2014年浙江省杭州市中考真题精品解析试题(Word版)
杭州市2014年中考数学试题及答案(word解析版)

浙江省杭州市2014年中考数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)(2014•杭州)3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a3考点:单项式乘单项式;幂的乘方与积的乘方.分析:首先利用积的乘方将括号展开,进而利用单项式乘以单项式求出即可.解答:解:3a•(﹣2a)2=3a×4a2=12a3.故选:C.点评:此题主要考查了单项式乘以单项式以及积的乘方运算等知识,熟练掌握单项式乘以单项式运算是解题关键.2.(3分)(2014•杭州)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.24πcm2D.30πcm2考点:圆锥的计算专题:计算题.分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.解答:解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选B.点评:由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.3.(3分)(2014•杭州)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°考点:解直角三角形分析:利用直角三角形两锐角互余求得∠B的度数,然后根据正切函数的定义即可求解.解答:解:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选D.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.4.(3分)(2014•杭州)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的解C.a是8的算术平方根D.a满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a==2,则a是a是无理数,a是方程x2﹣8=0的解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选D.点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法.5.(3分)(2014•杭州)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直考点:命题与定理.专题:常规题型.分析:根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.解答:解:A、等腰梯形的对角线相等,所以A选项错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,所以B选项错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,所以C选项错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=考点:反比例函数的性质.分析:把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.解答:解:A、把x=代入y=可得y=1,把x=2代入y=可得y=,故此选项正确;B、把x=代入y=可得y=4,把x=2代入y=可得y=1,故此选项错误;C、把x=代入y=可得y=,把x=2代入y=可得y=,故此选项错误;D、把x=代入y=可得y=16,把x=2代入y=可得y=4,故此选项错误;故选:A.点评:此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出对应的函数值.7.(3分)(2014•杭州)若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)考点:分式的混合运算专题:计算题.分析:原式变形后,计算即可确定出W.解答:解:根据题意得:W===﹣(a+2)=﹣a﹣2.故选:D.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.(3分)(2014•杭州)已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④考点:折线统计图;条形统计图.分析:①根据条形统计图可知,学校数量2001~2006年下降幅度较大,最多1354所,最少605所,而2007年~2012年学校数量都是在400所以上,440所以下,由此判断即可;②由折线统计图可知,在校学生人数有2001年~2003年、2006年~2009年两次连续下降,2004年~2006年、2009年~2012年两次连续增长的变化过程,由此判断即可;③由统计图可知,2009年的在校学生445192人,学校数量417所,再进行计算即可判断;④分别计算2009~2010年,2010~2011年,2011~2012年相邻两年的学校数量的增长率和在校学生人数的增长率,再比较即可.解答:解:①根据条形统计图可知,学校数量2001~2006年下降幅度较大,最多1354所,最少605所,而2007年~2012年学校数量都是在400所以上,440所以下,故结论正确;②由折线统计图可知,在校学生人数有2001年~2003年、2006年~2009年两次连续下降,2004年~2006年、2009年~2012年两次连续增长的变化过程,故结论正确;③由统计图可知,2009年的在校学生445192人,学校数量417所,所以2009年的==1067>1000,故结论正确;④∵2009~2010年学校数量增长率为≈﹣2.16%,2010~2011年学校数量增长率为≈0.245%,2011~2012年学校数量增长率为≈1.47%,1.47%>0.245%>﹣2.16%,∴2009~2012年,相邻两年的学校数量增长最快的是2011~2012年;∵2009~2010年在校学生人数增长率为≈1.96%,2010~2011年在校学生人数增长率为≈2.510%,2011~2012年在校学生人数增长率为≈1.574%,2.510%>1.96%>1.574%,∴2009~2012年,相邻两年的在校学生人数增长最快的是2010~2011年,故结论错误.综上所述,正确的结论是:①②③.故选B.点评:本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.9.(3分)(2014•杭州)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两个数的和是2的倍数或3的倍数情况,即可求出所求概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两个数的和是2的倍数或3的倍数情况有10种,则P==.故选C点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2014•杭州)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC 上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CF C.∠AEB+22°=∠DEF D.4cos∠AGB=考点:轴对称的性质;解直角三角形.分析:连接CE,设EF与BD相交于点O,根据轴对称性可得AB=AE,并设为1,利用勾股定理列式求出BE,再根据翻折的性质可得DE=BF=BE,再求出BC=1,然后对各选项分析判断利用排除法求解.解答:解:如图,连接CE,设EF与BD相交于点O,由轴对称性得,AB=AE,设为1,则BE==,∵点E与点F关于BD对称,∴DE=BF=BE=,∴AD=1+,∵AD∥BC,AB⊥AD,AB=AE,∴四边形ABCE是正方形,∴BC=AB=1,1+tan∠ADB=1+=1+﹣1=,故A选项结论正确;CF=BF﹣BC=﹣1,∴2BC=2×1=2,5CF=5(﹣1),∴2BC≠5CF,故B选项结论错误;∠AEB+22°=45°+22°=67°,在Rt△ABD中,BD===,sin∠DEF===,∴∠DEF≠67°,故C选项结论错误;由勾股定理得,OE2=()2﹣()2=,∴OE=,∵∠EBG+∠AGB=90°,∠EGB+∠BEF=90°,∴∠AGB=∠BEF,又∵∠BEF=∠DEF,∴4cos∠AGB===,故D选项结论错误.故选A.点评:本题考查了轴对称的性质,解直角三角形,等腰直角三角形的判定与性质,正方形的判定与性质,熟记性质是解题的关键,设出边长为1可使求解过程更容易理解.二、认真填一填(本题共6个小题,每小题4分,共24分)11.(4分)(2014•杭州)2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为8.802×106人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:880.2万=880 2000=8.802×106,故答案为:8.802×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(2014•杭州)已知直线a∥b,若∠1=40°50′,则∠2=139°10′.考点:平行线的性质;度分秒的换算.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠3=∠1=40°50′,∵a∥b,∴∠2=180°﹣∠3=180°﹣40°50′=139°10′.故答案为:139°10′.点评:本题考查了平行线的性质,对顶角相等的性质,度分秒的换算,要注意度、分、秒是60进制.13.(4分)(2014•杭州)设实数x、y满足方程组,则x+y=8.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解得到x与y的值,即可确定出x+y的值.解答:解:,①+②得:x=6,即x=9;①﹣②得:﹣2y=2,即y=﹣1,∴方程组的解为,则x+y=9﹣1=8.故答案为:8点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.(4分)(2014•杭州)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数.分析:根据中位数的定义解答.将这组数据从小到大重新排列,求出最中间两个数的平均数即可.解答:解:把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃;故答案为:15.6.点评:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.15.(4分)(2014•杭州)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.考点:二次函数图象上点的坐标特征;待定系数法求二次函数解析式.分析:根据点C的位置分情况确定出对称轴解析式,然后设出抛物线解析式,再把点A、B 的坐标代入求解即可.解答:解:∵点C在直线x=2上,且到抛物线的对称轴的距离等于1,∴抛物线的对称轴为直线x=1或x=3,当对称轴为直线x=1时,设抛物线解析式为y=a(x﹣1)2+k,则,解得,所以,y=(x﹣1)2+=x2﹣x+2,当对称轴为直线x=3时,设抛物线解析式为y=a(x﹣3)2+k,则,解得,所以,y=﹣(x﹣3)2+=﹣x2+x+2,综上所述,抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.故答案为:y=x2﹣x+2或y=﹣x2+x+2.点评:本题考查了二次函数图象上点的坐标特征,待定系数法求二次函数解析式,难点在于分情况确定出对称轴解析式并讨论求解.16.(4分)(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于πr或r(长度单位).考点:弧长的计算;圆周角定理;相似三角形的判定与性质;特殊角的三角函数值.专题:分类讨论.