊥BC ,∴∠ADC=∠BDF=90°,∵AB=BC ,E 为AC 的中点, ∴∠DBA=2∠CBE ,BE ⊥AC , ∴∠BEC=90°, ∴180°-∠C-∠ADC=180°-∠C-∠BEC ,即∠DBF=∠CAD ,在△BDF 和△ADC 中,∠BDF=∠ADC=90°,∠DBF=∠CAD ,BF=AC , ∴△BDF ≌△ADC , ∴BD=AD , ∴∠BAD=∠ABD=2∠CBE=2∠DAC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C.(x﹣y)(﹣x﹣y) D.(x﹣y)(y+x) 9.若要使 4x2+mx+ 成为一个两数差的完全平方式, 则 m 的值应为( ) A. B. C. D. 二.填空题
段 MN 上,点 P 关于 OB 的对称点 R 落在 MN 的延长线 上.若 PM=2.5cm,PN=3cm,MN=4cm,则线段 QR 的 长为( ) A.4.5cm B.5.5cm C.6.5cm D.7cm
10 . 式 子 , , ,

中,分式


11.多项式 m(m﹣3)+2(3﹣m),m2﹣4m+4,m4﹣
16 中,它们的公因式是

12.己知分式
,当 x
时,该分式有
(第 3 题) (第 6 题) 4.下列分式是最简分式的(
(第 7 题) )
A.
B.
C.
D.
5.若(x+3)(x+n)=x2+mx﹣21,则 m 的值为( ) A.2 B.﹣2 C.4 D.﹣4 6.如图的图形面积由以下哪个公式表示( ) A.a2﹣b2=a(a﹣b)+b(a﹣b) B.(a﹣b)2=a2﹣2ab+b2 C.(a+b)2=a2+2ab+b2 D.a2﹣b2=(a+b)(a﹣b) 7.如图,在△ABC 中,点 D,E,F 分别为 BC,AD,AC
2015.12 江西育华学校八年级数学月考试卷部分试题 一.选择题
的中点,且 S△ABC=16,则 S△DEF 的面积为( ) A.2 B.8 C.4 D.1
1.下列“表情”中属于轴对称图形的是( )
8.下列多项式的乘法中,不能用平方差公式计算的是
()
A.
B.
C.
D.
A.(x﹣y)(﹣x+y) B.(﹣x+y)(x+y)
21.如图 1,Rt△ABC 中 AB=AC,点 D、E 是线段 AC 上 两动点,且 AD=EC,AM 垂直 BD,垂足为 M,AM 的延 长线交 BC 于点 N,直线 BD 与直线 NE 相交于点 F. (1)试判断△DEF 的形状,并加以证明. (2)如图 3,若点 D、E 是直线 AC 上两动点,其他条 件不变,试判断△DEF 的形状,并说明理由.
2.下列计算:① x x3 x2 x2 ;②2a3•3a2=6a6;③(2x+y) (x﹣3y)=2x2﹣5xy﹣3y2;④(x+y)2=x2+y2.其中计算 错误的个数是( ) A.0 个 B.1 个 C.2 个 D.3 个 3.如图,点 P 是∠AOB 外的一点,点 M,N 分别是∠ AOB 两边上的点,点 P 关于 OA 的对称点 Q 恰好落在线
意义;当 x
时,它的值是零.
13.若 x2+x-1=0,求 2014x3+2013知 a1 , a2 , a3 ,……, a2016 都是正整数.
M=( a1 a2 a2015 )( a2 a3 a6102
),
N=( a1 a2 a2016 )( a2 a3 51a02
第 2 页(共 2 页)
),那么
M
N(填 >,=,< 即可)
三.解答题
15.分解因式:x3y+5x2y
16.分解因式: (x2 2x)2 11(x2 2x) 24 .
17.在实数范围内分解因式: x4﹣4.
第 1 页(共 2 页)
18.已知 x+y=3,xy=﹣10,求: (1)x2+y2﹣xy; (2)|x﹣y| 19.用四块完全相同的小长方形拼成的一个“回形”正方 形. (1)用不同代数式表示图中的阴影部分的面积,你能 得到怎样的等式,试用乘法公式说明这个等式成立;
(2)利用(1)中的结论计算:a+b=2,ab= ,求 a﹣b;
(3)根据(1)中的结论,直接写出 x+ 和 x﹣ 之间
的关系;若 x2﹣3x+1=0,分别求出 x+ 和(x﹣ )2 的
值.
20.先阅读下面的内容,再解决问题, 例题:若 m2+2mn+2n2﹣6n+9=0,求 m 和 n 的值. 解:∵m2+2mn+2n2﹣6n+9=0 ∴m2+2mn+n2+n2﹣6n+9=0 ∴(m+n)2+(n﹣3)2=0 ∴m+n=0,n﹣3=0 ∴m=﹣3,n=3 问题: (1)若 x2+2y2﹣2xy+4y+4=0,求 xy 的值. (2)已知△ABC 的三边长 a,b,c 都是正整数,且满足 a2+b2﹣6a﹣6b+18+|3﹣c|=0,请问△ABC 是怎样形状的 三角形?
相关文档
最新文档