分析:作出图形,根据同角的余角相等求出∠H=∠C,再根据两角对应相等,两三角形相似求出△ACD和△BHD相似,根据相似三角形对应边成比例列式求出,再利用锐角三角函数求出∠ABC,然后根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠ABC所对的弧长所对的圆心角,然后利用弧长公式列式计算即可得解.解答:解:如图1,∵AD⊥BC,BE⊥AC,∴∠H+∠DBH=90°,∠C+∠DBH=90°,∴∠H=∠C,又∵∠BDH=∠ADC=90°,∴△ACD∽△BHD,∴=,∵BH=AC,∴=,∴∠ABC=30°,∴∠ABC所对的弧长所对的圆心角为30°×2=60°,∴∠ABC所对的弧长==πr.如图2,∠ABC所对的弧长所对的圆心角为300°,∴∠ABC所对的弧长==πr.故答案为:πr或r.点评:本题考查了弧长的计算,圆周角定理,相似三角形的判定与性质,特殊角的三角函数值,判断出相似三角形是解题的关键,作出图形更形象直观.三、全面答一答(本题共7小题,共66分)解答应写出文字说明,证明过程或演算步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2014•杭州)一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.考点:条形统计图;概率公式.分析:首先根据黑球数÷总数=摸出黑球的频率,再计算出摸出白球,黑球,红球的概率可得答案.解答:解:球的总数:4÷0.2=20(个),2+4+6+b=20,解得:b=8,摸出白球频率:2÷20=0.1,摸出红球的概率:6÷20=0.3,===0.4.点评:此题主要考查了概率和条形统计图,关键是掌握概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.18.(8分)(2014•杭州)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.考点:全等三角形的判定与性质;等腰三角形的性质.分析:可证明△ABF≌△ACE,则BF=CE,再证明△BEP≌△CFP,则PB=PC,从而可得出PE=PF,BE=CF.解答:解:在△ABF和△ACE中,,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=BF,在△BEP和△CFP中,,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF.点评:本题考查了全等三角形的判定和性质以及等腰三角形的性质,是基础题,难度不大.19.(8分)(2014•杭州)设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.考点:因式分解的应用.专题:计算题.分析:先利用因式分解得到原式=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,再把当y=kx代入得到原式=(4x2﹣k2x2)2=(4﹣k2)x4,所以当4﹣k2=1满足条件,然后解关于k 的方程即可.解答:解:能.(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,当y=kx,原式=(4x2﹣k2x2)2=(4﹣k2)2x4,令(4﹣k2)2=1,解得k=±或±,即当k=±或±时,原代数式可化简为x4.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.20.(10分)(2014•杭州)把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.考点:作图—应用与设计作图.分析:(1)利用三角形三边关系进而得出符合题意的图形即可;(2)利用三角形外接圆作法,首先作出任意两边的垂直平分线,即可得出圆心位置,进而得出其外接圆.解答:解:(1)由题意得:三角形的三边长分别为:4,4,4;3,4,5;即不同分段得到的三条线段能组成2个不全等的三角形,如图所示:(2)如图所示:当三边的单位长度分别为3,4,5,可知三角形为直角三角形,此时外接圆的半径为2.5;当三边的单位长度分别为4,4,4.三角形为等边三角形,此时外接圆的半径为,∴当三条线段分别为3,4,5时其外接圆周长为:2π×2.5=5π;当三条线段分别为4,4,4时其外接圆周长为:2π×=π.点评:此题主要考查了三角形外接圆的作法和三角形三边关系等知识,得出符合题意的三角形是解题关键.21.(10分)(2014•杭州)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.考点:圆的综合题;切线长定理;轴对称图形;特殊角的三角函数值.专题:计算题;作图题.分析:(1)对圆P与直线l和l2都相切、圆P与直线l和l1都相切、圆P与直线l1和l2都相切三种情况分别考虑,利用切线长定理和特殊角的三角函数值即可求出点P的坐标.(2)由图可知:该几何图形既轴对称图形,又是中心对称图形,它的所有的边都相等.只需求出其中的一条边就可以求出它的周长.解答:解:(1)①若圆P与直线l和l2都相切,当点P在第四象限时,过点P作PH⊥x轴,垂足为H,连接OP,如图1所示.设y=x的图象与x轴的夹角为α.当x=1时,y=.∴tanα=.∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴tan∠POH===.∴OH=.∴点P的坐标为(,﹣1).同理可得:当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);②若圆P与直线l和l1都相切,如图2所示.同理可得:当点P在第一象限时,点P的坐标为(,1);当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);当点P在第四象限时,点P的坐标为(,﹣1).③若圆P与直线l1和l2都相切,如图3所示.同理可得:当点P在x轴的正半轴上时,点P的坐标为(,0);当点P在x轴的负半轴上时,点P的坐标为(﹣,0);当点P在y轴的正半轴上时,点P的坐标为(0,2);当点P在y轴的负半轴上时,点P的坐标为(0,﹣2).综上所述:其余满足条件的圆P的圆心坐标有:(,﹣1)、(﹣,1)、(﹣,﹣1)、(,1)、(﹣,1)、(﹣,﹣1)、(,﹣1)、(,0)、(﹣,0)、(0,2)、(0,﹣2).(2)用线段依次连接各圆心,所得几何图形,如图4所示.由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的所有的边都相等.∴该图形的周长=12×(﹣)=8.点评:本题考查了切线长定理、特殊角的三角函数值、对称性等知识,考查了作图的能力,培养了学生的审美意识,是一道好题.22.(12分)(2014•杭州)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.考点:四边形综合题;菱形的性质;轴对称的性质;轴对称图形;特殊角的三角函数值.专题:综合题;动点型;分类讨论.分析:(1)根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD 上求S1和S2的方法不同,因此需分情况讨论.(2)由S1=S2和S1+S2=8可以求出S1=S2=4.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.解答:解:(1)①当点P在BO上时,如图1所示.∵四边形ABCD是菱形,AC=4,BD=4,∴AC⊥BD,BO=BD=2,AO=AC=2,且S菱形ABCD=BD•AC=8.∴tan∠ABO==.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠FBP===sin60°=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△BFP=S△BGP=S△DEQ=S△DHQ.∴S1=4S△BFP=4××x•=.∴S2=8﹣.②当点P在OD上时,如图2所示.∵AB=4,BF=,∴AF=AB﹣BF=4﹣.在Rt△AFM中,∵∠AFM=90°,∠FAM=30°,AF=4﹣.∴tan∠FAM==tan30°=.∴FM=(4﹣).∴S△AFM=AF•FM=(4﹣)•(4﹣)=(4﹣)2.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△AFM=S△AEM=S△CHN=S△CGN.∴S2=4S△AFM=4×(4﹣)2=(x﹣8)2.∴S1=8﹣S2=8﹣(x﹣8)2.综上所述:当点P在BO上时,S1=,S2=8﹣;当点P在OD上时,S1=8﹣(x﹣8)2,S2=(x﹣8)2.(2)①当点P在BO上时,0<x≤2.∵S1=S2,S1+S2=8,∴S1=4.∴S1==4.解得:x1=2,x2=﹣2.∵2>2,﹣2<0,∴当点P在BO上时,S1=S2的情况不存在.②当点P在OD上时,2<x≤4.∵S1=S2,S1+S2=8,∴S2=4.∴S2=(x﹣8)2=4.解得:x1=8+2,x2=8﹣2.∵8+2>4,2<8﹣2<4,∴x=8﹣2.综上所述:若S1=S2,则x的值为8﹣2.点评:本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想.23.(12分)(2014•杭州)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.考点:二次函数综合题.分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.点评:本题考查了二次函数的综合,立意新颖,结合考察了数学解题过程中经常用到的几种解题方法,同学们注意思考、理解,难度一般.。
2014年浙江省杭州市中考语文试卷(解析版)

2014年浙江省杭州市中考语文试卷一(30分)1.下列加点字的注音全正确的一项是(3分)A.亵.渎(xiè)怂.恿(cóng)梦寐.以求(mèi)B.哂.笑(xī)收敛.(liǎn)怏.怏不乐(yàng)C.苋.菜(xiàn)涟漪.(yī)五行.缺土(háng)D.吊唁.(yàn)畚箕.(jī)颔.首低眉(hàn)2.下列词语中没有别字的一项是(3分)A.端详悲怆迫不及待孤立无援B.潦草倔强语无纶次慷慨淋漓C.宣泄诓骗戛然而止缩手无策D.真缔青睐惊慌失措锐不可当3.下列句子中加点的词语使用恰当的一项是(3分)A.雨后的青山湖如出浴美人,舟行寂寥的湖面,游人沉湎于氤氲的云气中,如梦如幻,喜不自胜。
B.个人的智慧和力量终究是有限的,只有将其融入到集体之中,才有可能发挥出更为强大的能量。
C.像我这样极为普通的芸芸众生的人,也许不能取得事业上的巨大成就,但也可以使生命熠熠闪光。
D.他知识广博,思维敏捷,又有丰富的社会经验,因此在处理问题时常能进退维谷,游刃有余。
4.下列关于文学常识的说法,有错误的一项是(3分)A.《论语》是儒家经典,记录了春秋时期思想家、教育家孔子和他的弟子的言行;《庄子》属于道家经典,是战国时期哲学家庄周及其后学的著作集。
B.《桃花源记》借虚构的故事寄托社会理想,《五柳先生传》用传记的形式表现人物的性格志趣,这两篇文章都是东晋诗人陶渊明的作品。
C.同样以母爱为主题,现代著名作家冰心在散文诗《荷叶•母亲》中借助具体形象来表达,而学者胡适在《我的母亲》中通过回忆母亲的教子方式来体现。
D.法国作家莫泊桑被称为短篇小说巨匠,《我的叔叔于勒》就选自其小说集《羊脂球》,其代表作品还有《项链》《巴黎圣母院》《装在套子里的人》等。
5.下列句子中没有语病的一项是(3分)A.在保留现有水源的基础上,杭州将逐步形成以千岛湖为主,钱塘江、东苕溪为辅的多水源供水,从而提高居民的用水品质。
2014年杭州市中考数学试卷及答案word版.doc

2014年杭州市中考试题数学一、选择题1.23(2)a a -=( )A.312a -B. 36a -C. 312aD. 26a 2. 已知某几何体的三视图(单位:cm )则该几何体的侧面积等于( )2cmA. 12πB. 15πC. 24πD. 30π3.在RT △ABC 中,已知∠C=90°,∠A=40°,BC=3,则AC=( )A. 3sin 40︒B. 3sin50︒C. 3tan 40︒D. 3tan50︒4.已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是( )A. a 是无理数B. a 是方程280x -=的解C. a 是8的算术平方根D. a 满足不等式组3040a a ->⎧⎨-<⎩5.下列命题中,正确的是( )A .梯形的对角线相等 B. 菱形的对角线不相等 C. 矩形的对角线不能互相垂直 D. 平行四边想的对角线可以互相垂直6. 函数的自变量x 满足122x ≤≤时,函数值y 满足114y ≤≤,则这个函数可以是( ) A. 12y x = B. 2y x = C. 18y x = D. 8y x =7. 若241()142w a a+=--,则w=( )A.2(2)a a +≠-B. 2(2)a a -+≠C. 2(2)a a -≠D. 2(2)a a --≠-8. 已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图,由图得出如下四个结论:(图实在看不清,请自己上网查找) ①学校数量2007至2012年比2001至2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程; ③2009年的在校学生人数学校数量大于1000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年. 其中,正确的结论是( )俯视图左视图主视图64A. ①②③④B. ①②③C. ①②③D.③④9. 让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )A.316B. 38 C. 58 D. 131610.已知AD//BC ,AB ⊥AD ,点E 点F 分别在射线AD ,射线BC 上,若点E 与点B 关于AC 对称,点E 点F 关于BD 对称,AC 与BD 相交于点G ,则( ) A. 1tan 2ADB +∠=B. 25BC CF =C. 22AEB DEF ∠+︒=∠D. 4cos 6AGB ∠= 二、填空题11. 2012年末统计,杭州市常住人口是880.2万人,用科学技术法表示为 .12. 已知直线//a b ,若∠1=40°50′,则∠2= .13. 设实数,x y 满足方程组143123x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,则x y += .14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .15.设抛物线(0)y ax bx c a =++≠过A (0,2), B (4,3),C 三点,其中点C 在直线2x =上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为 .16. 点A,B,C 都在半径为r 的圆上,直线AD ⊥直线BC ,垂足为D ,直线BE ⊥直线AC ,垂足为E ,直线AD 与BE 相交于点H ,若3BH AC =,则∠ABC 所对的弧长等于 (长度单位). 三、解答题17. 一个布袋中装有只有颜色不同的(12)a a >个球,分别是2个白球,4个黑球,6个红球和b 个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整),请补全该统计图并求出ba12344321GCFDE AB21l b a时间(时)温度(℃)201018时16时14时12时10时8时4.510.515.319.615.930.10.40.3概率0.20.1红球黑球白球的值。
2014年浙江杭州市中考数学试题([卷])[含答案解析和解析]
![2014年浙江杭州市中考数学试题([卷])[含答案解析和解析]](https://img.taocdn.com/s3/m/95ad0f220b4e767f5bcfce11.png)
WORD完美格式2014年浙江省杭州市中考数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)(2014•杭州)3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a32.(3分)(2014•杭州)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.24πcm2D.30πcm23.(3分)(2014•杭州)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°4.(3分)(2014•杭州)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的解C.a是8的算术平方根D.a满足不等式组5.(3分)(2014•杭州)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直6.(3分)(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=7.(3分)(2014•杭州)若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)8.(3分)(2014•杭州)已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④9.(3分)(2014•杭州)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()A.B.C.D.10.(3分)(2014•杭州)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CF C.∠AEB+22°=∠DEF D.4cos∠AGB=二、认真填一填(本题共6个小题,每小题4分,共24分)11.(4分)(2014•杭州)2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为_________ 人.12.(4分)(2014•杭州)已知直线a∥b,若∠1=40°50′,则∠2=_________ .13.(4分)(2014•杭州)设实数x、y满足方程组,则x+y= _________ .14.(4分)(2014•杭州)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是_________ ℃.15.(4分)(2014•杭州)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为_________ .16.(4分)(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于_________ (长度单位).三、全面答一答(本题共7小题,共66分)解答应写出文字说明,证明过程或演算步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2014•杭州)一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.18.(8分)(2014•杭州)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.19.(8分)(2014•杭州)设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.20.(10分)(2014•杭州)把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.21.(10分)(2014•杭州)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22.(12分)(2014•杭州)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.23.(12分)(2014•杭州)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.2014年浙江省杭州市中考数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)1.(3分)(2014•杭州)3a•(﹣2a)2=()A.﹣12a3B.﹣6a2C.12a3D.6a3考点:单项式乘单项式;幂的乘方与积的乘方.分析:首先利用积的乘方将括号展开,进而利用单项式乘以单项式求出即可.解答:解:3a•(﹣2a)2=3a×4a2=12a3.故选:C.点评:此题主要考查了单项式乘以单项式以及积的乘方运算等知识,熟练掌握单项式乘以单项式运算是解题关键.2.(3分)(2014•杭州)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()A.12πcm2B.15πcm2C.24πcm2D.30πcm2考点:圆锥的计算.专题:计算题.分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.解答:解:∵底面半径为3,高为4,∴圆锥母线长为5,∴侧面积=2πrR÷2=15πcm2.故选B.点评:由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.3.(3分)(2014•杭州)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°考点:解直角三角形.分析:利用直角三角形两锐角互余求得∠B的度数,然后根据正切函数的定义即可求解.解答:解:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选D.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.4.(3分)(2014•杭州)已知边长为a的正方形的面积为8,则下列说法中,错误的是()A.a是无理数B.a是方程x2﹣8=0的解C.a是8的算术平方根D.a满足不等式组考点:算术平方根;无理数;解一元二次方程-直接开平方法;解一元一次不等式组.分析:首先根据正方形的面积公式求得a的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a==2,则a是a是无理数,a是方程x2﹣8=0的解,是8的算术平方根都正确;解不等式组,得:3<a<4,而2<3,故错误.故选D.点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的方法.5.(3分)(2014•杭州)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直考点:命题与定理.专题:常规题型.分析:根据等腰梯形的判定与性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据平行四边形的性质对D进行判断.解答:解:A、等腰梯形的对角线相等,所以A选项错误;B、菱形的对角线不一定相等,若相等,则菱形变为正方形,所以B选项错误;C、矩形的对角线不一定相互垂直,若互相垂直,则矩形变为正方形,所以C选项错误;D、平行四边形的对角线可以互相垂直,此时平行四边形变为菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=考点:反比例函数的性质.分析:把x=代入四个选项中的解析式可得y的值,再把x=2代入解析式可得y的值,然后可得答案.解答:解:A、把x=代入y=可得y=1,把x=2代入y=可得y=,故此选项正确;B、把x=代入y=可得y=4,把x=2代入y=可得y=1,故此选项错误;C、把x=代入y=可得y=,把x=2代入y=可得y=,故此选项错误;D、把x=代入y=可得y=16,把x=2代入y=可得y=4,故此选项错误;故选:A.点评:此题主要考查了反比例函数图象的性质,关键是正确理解题意,根据自变量的值求出对应的函数值.7.(3分)(2014•杭州)若(+)•w=1,则w=()A.a+2(a≠﹣2)B.﹣a+2(a≠2)C.a﹣2(a≠2)D.﹣a﹣2(a≠﹣2)考点:分式的混合运算.专题:计算题.分析:原式变形后,计算即可确定出W.解答:解:根据题意得:W===﹣(a+2)=﹣a﹣2.故选:D.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.8.(3分)(2014•杭州)已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007年~2012年比2001~2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④考点:折线统计图;条形统计图.分析:①根据条形统计图可知,学校数量2001~2006年下降幅度较大,最多1354所,最少605所,而2007年~2012年学校数量都是在400所以上,440所以下,由此判断即可;②由折线统计图可知,在校学生人数有2001年~2003年、2006年~2009年两次连续下降,2004年~2006年、2009年~2012年两次连续增长的变化过程,由此判断即可;③由统计图可知,2009年的在校学生445192人,学校数量417所,再进行计算即可判断;④分别计算2009~2010年,2010~2011年,2011~2012年相邻两年的学校数量的增长率和在校学生人数的增长率,再比较即可.解答:解:①根据条形统计图可知,学校数量2001~2006年下降幅度较大,最多1354所,最少605所,而2007年~2012年学校数量都是在400所以上,440所以下,故结论正确;②由折线统计图可知,在校学生人数有2001年~2003年、2006年~2009年两次连续下降,2004年~2006年、2009年~2012年两次连续增长的变化过程,故结论正确;③由统计图可知,2009年的在校学生445192人,学校数量417所,所以2009年的==1067>1000,故结论正确;④∵2009~2010年学校数量增长率为≈﹣2.16%,2010~2011年学校数量增长率为≈0.245%,2011~2012年学校数量增长率为≈1.47%,1.47%>0.245%>﹣2.16%,∴2009~2012年,相邻两年的学校数量增长最快的是2011~2012年;∵2009~2010年在校学生人数增长率为≈1.96%,2010~2011年在校学生人数增长率为≈2.510%,2011~2012年在校学生人数增长率为≈1.574%,2.510%>1.96%>1.574%,∴2009~2012年,相邻两年的在校学生人数增长最快的是2010~2011年,故结论错误.综上所述,正确的结论是:①②③.故选B.点评:本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况.9.(3分)(2014•杭州)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出两个数的和是2的倍数或3的倍数情况,即可求出所求概率.解答:解:列表如下:1 2 3 41 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两个数的和是2的倍数或3的倍数情况有10种,则P==.故选C点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2014•杭州)已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+tan∠ADB=B.2BC=5CF C.∠AEB+22°=∠DEF D.4cos∠AGB=考点:轴对称的性质;解直角三角形.分析:连接CE,设EF与BD相交于点O,根据轴对称性可得AB=AE,并设为1,利用勾股定理列式求出BE,再根据翻折的性质可得DE=BF=BE,再求出BC=1,然后对各选项分析判断利用排除法求解.解答:解:如图,连接CE,设EF与BD相交于点O,由轴对称性得,AB=AE,设为1,则BE==,∵点E与点F关于BD对称,∴DE=BF=BE=,∴AD=1+,∵AD∥BC,AB⊥AD,AB=AE,∴四边形ABCE是正方形,∴BC=AB=1,1+tan∠ADB=1+=1+﹣1=,故A选项结论正确;CF=BF﹣BC=﹣1,∴2BC=2×1=2,5CF=5(﹣1),∴2BC≠5CF,故B选项结论错误;∠AEB+22°=45°+22°=67°,在Rt△ABD中,BD===,sin∠DEF===,∴∠DEF≠67°,故C选项结论错误;由勾股定理得,OE2=()2﹣()2=,∴OE=,∵∠EBG+∠AGB=90°,∠EGB+∠BEF=90°,∴∠AGB=∠BEF,又∵∠BEF=∠DEF,∴4cos∠AGB===,故D选项结论错误.故选A.点评:本题考查了轴对称的性质,解直角三角形,等腰直角三角形的判定与性质,正方形的判定与性质,熟记性质是解题的关键,设出边长为1可使求解过程更容易理解.二、认真填一填(本题共6个小题,每小题4分,共24分)11.(4分)(2014•杭州)2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为8.802×106人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:880.2万=880 2000=8.802×106,故答案为:8.802×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(2014•杭州)已知直线a∥b,若∠1=40°50′,则∠2=139°10′.考点:平行线的性质;度分秒的换算.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠3=∠1=40°50′,∵a∥b,∴∠2=180°﹣∠3=180°﹣40°50′=139°10′.故答案为:139°10′.点评:本题考查了平行线的性质,对顶角相等的性质,度分秒的换算,要注意度、分、秒是60进制.13.(4分)(2014•杭州)设实数x、y满足方程组,则x+y= 8 .考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解得到x与y的值,即可确定出x+y的值.解答:解:,①+②得:x=6,即x=9;①﹣②得:﹣2y=2,即y=﹣1,∴方程组的解为,则x+y=9﹣1=8.故答案为:8点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.(4分)(2014•杭州)已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是15.6 ℃.考点:折线统计图;中位数.分析:根据中位数的定义解答.将这组数据从小到大重新排列,求出最中间两个数的平均数即可.解答:解:把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃;故答案为:15.6.点评:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.15.(4分)(2014•杭州)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2 .考点:二次函数图象上点的坐标特征;待定系数法求二次函数解析式.分析:根据点C的位置分情况确定出对称轴解析式,然后设出抛物线解析式,再把点A、B的坐标代入求解即可.解答:解:∵点C在直线x=2上,且到抛物线的对称轴的距离等于1,∴抛物线的对称轴为直线x=1或x=3,当对称轴为直线x=1时,设抛物线解析式为y=a(x﹣1)2+k,则,解得,所以,y=(x﹣1)2+=x2﹣x+2,当对称轴为直线x=3时,设抛物线解析式为y=a(x﹣3)2+k,则,解得,所以,y=﹣(x﹣3)2+=﹣x2+x+2,综上所述,抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.故答案为:y=x2﹣x+2或y=﹣x2+x+2.点评:本题考查了二次函数图象上点的坐标特征,待定系数法求二次函数解析式,难点在于分情况确定出对称轴解析式并讨论求解.16.(4分)(2014•杭州)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH=AC,则∠ABC所对的弧长等于πr或r (长度单位).考点:弧长的计算;圆周角定理;相似三角形的判定与性质;特殊角的三角函数值.专题:分类讨论.分析:作出图形,根据同角的余角相等求出∠H=∠C,再根据两角对应相等,两三角形相似求出△ACD和△BHD相似,根据相似三角形对应边成比例列式求出,再利用锐角三角函数求出∠ABC,然后根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠ABC所对的弧长所对的圆心角,然后利用弧长公式列式计算即可得解.解答:解:如图1,∵AD⊥BC,BE⊥AC,∴∠H+∠DBH=90°,∠C+∠DBH=90°,∴∠H=∠C,又∵∠BDH=∠ADC=90°,∴△ACD∽△BHD,∴=,∵BH=AC,∴=,∴∠ABC=30°,∴∠ABC所对的弧长所对的圆心角为30°×2=60°,∴∠ABC所对的弧长==πr.如图2,∠ABC所对的弧长所对的圆心角为300°,∴∠ABC所对的弧长==πr.故答案为:πr或r.点评:本题考查了弧长的计算,圆周角定理,相似三角形的判定与性质,特殊角的三角函数值,判断出相似三角形是解题的关键,作出图形更形象直观.三、全面答一答(本题共7小题,共66分)解答应写出文字说明,证明过程或演算步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2014•杭州)一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.考点:条形统计图;概率公式.分析:首先根据黑球数÷总数=摸出黑球的频率,再计算出摸出白球,黑球,红球的概率可得答案.解答:解:球的总数:4÷0.2=20(个),2+4+6+b=20,解得:b=8,摸出白球频率:2÷20=0.1,摸出红球的概率:6÷20=0.3,===0.4.点评:此题主要考查了概率和条形统计图,关键是掌握概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.18.(8分)(2014•杭州)在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.考点:全等三角形的判定与性质;等腰三角形的性质.分析:可证明△ABF≌△ACE,则BF=CE,再证明△BEP≌△CFP,则PB=PC,从而可得出PE=PF,BE=CF.解答:解:在△ABF和△ACE中,,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=BF,在△BEP和△C FP中,,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF.点评:本题考查了全等三角形的判定和性质以及等腰三角形的性质,是基础题,难度不大.19.(8分)(2014•杭州)设y=kx,是否存在实数k,使得代数式(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)能化简为x4?若能,请求出所有满足条件的k的值;若不能,请说明理由.考点:因式分解的应用.专题:计算题.分析:先利用因式分解得到原式=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,再把当y=kx代入得到原式=(4x2﹣k2x2)2=(4﹣k2)x4,所以当4﹣k2=1满足条件,然后解关于k的方程即可.解答:解:能.(x2﹣y2)(4x2﹣y2)+3x2(4x2﹣y2)=(4x2﹣y2)(x2﹣y2+3x2)=(4x2﹣y2)2,当y=kx,原式=(4x2﹣k2x2)2=(4﹣k2)2x4,令(4﹣k2)2=1,解得k=±或±,即当k=±或±时,原代数式可化简为x4.点评:本题考查了因式分解的运用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.20.(10分)(2014•杭州)把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.考点:作图—应用与设计作图.分析:(1)利用三角形三边关系进而得出符合题意的图形即可;(2)利用三角形外接圆作法,首先作出任意两边的垂直平分线,即可得出圆心位置,进而得出其外接圆.解答:解:(1)由题意得:三角形的三边长分别为:4,4,4;3,4,5;即不同分段得到的三条线段能组成2个不全等的三角形,如图所示:(2)如图所示:当三边的单位长度分别为3,4,5,可知三角形为直角三角形,此时外接圆的半径为2.5;当三边的单位长度分别为4,4,4.三角形为等边三角形,此时外接圆的半径为,∴当三条线段分别为3,4,5时其外接圆周长为:2π×2.5=5π;当三条线段分别为4,4,4时其外接圆周长为:2π×=π.点评:此题主要考查了三角形外接圆的作法和三角形三边关系等知识,得出符合题意的三角形是解题关键.21.(10分)(2014•杭州)在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P(以点P为圆心,1为半径)与直线l,l1,l2中的两条相切.例如(,1)是其中一个圆P的圆心坐标.(1)写出其余满足条件的圆P的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.考点:圆的综合题;切线长定理;轴对称图形;特殊角的三角函数值.专题:计算题;作图题.分析:(1)对圆P与直线l和l都相切、圆P与直线l和l1都相切、圆P与直线l1和l2都相切三种情况分别考2虑,利用切线长定理和特殊角的三角函数值即可求出点P的坐标.(2)由图可知:该几何图形既轴对称图形,又是中心对称图形,它的所有的边都相等.只需求出其中的一条边就可以求出它的周长.解答:解:(1)①若圆P与直线l和l都相切,2当点P在第四象限时,过点P作PH⊥x轴,垂足为H,连接OP,如图1所示.设y=x的图象与x轴的夹角为α.当x=1时,y=.∴tanα=.∴α=60°.∴由切线长定理得:∠POH=(180°﹣60°)=60°.∵PH=1,∴tan∠POH===.∴OH=.∴点P的坐标为(,﹣1).同理可得:当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);②若圆P与直线l和l1都相切,如图2所示.同理可得:当点P在第一象限时,点P的坐标为(,1);当点P在第二象限时,点P的坐标为(﹣,1);当点P在第三象限时,点P的坐标为(﹣,﹣1);当点P在第四象限时,点P的坐标为(,﹣1).③若圆P与直线l1和l2都相切,如图3所示.同理可得:当点P在x轴的正半轴上时,点P的坐标为(,0);当点P在x轴的负半轴上时,点P的坐标为(﹣,0);当点P在y轴的正半轴上时,点P的坐标为(0,2);当点P在y轴的负半轴上时,点P的坐标为(0,﹣2).综上所述:其余满足条件的圆P的圆心坐标有:(,﹣1)、(﹣,1)、(﹣,﹣1)、(,1)、(﹣,1)、(﹣,﹣1)、(,﹣1)、(,0)、(﹣,0)、(0,2)、(0,﹣2).(2)用线段依次连接各圆心,所得几何图形,如图4所示.由图可知:该几何图形既轴对称图形,又是中心对称图形,由对称性可得:该几何图形的所有的边都相等.∴该图形的周长=12×(﹣)=8.点评:本题考查了切线长定理、特殊角的三角函数值、对称性等知识,考查了作图的能力,培养了学生的审美意识,是一道好题.22.(12分)(2014•杭州)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.考点:四边形综合题;菱形的性质;轴对称的性质;轴对称图形;特殊角的三角函数值.专题:综合题;动点型;分类讨论.分析:(1)根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S和S2的方法不同,1因此需分情况讨论.(2)由S1=S2和S1+S2=8可以求出S1=S2=4.然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值.解答:解:(1)①当点P在BO上时,如图1所示.∵四边形ABCD是菱形,AC=4,BD=4,∴AC⊥BD,BO=BD=2,AO=AC=2,且S菱形ABCD=BD•AC=8.∴tan∠ABO==.∴∠ABO=60°.在Rt△BFP中,∵∠BFP=90°,∠FBP=60°,BP=x,∴sin∠F BP===sin60°=.∴FP=x.∴BF=.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△BFP=S△BGP=S△DEQ=S△DHQ.∴S1=4S△BFP=4××x•=.∴S2=8﹣.②当点P在OD上时,如图2所示.∵AB=4,BF=,∴AF=AB﹣BF=4﹣.在Rt△AFM中,∵∠AFM=90°,∠FAM=30°,AF=4﹣.∴tan∠FAM==tan30°=.∴FM=(4﹣).∴S△AFM=AF•FM=(4﹣)•(4﹣)=(4﹣)2.∵四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,∴S△AFM=S△AEM=S△CHN=S△CGN.∴S2=4S△AFM=4×(4﹣)2=(x﹣8)2.∴S1=8﹣S2=8﹣(x﹣8)2.综上所述:当点P在BO上时,S1=,S2=8﹣;当点P在OD上时,S1=8﹣(x﹣8)2,S2=(x﹣8)2.(2)①当点P在BO上时,0<x≤2.∵S1=S2,S1+S2=8,∴S1=4.∴S1==4.解得:x1=2,x2=﹣2.∵2>2,﹣2<0,∴当点P在BO上时,S1=S2的情况不存在.②当点P在OD上时,2<x≤4.∵S1=S2,S1+S2=8,∴S2=4.∴S2=(x﹣8)2=4.解得:x1=8+2,x2=8﹣2.∵8+2>4,2<8﹣2<4,∴x=8﹣2.综上所述:若S1=S2,则x的值为8﹣2.点评:本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想.23.(12分)(2014•杭州)复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.考点:二次函数综合题.分析:①将(1,0)点代入函数,解出k的值即可作出判断;②首先考虑,函数为一次函数的情况,从而可判断为假;③根据二次函数的增减性,即可作出判断;④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出顶点的纵坐标表达式,即可作出判断.解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0.运用方程思想;②假,反例:k=0时,只有两个交点.运用举反例的方法;③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;④真,当k=0时,函数无最大、最小值;k≠0时,y最==﹣,∴当k>0时,有最小值,最小值为负;当k<0时,有最大值,最大值为正.运用分类讨论思想.点评:本题考查了二次函数的综合,立意新颖,结合考察了数学解题过程中经常用到的几种解题方法,同学们注。
2014年杭州中考数学真题+解析(Word版)

2014年杭州市各类高中招生文化考试数学 解析版一、仔细选一选(本题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.()232a a ?=( )A.312a - B.26a - C.312a D.26a 【答案】C【解析】()()2224323212a a a a a ?=??【方法指导】本题考查幂的运算。
解决此类题的关键是熟练掌握幂的运算法则:(1)a m ·a n =a m +n (m ,n 为整数,a ≠0);(2)(a m )n =a mn (m ,n 为整数,a ≠0);(3)(ab )n =a n b n (n为整数,ab ≠0);(4)a m ÷a n =a m -n (m ,n 为整数,a ≠0).2.已知某几何体的三视图(单位:cm ),则该几何体的侧面积等于( )A.212cm pB.215cm pC.224cm pD.230cm p 【答案】B【解析】有图可知该几何体是圆锥体,其底面圆周的直径为6,半径r=3 ,高为4,有勾股定理可知母线长l=5,有公式rl π=s ,得S=15π 。
【方法指导】本题考查三视图和圆锥的侧面积的计算。
解决此类题的关键 是熟练的掌握几何体的三视图的特点,掌握常见的几何体的表面积和体积的的计算方法。
3.在直角三角形ABC 中,已知90C?,40A ?,3BC =,则AC=( )A.3sin 40B.3sin 50C.3tan 40D.3tan 50 【答案】D 【解析】∵40A?,∴50B ?∵tan 50=ACBC, ∴tan503tan50AC BC =?故答案选D【方法指导】本题考查的是三角函数。
解决此题的关键是掌握锐角三角函数的概念及意义,然后分别判断即可。
主视图 左视图俯视图(第2题)第3题图4.已知边长为a 的正方形的面积为8,则下列说法中,错误的是( ) A.a 是无理数B.a 是方程280x -=的解C.a 是8的算术平方根D.a 满足不等式组3040a a ì->ïí-<ïî【答案】D【解析】 有题意可得),0(8a 2>=a 22a =32,98a 42<<∴<=<a 所以选项D 是错误的;【方法指导】本题考查实数的运算,数与方程,不等式的联系,本题中容易忽略条件“a 是正方形的边长”而出问题;解决此类型的题目关键是审题要细心。
2014年浙江省杭州市中考英语试卷(附答案与解析)

英语试卷 第1页(共28页)英语试卷 第2页(共28页)绝密★启用前 浙江省杭州市2014年各类高中招生文化考试英 语本试卷满分120分,考试时间100分钟。
Ⅰ. 听力部分(25分)一、听短对话,回答问题(共5小题,计5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A 、B 、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What does the woman usually have for breakfast? A. Meat.B. Hamburgers.C. Fruit. 2. What is the woman ’s last name? A. Jackson. B. Brown. C. Angela. 3. How does the woman go to school?A. On foot.B. By car.C. By bike. 4. Where does the conversation probably take place?A. At a bank.B. In a shop.C. At a ticket office. 5. When is the art festival? A. On April 22nd.B. On May 4th.C. On June 3rd.二、听较长对话,回答问题(共6小题,计12分)听下面一段对话,回答第6至第8三个小题。
6. Who went to Sanya for winter holiday? A. Tina ’s friends. B. Tina ’s family. C. Tina ’s teachers. 7. How was the weather there?A. It was cold.B. It was cool.C. It was warm. 8. What did the woman speaker think of the trip?A. It was long.B. It was great.C. It was tiring.听下面一段对话,回答第9至11三个小题。
2014年浙江杭州初中数学中考试卷(带解析)
2014年初中毕业升学考试(浙江杭州卷)数学(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释一、单选题(注释)1、( )A .B .C .D .2、已知某几何体的三视图(单位:cm )则该几何体的侧面积等于( )cm 2.A .B .C .D .3、在直角三角形ABC 中,已知∠C=90°,∠A=40°,BC=3,则AC=( )A .B .C .D .4、已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是( )A .a 是无理数B .a 是方程的解C .a 是8的算术平方根D .a 满足不等式组5、下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直6、函数的自变量x满足时,函数值y满足,则这个函数可以是()A.B.C.D.7、若,则w=()A.B.C.D.8、已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图,由图得出如下四个结论:①学校数量2007至2012年比2001至2006年更稳定;②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是()A.①②③④B.①②③C.①②D.③④9、让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于()A .B .C .D .10、已知AD//BC,AB⊥AD,点E点F分别在射线AD,射线BC上,若点E与点B关于AC对称,点E点F关于BD对称,AC与BD相交于点G,则()A .B .C .D .中考试卷/eplist_1_0_0_1_1.html初中试卷/分卷II分卷II 注释(注释)11、2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为.12、已知直线,若∠1=40°50′,则∠2=.13、设实数x,y满足方程组,则.14、已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是.15、设抛物线过A(0,2),B(4,3),C 三点,其中点C 在直线上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为 . 16、点A,B,C 都在半径为r 的圆上,直线AD⊥直线BC ,垂足为D ,直线BE⊥直线AC ,垂足为E ,直线AD 与BE 相交于点H ,若,则∠ABC 所对的弧长等于 (长度单位).(注释) 17、一个布袋中装有只有颜色不同的个球,分别是2个白球,4个黑球,6个红球和b 个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整),请补全该统计图并求出的值.18、在△ABC 中,AB=AC ,点E,F 分别在AB,AC 上,AE=AF ,BF 与CE 相交于点P ,求证:PB=PC ,并请直接写出图中其他相等的线段.19、设,是否存在实数,使得代数式能化简为?若能,请求出所有满足条件的值,若不能,请说明理由.20、把一条12个单位长度的线段分成三条线段,其中一条线段长为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分法得到的三条线段能组成多少个不全等的三角形?用尺规作出这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长.21、在直角坐标系中,设x轴为直线l,函数的图像分别是,半径为1的与直线中的两条相切,例如是其中一个的圆心坐标.(1)写出其余满足条件的的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22、菱形ABCD的对角线AC,BD相交于点O,.动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PFBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为,未盖住部分的面积为,.(1)用含x代数式分别表示,;(2)若,求x.23、复习课中,教师给出关于x的函数(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图像经过(1,0)点;②函数图像与坐标轴总有三个不同的交点;③当时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数;教师:请你分别判断四条结论的真假,并给出理由,最后简单写出解决问题时所用的数学方法.试卷答案1,C. 2,B. 3,D. 4,D. 5,D. 6,A. 7,D. 8,B. 9,C. 10,A.11,8.802×106.12,139°10′.13,8.14,15.615,或.16,或.17,补全该统计图见解析;0.4.18,证明见解析;BF=CE,PF=PE,BE=CF.19,能,或.20,(1)能组成2个不全等的三角形,作图见解析;(2)和.21,(1);(2).22,(1)当时,,当时,,;(2).23,①真,②假,③假,④真,理由和所用的数学方法见解析.。
2014年浙江省杭州市中考物理试卷解析
2014年浙江省杭州市中考物理试卷一、选择题1.(4分)(2014•杭州)如图所示,甲乙两小磁针在一根磁铁附近,下列判断正确的是()2.(3分)(2014•杭州)短跑运动员在某次百米赛跑中测得5秒末的速度为9.0m/s,10秒末到达终点的速度为10.2m/s,.5.(3分)(2014•杭州)加在某电动机上的电压是U,电动机消耗的电功率为P,电动机线圈的电阻为r,则电动机C D7.(3分)(2014•杭州)小明和小忠想把一条弹性绳拉开,使弹性绳两端的拉环能分别套在相隔一段距离的两根柱子上,用来晒衣服.现有两种办法:一种是按图甲的方法做;另一种是按图乙的方法做.关于这两种做法下列说法正确的是()8.(3分)(2014•杭州)如图所示,密度为ρ、厚度为d、边长为L的均匀正方形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的光滑程度不变,现用水平力向右推薄板使其运动,在推薄板的过程中薄板对桌面的压力F、压强p和摩擦力f的变化情况是()增大为减小为ρ增大为二、解答题(共6小题,满分40分)9.(4分)(2014•杭州)小胡同学在水槽中洗碗,一个大的瓷碗正漂浮在水槽中.小胡用水槽中的水把碗装满,碗就会沉入水槽底部,此时碗所受到的浮力比漂浮时碗所受到的浮力_________(选填“大”、“小”、“不变”),水槽中的水面将会_________(选填“上升”、“下降”、“不变”).10.(6分)(2014•杭州)用手将一重为G的铁球缓慢放在一弹簧上,放手后,铁球从A位置开始向下运动,到达B位置速度达到最大,到达C位置小球的速度变为零.已知AC间的高度差为h,则从A位置到C位置铁球的重力做功是_________;在此过程中弹簧的弹性势能增加量为_________.B位置到C位置的过程中铁球所受的重力_________(选填“大于”、“小于”、“等于”)弹簧所施加的弹力.(整个过程中不计能量损耗)11.(9分)(2014•杭州)为测量规格“6.3V,0.15A”小灯泡的额定功率,提供的实验器材有:蓄电池(输出电压约10V)、滑动变阻器(有“10Ω,2A”、“50Ω,1.5A”两种规格)、电流表、电压表各一只.(1)如图1是小张测量时所连接的部分实物连线图,请你根据电路图补全实物连线图.(2)实验中,小徐同学选择了规格为“10Ω,2A”的滑动变阻器,你预计会出现什么现象?说明理由.(3)在某次测量中,电流表、电压表读数如图2所示,则电流表读数为_________,电压表读数为_________,此时应如何改变滑动变阻器的阻值才能测量小灯泡的额定功率?_________.(选填“变大”“变小”“不变”)12.(7分)(2014•杭州)如图为发光点S和竖直放置的平面镜的位置情况.根据光的反射定律完成下列两小题:(1)在图中用光路图作出发光点S的像点S′.(2)推导证明S′点和S点到平面镜距离相等.13.(6分)(2014•杭州)汽车超载是当前发生交通事故的重要根源.为了加强监控,各地均设置超载监测站.如图所示,已知某汽车的自重为2吨,其载重量为10吨.现让该汽车前轮开上电子地磅秤,其读数为5吨,后轮开上电子地磅秤读数为6吨,且前后轮与地面的接触面积相等.问:(1)该汽车的前后轮对地面的压强是否相同?为什么?(2)该汽车是否超载,通过分析计算说明理由.14.(8分)(2014•杭州)如图甲是一个电子拉力计原理图.硬质弹簧右端和金属滑片P固定在一起(P与R1间的摩擦不计).电压表量程为0~3V,a、b是一根长为6cm的均匀电阻丝,阻值R1=30Ω,电源电压U=6V.(1)要保证电压表能正常工作,电路中R0至少应为_________.(2)当拉环不受拉力时,滑片P处于a端,闭合开关后电压表的读数为_________V.(3)已知该弹簧伸长的长度△L与所受拉力F间的关系如图乙所示,若R0=45Ω,通过计算说明,开关S闭合后,当电压表指针指在0.8V处,作用在拉环上水平向右的拉力为多大?此拉力器的量程为多少?三、综合题15.(10分)(2014•杭州)某家用饮水机(见图)通过电热使水加热到95℃时,饮水机从加热状态自动切换到保温状态,如水温降到85℃时,则重新加热,使水温重新上升到95℃.如此反复,使水温始终维持在一定范围内.根据饮水机工作过程,(1)若水中含有少量硝酸盐,反复加热,会使其中的部分硝酸根离子转化为亚硝酸根离子(NO2﹣),在此过程中氮元素的化合价如何变化?_________(2)反复加热,会导致水中的溶解氧越来越少.你认为长期饮用这种水,是否会导致人体缺氧?请作出判断并说明理由:_________.(3)其实饮水机在加热时,并不是对整桶水进行加热的,只是对饮水机内热水箱中的那部分水加热.为了比较“切断电源8小时后一次加热至95℃”和“8小时内保温状态下反复加热”两种情况下消耗的电能多少,在没有电能表的情况下,除本题提供的信息外,还需测量哪两个或三个量?_________、_________、_________(_________).(饮水机部分技术指标见表)2014年浙江省杭州市中考物理试卷参考答案与试题解析一、选择题1.(4分)(2014•杭州)如图所示,甲乙两小磁针在一根磁铁附近,下列判断正确的是()2.(3分)(2014•杭州)短跑运动员在某次百米赛跑中测得5秒末的速度为9.0m/s,10秒末到达终点的速度为10.2m/s,,平均速度的计算应为路程和对应时间的比值,前v==10m/s..5.(3分)(2014•杭州)加在某电动机上的电压是U,电动机消耗的电功率为P,电动机线圈的电阻为r,则电动机C D;r=7.(3分)(2014•杭州)小明和小忠想把一条弹性绳拉开,使弹性绳两端的拉环能分别套在相隔一段距离的两根柱子上,用来晒衣服.现有两种办法:一种是按图甲的方法做;另一种是按图乙的方法做.关于这两种做法下列说法正确的是(),所以8.(3分)(2014•杭州)如图所示,密度为ρ、厚度为d、边长为L的均匀正方形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的光滑程度不变,现用水平力向右推薄板使其运动,在推薄板的过程中薄板对桌面的压力F、压强p和摩擦力f的变化情况是()增大为减小为ρ增大为p=的过程中,薄板对桌面的压力=时,受力面积)=ρρ的过程中,接触面的粗糙程度和压力不变,摩擦力的大小不变,故二、解答题(共6小题,满分40分)9.(4分)(2014•杭州)小胡同学在水槽中洗碗,一个大的瓷碗正漂浮在水槽中.小胡用水槽中的水把碗装满,碗就会沉入水槽底部,此时碗所受到的浮力比漂浮时碗所受到的浮力小(选填“大”、“小”、“不变”),水槽中的水面将会下降(选填“上升”、“下降”、“不变”).可知,在液体密度一定时,物体受到的浮力越小,排开液体的体积10.(6分)(2014•杭州)用手将一重为G的铁球缓慢放在一弹簧上,放手后,铁球从A位置开始向下运动,到达B位置速度达到最大,到达C位置小球的速度变为零.已知AC间的高度差为h,则从A位置到C位置铁球的重力做功是Gh;在此过程中弹簧的弹性势能增加量为Gh.B位置到C位置的过程中铁球所受的重力小于(选填“大于”、“小于”、“等于”)弹簧所施加的弹力.(整个过程中不计能量损耗)11.(9分)(2014•杭州)为测量规格“6.3V,0.15A”小灯泡的额定功率,提供的实验器材有:蓄电池(输出电压约10V)、滑动变阻器(有“10Ω,2A”、“50Ω,1.5A”两种规格)、电流表、电压表各一只.(1)如图1是小张测量时所连接的部分实物连线图,请你根据电路图补全实物连线图.(2)实验中,小徐同学选择了规格为“10Ω,2A”的滑动变阻器,你预计会出现什么现象?说明理由.(3)在某次测量中,电流表、电压表读数如图2所示,则电流表读数为0.08A,电压表读数为 2.5V,此时应如何改变滑动变阻器的阻值才能测量小灯泡的额定功率?变小.(选填“变大”“变小”“不变”)R==≈12.(7分)(2014•杭州)如图为发光点S和竖直放置的平面镜的位置情况.根据光的反射定律完成下列两小题:(1)在图中用光路图作出发光点S的像点S′.(2)推导证明S′点和S点到平面镜距离相等.13.(6分)(2014•杭州)汽车超载是当前发生交通事故的重要根源.为了加强监控,各地均设置超载监测站.如图所示,已知某汽车的自重为2吨,其载重量为10吨.现让该汽车前轮开上电子地磅秤,其读数为5吨,后轮开上电子地磅秤读数为6吨,且前后轮与地面的接触面积相等.问:(1)该汽车的前后轮对地面的压强是否相同?为什么?(2)该汽车是否超载,通过分析计算说明理由.p=p=可知,前轮对地面的压强小于后轮对地面的压强;14.(8分)(2014•杭州)如图甲是一个电子拉力计原理图.硬质弹簧右端和金属滑片P固定在一起(P与R1间的摩擦不计).电压表量程为0~3V,a、b是一根长为6cm的均匀电阻丝,阻值R1=30Ω,电源电压U=6V.(1)要保证电压表能正常工作,电路中R0至少应为30Ω.(2)当拉环不受拉力时,滑片P处于a端,闭合开关后电压表的读数为0V.(3)已知该弹簧伸长的长度△L与所受拉力F间的关系如图乙所示,若R0=45Ω,通过计算说明,开关S闭合后,当电压表指针指在0.8V处,作用在拉环上水平向右的拉力为多大?此拉力器的量程为多少?=0.1A==30===10L=×三、综合题15.(10分)(2014•杭州)某家用饮水机(见图)通过电热使水加热到95℃时,饮水机从加热状态自动切换到保温状态,如水温降到85℃时,则重新加热,使水温重新上升到95℃.如此反复,使水温始终维持在一定范围内.根据饮水机工作过程,(1)若水中含有少量硝酸盐,反复加热,会使其中的部分硝酸根离子转化为亚硝酸根离子(NO2﹣),在此过程中氮元素的化合价如何变化?从+5到+3(2)反复加热,会导致水中的溶解氧越来越少.你认为长期饮用这种水,是否会导致人体缺氧?请作出判断并说明理由:否,人通过呼吸运动吸入空气中的氧气.(3)其实饮水机在加热时,并不是对整桶水进行加热的,只是对饮水机内热水箱中的那部分水加热.为了比较“切断电源8小时后一次加热至95℃”和“8小时内保温状态下反复加热”两种情况下消耗的电能多少,在没有电能表的情况下,除本题提供的信息外,还需测量哪两个或三个量?水从室温上升到95℃所需的加热时间、水从85℃上升到95℃所需的加热时间、开始保温到下次加热的时间(水从室温上升到95℃所需的加热时间、8小时内水从85℃上升到95℃的加热总时间).(饮水机部分技术指标见表)。
2014年浙江省杭州市中考英语试卷-答案
浙江省杭州市2014年各类高中招生文化考试英语答案解析Ⅰ.听力部分一、听短对话,回答问题1.【答案】C2.【答案】A3.【答案】A4.【答案】B5.【答案】B二、听较长对话,回答问题6.【答案】B7.【答案】C8.【答案】B9.【答案】A10.【答案】B11.【答案】C三、听独白,回答问题12.【答案】A13.【答案】A14.【答案】B15.【答案】CⅡ.笔试部分四、单项填空16.【答案】B【解析】根据单词的写法paint,可知其中的元音字母组合是ai,其他辅音没有变化,变化的是元音,在这个单词中元音字母组合ai的发音是/ei/。
17.【答案】C【解析】can能够,表示能力;should表示应该;must表示必须;may表示可能。
根据please go outside。
请你去外边吸。
推测可知:上文应该是如果你非要吸烟,故填must。
18.【答案】C【解析】此处考查了冠词的用法,在多少岁时的英语表达为:at the age of+基数词,是表示特指,因此用定冠词the。
19.【答案】A【解析】A.moment时候;B.Chance机会;C.place地方;D.season季节,本题的语境:这时不是邀请我散步的恰当的“时间”强调时间。
20.【答案】B【解析】本题考查动词不定式,根据关键词customers eat quickly and leave可知,前面是让顾客离开的原因,用to do不定式作目的状语。
21.【答案】A【解析】本题考查代词的用法,根据I can't find my ticket。
这句话可知,后面的代词是指我的票,指同一事物,one指同一类事物,this指离说话地点比较近的事物;them是they的宾格形式,它(他,她)们。
22.【答案】A【解答】根据the famous athlete's story作句子主语,可知the famous athlete's story和动词report之间构成被动的关系,应该用被动语态,被动语态的构成:助动词be+及物动词的过去分词。
2014年浙江省杭州市中考数学试卷(附答案与解析)
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前浙江省杭州市2014年各类高中招生文化考试数 学本试卷满分120分,考试时间100分钟.参考公式:圆锥的侧面积公式πS rl =(其中S 是侧面积,r 是底面半径,l 是母线长)弧长公式π180n rl =(其中l 是弧长,n 是圆心角的度数,r 是圆半径)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.23(2)a a -=( ) A .312a -B .26a -C .312aD .26a2.已知某几何体的三视图(单位:cm )则该几何体的侧面积等于( )A .212πcm B .215πcm C .224πcmD .230πcm3.在直角三角形ABC 中,已知90C ∠=,40A ∠=,3BC =,则AC =( )A .3sin40B .3sin50C .3tan40D .3tan504.已知边长为a 的正方形面积为8,则下列说法中,错误的是 ( )A .a 是无理数B .a 是方程280x -=的解C .a 是8的算术平方根D .a 满足不等式组30,40a a -⎧⎨-⎩><5.下列命题中,正确的是( )A .梯形的对角线相等B .菱形的对角线不相等C .矩形的对角线不能互相垂直D .平行四边形的对角线可以互相垂直6.函数的自变量x 满足122x ≤≤时,函数值y 满足114y ≤≤,则这个函数可以是 ( )A .12y x =B .2y x =C .18y x =D .8y x=7.若241()142w a a+=--,则w =( ) A .2(2)a a +≠± B .2(2)a a -+≠± C .2(2)a a -≠±D .2(2)a a --≠±8.已知2001年至2012年杭州市小学学校数量(单位:所)和在校学生人数(单位:人)的两幅统计图.由图得出如下四个结论:①学校数量2007~2012年比2001~2006年更稳定; ②在校学生人数有两次连续下降,两次连续增长的变化过程;③2009年的在校学生人数学校数量大于1 000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的都是2011~2012年.其中,正确的结论是( )A .①②③④B .①②③C .①②D .③④9.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( )A .316B .38C .58D .1316毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)10.已知AD BC ∥,AB AD ⊥,点E ,点F 分别在射线AD ,射线BC 上,若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( )A .1tan2ADB +∠= B .25BC CF =C .22AEB DEF ∠+=∠D .4cos 6AGB ∠=第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 11.2012年末统计,杭州市常住人口是880.2万人,用科学记数法表示为 人. 12.已知直线a b ∥,若14050'∠=,则2∠= .13.设实数x ,y 满足方程组14,312,3x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩则x y += .14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 ℃.15.设抛物线2(0)y ax bx c a =++≠过(0,2)A ,(4,3)B ,C 三点,其中点C 在直线2x =上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为 . 16.点A ,B ,C 都在半径为r 的圆上,直线AD ⊥直线BC ,垂足为D ,直线BE ⊥直线AC ,垂足为E ,直线AD 与BE 相交于点H .若3BH AC =,则ABC ∠所对的弧长等于 (长度单位).三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)一个布袋中装有只有颜色不同的(12)a a >个球,分别是2个白球,4个黑球,6个红球和b 个黄球,从中任意摸出一个球.把摸出白球、黑球、红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出ba的值.18.(本小题满分8分)在ABC △中,AB AC =,点E ,F 分别在AB ,AC 上,AE AF =,BF 与CE 相交于点P .求证:PB PC =,并请直接写出图中其他相等的线段.19.(本小题满分8分)设y kx =,是否存在实数k ,使得代数式2222222()(4)3(4)x y x y x x y --+-能化简为4x ?若能,请求出所有满足条件的k 的值;若不能,请说明理由.20.(本小题满分10分)把一条12个单位长度的线段分成三条线段,其中一条线段长为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分法得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹); (2)求出(1)中所作三角形外接圆的周长.数学试卷 第5页(共24页) 数学试卷 第6页(共24页)21.(本小题满分10分)在直角坐标系中,设x 轴为直线l ,函数y =,y =的图象分别是1l ,2l ,圆P (以点P 为圆心,1为半径)与直线l ,1l ,2l 中的两条相切.例如是其中一个圆P 的圆心坐标.(1)写出其余满足条件的圆P 的圆心坐标;(2)在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.22.(本小题满分12分)菱形ABCD 的对角线AC ,BD 相交于点O,AC =4BD =.动点P 在线段BD 上从点B 向点D 运动,PF AB ⊥于点F ,四边形PFBG 关于BD 对称.四边形QEDH 与四边形PFBG 关于AC 对称.设菱形ABCD 被这两个四边形盖住部分的面积为1S ,未被盖住部分的面积为2S ,BP x =. (1)用含x 代数式分别表示1S ,2S ; (2)若12S S =,求x 的值.23.(本小题满分12分)复习课中,教师给出关于x 的函数22(41)1y kx k x k =-+-+(k 是实数). 教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上. 学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选择如下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当1x >时,不是y 随x 的增大而增大就是y 随x 的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数. 教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共24页)数学试卷 第8页(共24页)223(2)3412-==a a a a a ,故选【考点】整式的乘法运算. B【解析】由三视图可判断该几何体为圆锥,圆锥底面圆的直径为图为扇形,扇形的半径为5,弧长为,3BC =,tan 3tan50BC B =,22是无理数,的算术平方根,也是方程5 / 12)1ω=,)1ω=(,)1ω=(,14ω=,2)±,故选【解析】1=4050∠︒,//a b ,∴∠数学试卷 第11页(共24页)数学试卷 第12页(共24页)【解析】抛物线,点,AD BC ⊥3BH =ABC ∴∠=1803BD r π5rπ绘制统计图如图b【解析】解:在AFB△与AEC△中,7/ 12数学试卷 第15页(共24页)数学试卷 第16页(共24页)4)2x20.【答案】(1)不全等的三角形有两种,其三边分别为 ①3,4,5;②4,4,4当三边为3,4,5时,作图如图1 当三边为4,4,4时,作图如图2.9/ 12数学试卷 第19页(共24页)数学试卷 第20页(共24页)832AC BD =2211/ 12数学试卷第23页(共24页)数学试卷第24页(共24页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年杭州中考英语试卷四、单项填空(共15小题,计15分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项(2014年杭州市中考)If you _____ smoke, please go outside.A.canB.mayC.mustD. might[答案]:C[解析]:can能会;may可以;must必须;might可能。
根据句意“如果你抽烟,请到外面去”,结合几个情态动词的基本意思可知选C。
(2014年杭州市中考)My cousin went abroad at_____ age of eighteen.A.aB.anC.theD.不填[答案]:C[解析]:根据句意“我的表弟在18岁时去外国了”,结合at the age of是固定词组,故选C。
(2014年杭州市中考)I am tired.This is not the right ____ to ask me to go for a walk.A.momentB.chanceC.placeD.seasonB.[答案]:A[解析]:moment时刻;chance机会;place地点;season季节。
根据句意“我累了。
这不是让我散步的恰当时刻”,结合上句I am tired可知选A。
(2014年杭州市中考)Many fast food restaurants paint their walls red, play loud music and have hard seats_____ customers eat quickly and leave.A.makeB.to makeC.madeD.making[答案]:B[解析]:根据句意“许多的快餐店为了让顾客快点吃后离开,把墙刷成红颜色,播放高亢的音乐,提供硬的座位”,此处是动词不定式作状语表示目的,故选B。
(2014年杭州市中考)I can’t find my ticket. I think I must have lost_____.A.itB.oneC.thisD.them[答案]:A[解析]:根据句意“我没有找到票。
我想我一定是丢了”,结合当表示前文提到的同一种东西,下文用it代替,故选A。
(2014年杭州市中考)To my great surprise, the famous athlete’s story______ differently in the newspapers.A. was reportedB. reportedC. was reportingD. reports[答案]:A[解析]:根据句意“让我感到极大惊讶的是,那位著名运动员的经历在报纸上报道的不一样”,结合句子主语the famous athlete’s story与谓语动词report之间是一种承受关系,可知用被动语态,故选A。
(2014年杭州市中考)In summer milk will quickly go bad_____ it is put into a fridge.A. thoughB. unlessC. becauseD. once[答案]:B[解析]:though尽管;unless除非,如果不;because因为;once曾经。
根据句意“在夏季,牛奶如果不放在冰箱中,会很快变坏”,结合unless=if---not引导条件状语从句,可知选B。
(2014年杭州市中考)I will never forget the day____ we spent in the old town with small houses.A. whoB. whomC. thatD. what[答案]:C[解析]:根据句意“我将永远不会忘记我在那个带有小房子的古老城镇度过的那一天”,结合定语从句修饰的先行词the day是事物可知用that来引导定语从句,that还在从句中做动词spent的宾语,故选C。
(2014年杭州市中考)Of the two shirts, I’d like to choose the_____ one to save some money for a cap.A. cheapestB. cheaperC. more expensiveD. most expensive[答案]:B[解析]:根据句意“在两件衬衣中,为了节省些钱买顶帽子,我想选那件更便宜的”,结合动词不定式短语to save some money for a cap在句中做目的状语,可知选B。
(2014年杭州市中考)The boats take different routes, but they all____ in the same place.A. give upB. clear upC. end upD. make up[答案]:C[解析]:give up放弃;clear up清扫;end up结束;make up组成。
根据句意“那些小船行使不同的路线,但最后都在同一个地方停止”,可知选C。
(2014年杭州市中考)It’s hard to believe____ the way out of the forest without the help of the local guide.A. what they were able to findB. what were they able to findC. how they were able to findD. how were they able to find[答案]:C[解析]:,结合宾语从句必须用陈述语序,可排除B和D;再根据句意“很难相信在没有当地向导的帮助下,他们怎么能找到了走出森林的路”可知选C。
(2014年杭州市中考)After Steven sent some e-mails, he______ surfing the Internet.A. startsB. has startedC. will startD. started[答案]:D[解析]:根据句意“在Steven发送了一些电子邮件后,他开始上网”,结合上句After Steven sent some e-mails的一般过去时态,可知下文也用同样的时态。
(2014年杭州市中考)They usually go shopping____ their lunch break.A. againstB. amongC. betweenD. duringB.[答案]:D[解析]:against反对,对抗;among在---之间(指三者或三者以上);betweenC.在---之间(指二者或二者以上);during仔---期间。
根据句意“他们通常在午饭时间购物”,结合可知选D。
(2014年杭州市中考)--What about having a drink? --_______.A.Help yourselfB.Never mindC.You’re rightD.Good idea.B.[答案]:D[解析]:Help yourself请随便用;Never mind不要紧;You’re right你是对的;Good idea.好主意。
根据句意“—喝杯饮料怎样?—”,结合对别人的建议的肯定回答最好用Good idea或OK等,故选D。
五、完形填空(共15小题,计15分)通读下面短文,掌握其大意,然后在各题所给的四个选项(A、B、C和D)中选出一个最佳选项。
(2014年杭州市中考)At a day care centre in Texas, Jessica McClure was p laying outside. Jessica’s mother, __1__worked at the day care centre, was watching her. Suddenly Jessica__2__ and disappeared. Jessica’s mother cried and ran to her.The well in the yard was only eight inches across, and a rock always__3__it. But children had moved the rock. __4__ Jessica fell, she fell right into the well.Jessica’s mother ran to a phone and called 911 for __5__. Men from the fire department arrived. They __6__that Jessica was about 20 feet down in the well. Then they told Jessica’a parent s their__7__. “We can’t go down into the well” they said,” It’s so small. So we are going to dig a hole ___8___well. We’ll dig down about 20 feet. Then we’ll dig a tunnel(通道) across to Jessica. When we reach her, we’ll bring her through the tunnel. Then we’ll bring her up through our__9__.”The men began to dig the hole on a Wednesday morning. Two days later, on Friday morning, they were__10__digging. And Jessica McClure was still in the well.All over the world people waited for news of Jessica. They read about her in newspapers and watched her rescue(营救)on TV. Everyone__11__ the little girl in the well.At 8:00 p.m. On Friday, the men__12__ reached Jessica and brought her up from the well. Then doctors rushed her to the hospital. Jessica was badly injured but she was still__13__. A doctor at the hospital said, “Jessica is lucky, she is very__14__. She’s not going to remember this very well.”Maybe Jessica will not remember her days in the well. But her parents, her rescuers, and many other people around the world will not forget__15__.After Jessica’s rescue, one of the rescuers made a metal cover for the well. On the cover he wrote, “To Jessica, with love from all of us.”1. A.she B.who C.whom D.which2. A.fell B.slept C.stooped D.rose3. A.broke B.hid C.covered D.opened4. A.Because B.Although C.If D.When5. A.advice B.money C.help rmation6. A.promised B.discovered C.hoped D.agreed7. A.dream B.study C.lesson D.plan8. A.next to B.along with C.far from D.out of9. A.well B.tunnel C.hole D.yard10. A.still B.already C.always D.almost11. A.looked after B.worried about C.made friends with D.stayed away from12. A.immediately ually C.quickly D.finally13. A.alone B.asleep C.alive D.afraid14. A.young B.popular C.clever D.pretty15. A.it B.them C.him 1.[答案]:B[解析]:根据句意“在日间护理中心工作的杰西卡的妈妈在照看着她”,结合此处选一个引导定语从句的连词来修饰先行词Jessica’s mother,而且在从句中作主语,故用B。